绵羊腰椎植入PA66/n-HA融合器后的初始稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:具有良好生物活性和生物力学性能的材料可制成各种器械植入体内,取代老式器械,取得更好的临床效果,应用前景广泛。
     目的:利用PA66/n-HA复合材料试制适用于绵羊腰椎的融合器,比较植入双枚或者单枚融合器后,绵羊腰椎的初始稳定性,并借助有限元分析其应力、应变情况。
     材料方法:使用CT扫描绵羊腰椎并结合MIMICS软件确定融合器尺寸,设计并制造本实验使用的融合器;把绵羊腰椎分别植入两枚、单枚融合器,并以自体植骨组为对照进行体外实验,测试三种处理方式在有钉棒固定和无钉棒固定下的初始稳定性;利用绵羊腰椎CT扫描的数据,使用MIMICS和ANSYS软件进行三维有限元法进行应力应变的分析。结果:利用新材料设计并制造了适用于绵羊腰椎的两种型号的融合器;体外试验结果提示植入融合器节段的初始稳定性在对抗压缩载荷方面比自体植骨具有明显优势,植入两枚融合器比植入一枚融合器可能更稳定。有限元模型的计算结果和实验测量结果比较吻合,说明模型具有一定的可信度,其应力应变分布的分析也有助于我们深入理解融合术后椎体的力学改变。
     结论:使用PA66/n-HA复合材料制作的融合器植入椎间隙后的初始阶段,其脊柱单元比采用自体植骨的脊柱单元更稳定,若进一步研发,可望投入临床使用。
Back ground:The materials with excellent Biological activity and biomechanical properties can be made into various kinds of implants, and they can achieve better clinical results, so they can replace old equipments and have broad application prospects.
     Objective:(1)To make cages for sheep lumbar by PA66/n-HA material.(2) To compare the primary lumbar segment stability when one cage or two cages implanted.(3) Analysis the Stress and strain of lumbar vertebrae by finite element analysis.
     Materials and methods:(1) Achieved the size of sheep lumbar vertebrae by CT scan and determined the size of cages by MIMICS, then designed and made the cages for this study.(2)Compared the primary lumbar segment stability of one cage, two cages and Autologous bone graft groups, with or without screw fixation.(3)Analyzed the Stress and strain of lumbar vertebrae by finite element analysis.
     Results:(1) Designed and produced two types of cages for sheep lumbar.(2) In vitro tests suggested that cages provide better stability than Autologous bone graft, especially two cages.(3) Some results of finite element analysis is similar to the mechanical tests quantitatively. Finite element analysis can make better understanding of mechanical changes in vertebral body after fusion.
     Conclusion:Cages made of PA66/n-HA could provide better primary lumbar segment stability than Autologous bone graft, and with more studies, they may be used in clinics.
引文
1. Weiner B K, Fraser R D. Spine update lumbar interbody cages. Spine 1998; 23: 634-40., McAfee 1999, McAfee P C. Interbody fusion cages in reconstructive operations on the spine. J Bone Joint Surg (Am) 1999; 81:859-80.
    2. Steffen T, Tsantrizos A, Fruth I, Aebi M. Cages:designs andconcepts. Eur.Spine J (Suppl 1) 2000; 9:S89-94.
    3. Zdeblick T A, Phillips F M. Interbody cage devices. Spine2003; 28:S2-7.
    4. Ray C D. Threaded titanium cages for lumbar interbody fusions. Spine 1997; 22: 667-79,
    5. Brantigan et al.2000, Brantigan J W, Steffee A D, Lewis M L, Quinn L M, Perse-naire J M. Lumbar interbody fusion using the Brantigan I/F cage for posterior lumbar interbody fusion and the variable pedicle screw placement system:two-year results from a Food and Drug Administration investigational device exemption clinical trial. Spine 2000; 25:1437-46.
    6. Kuslich S D, Danielson G, Dowdle J D, Sherman J, Fredrick-son B, Yuan H, Griffith S L. Four-year follow-up results of lumbar spine arthrodesis using the Bagby and Kuslich lumbar fusion cage. Spine 2000; 25:2656-62.
    7. Togawa D, Bauer T W, Lieberman I H, Sakai H. Lumbar intervertebral body fusion cages:histological evaluation of clinically failed cages retrieved from humans. J Bone Joint Surg (Am) 2004; 86:70-9.
    8. Button et al.2005, Button G, Gupta M, Barrett C, Cammack P, Benson D. Three-to six-year follow-up of stand-alone BAK cages implanted by a single surgeon. Spine J 2005 5:155-60.
    9. Steffen T, Tsantrizos A, Fruth I, Aebi M. Cages:designs and concepts. Eur.Spine J (Suppl 1)2000; 9:S89-94.
    10. Sasso R C, Best N M, Mummaneni P V, Reilly T M, Hussain S M. Analysis of operative complications in a series of 471 anterior lumbar interbody fusion procedures. Spine 2005; 30:670-4.
    11. Fritzell P, Hagg O, Nordwall A. Complications in lumbar fusion surgery for chronic low back pain:comparison of three surgical techniques used in a prospective random-ized study. A report from the Swedish Lumbar Spine Study Group. Eur Spine J 2003; 12:178-89.
    12. Kim, D. H., S. T. Jeong, et al. (2009).Posterior lumbar interbody fusion using a unilateral single cage and a local morselized bone graft in the degenerative lumbar spine." Clin Orthop Surg 1(4):214-221.
    13. Xiao, Y., F. Li, et al. (2010). "Transforaminal lumbar interbody fusion with one cage and excised local bone." Arch Orthop Trauma Surg 130(5):591-597.
    14.Chiang, M. F., Z. C. Zhong, et al. (2006). "Biomechanical comparison of instrumented posterior lumbar interbody fusion with one or two cages by finite element analysis." Spine (Phila Pa 1976) 31(19):E682-689.
    15.Tsuang, Y. H., Y. F. Chiang, et al. (2009). "Comparison of cage application modality in posterior lumbar interbody fusion with posterior instrumentation-a finite element study." Med Eng Phys 31(5):565-570.
    16. Krijnen, M. R., D. Mensch, et al. (2006). "Primary spinal segment stability with a stand-alone cage:in vitro evaluation of a successful goat model." Acta Orthop 77(3):454-461.
    1. Christopher M. Casey K Critical Analysis of Trends in Fusion for Degenerative Disc Disease Over the Past 20 Years Influence of Technique on Fusion Rate and Clinical Outcome. Spine,2004,29(4):455-463
    2. thomasA, Frank M. Interbody cage devices. Spine,2003,28(15s):s2-s7
    3. Ludek Vavruch, Rune Hedlund, Davood Javid, et al. A Prospective Randomized Comparison Between the Cloward Procedure and a Carbon Fiber Cage in the Cervical Spine:A Clinical and Radiologic Study. Spine,2002,27(16):1694-1701
    4.严永刚,李玉宝,汪建新,等.聚酰胺66/羟基磷灰石复合材料的制备和性能研究[J].塑料工业,2000,28(3):38-41.
    5.王学江,李玉宝.羟基磷灰石纳米针晶与聚酰胺仿生复合生物材料研究[J].高技术通讯,2001,5:1~3.
    6. Bares B, Rodts GE, Haid RW, et al. Autograft implants for posterior lumbar interbody fusion:results comparing cylindrical dowels and impacted wedges. Neurosurgery,2002,51:1191-1198.
    7.吕 刚,王星铎,丁卫,等.聚酰胺可吸收髓内针治疗长管状骨骨折的临床观察与实验研究[J].现代康复,1998,2(7):648-652.
    8.李世普.生物医用材料导论[M].武汉:武汉工业大学出版社,2000,88-95.
    9. Bonfield W,Grynpas M D,Tully A E, et al. Hydroapatite Reinforced Polyethylene a Mechanically Compatible Implant Material for Bone Replacement[J].Biomaterials1981,2:185-186.
    10. Wang M, Bonfield W, HenchL L. Bioglasss/High Density Polyethylene Composite as a New Soft Tissue Bonding Material [J]. Bioceramics,1995,8:383-388.
    11. AbuBakar MM,Cheang P, Khor KA.Thermal Processing of Hydroxyapatite Reinforced Polyetheretherketone Composites[J].JMater Process Technology,1999,89-90:462-466.
    12.张翔,李玉宝,宋之敏,等.PA66/HA复合生物材料的力学性能研究.[J].中 国塑料,2005,19(6):26~29.
    . Tencer AF, Hampton D, Eddy S. Biomechanical properties of threaded nserts for lumbar interbody spinal fusion. Spine 1995; 20:2408-14.
    (?). J Zhao, Y Hai, Ordway NR, et al Posterior lumbar interbody fusion using posterolatera placement of a single eylindfical threaded cage Spine 2000; 25 (4) 25-430.
    3. Fogel, G. R., J. S. Toohey, et al. (2007). "Is one cage enough in posterior lumbar interbody fusion:a comparison of unilateral single cage interbody fusion to bilateral cages." J Spinal Disord Tech 20(1):60-65.
    4. Xiao, Y. X., Q. X. Chen, et al. (2009). "Unilateral transforaminal lumbar interbody fusion:a review of the technique, indications and graft materials." J Int Med Res 37(3):908-917.
    5. Kim, D. H., S. T. Jeong, et al. (2009). "Posterior lumbar interbody fusion using a unilateral single cage and a local morselized bone graft in the degenerative lumbar spine." Clin Orthop Surg 1(4):214-221.
    6. Chiang, M. F., Z. C. Zhong, et al. (2006). "Biomechanical comparison of instrumented posterior lumbar interbody fusion with one or two cages by finite element analysis." Spine (Phila Pa 1976) 31(19):E682-689.
    7. Tsuang, Y. H., Y. F. Chiang, et al. (2009). "Comparison of cage application modality in posterior lumbar interbody fusion with posterior instrumentation--a finite element study." Med Eng Phys 31(5):565-570.
    8. Wilke, H. J., A. Kettler, et al. (1997). "Anatomy of the sheep spine and its comparison to the human spine." Anat Rec 247(4):542-555.
    9. Wilke, H. J., A. Kettler, et al. (1997). "Are sheep spines a valid biomechanical model for human spines?" Spine (Phila Pa 1976) 22(20): 2365-2374.
    10.陈青山,钟倩红,林佩贤等.在Excel中完成实验对象的随机化分组.中国卫生统计,2009,26(3)298~299.
    11.朱旻宇等,对带横连杆的椎弓根钉固定胸腰段脊柱骨折(T11-L3)的稳定性评价,医用生物力学2010,25(2)100-104
    12. Panjabi MM, Krag M, Summers D, Videman T (1985) Biomechanical time-tolerance of fresh cadaveric human spine specimens. J Orthop Res 3:292-300
    13. Pflaster DS, Krag MH, Johnson CC, Haugh LD, Pope MH (1997) Effect of test environment on intervertebral disc hydration. Spine 22:1133-1139
    14.王成学,陈塑寰,马洪顺,程维;模拟置入骨椎间融合器行颈椎椎体间融合术稳定性分析.中国生物医学工程学报,2007,4;26(2)
    15. Wilke, H. J., K. Wenger, et al. (1998). "Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants." Eur Spine J 7(2):148-154.
    16. Wilke H · J, Jungkunz B, Wenger K, Claes L (1997) Spinal segment range of motion as a function of in vitro test conditions. Effects of exposure period, accumulated cycles, angular deformation rate and moisture condition. Anat Rec 251 (accepted for publication)
    17. Wilke, H. J., K. Wenger, et al. (1998). "Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spina! implants." Eur Spine J 7(2):148-154.
    18. Kettler, A., L. Liakos, et al. (2007). "Are the spines of calf, pig and sheep suitable models for preclinical implant tests?" Eur Spine J 16(12):2186-2192.
    19. Ebihara, H., M. Ito, et al. (2004). "A biomechanical analysis of metastatic vertebral collapse of the thoracic spine:a sheep model study." Spine (Phila Pa 1976) 29(9):994-999.
    20. Heineck, J., C. Haupt, et al. (2010). "Fracture models in the lumbar sheep spine:a biomechanical investigation." J Orthop Res 28(6):773-777.
    21. Cunningham, B. W., B. L. Atkinson, et al. (2009). "Ceramic granules enhanced with B2A peptide for lumbar interbody spine fusion:an experimental study using an instrumented model in sheep." J Neurosurg Spine 10(4): 300-307.
    22. Braun, J. T., J. W. Ogilvie, et al. (2006). "Creation of an experimental idiopathic type scoliosis in an immature goat model using a flexible posterior asymmetric tether." Spine (Phila Pa 1976) 31(13):1410-1414.
    23. Nickel, R., A. Schummer, and E. Seiferle 1984 Lehrbuchder Anatomie der Haustierel. Verlag Paul Parey, Ber linund Hamburg.
    24.杨阳,马信龙等.不同混合比例聚甲基丙烯酸甲酯的力学性能比较.中国组织工程研究与临床康复,2009,3(42):8307~8310.
    25. Goertzen DJ, Lane C, Oxland TR. Neutral Zone and range of motion in the spine are greater with stepwise loading than with a eofitinuous loading protocol. An in vitro porcine investigation. J Biomech,2004,37(2):257-261.
    26. JT,Dickey JP,Dumas GA, et al. A continuous pure moment loading apparatus for biomechanical testing of multisegment spine specimens. J Biomech,2000,33(6):765-770.
    27. Clarke, E. C., R. C. Appleyard, et al. (2007). "Immature sheep spines are more flexible than mature spines:an in vitro biomechanical study." Spine (Phila Pa 1976) 32(26):2970-2979.
    1. Yoganadan N, Kumaresan S, Voo L, et al. Finite element applications in human cervical spine modeling(Review)[J]. Spine,1996,21(15):1824-1834.
    2. Fagan MJ, Julian S. Mohsen AM. Finite element analysis in spine research. J Engineering Med.2002,10:281-297.
    3. Tyndyka, M. A., V. Barron, et al. (2007). "Generation of a finite element model of the thoracolumbar spine." Acta Bioeng Biomech 9(1):35-46.
    4. Chiang, M. F., Z. C. Zhong, et al. (2006). "Biomechanical comparison of instrumented posterior lumbar interbody fusion with one or two cages by finite element analysis." Spine (Phila Pa 1976) 31(19):E682-689.
    5. Tsuang, Y. H., Y. F. Chiang, et al. (2009). "Comparison of cage application modality in posterior lumbar interbody fusion with posterior instrumentation--a finite element study." Med Eng Phys 31(5):565-570.
    6. Rohlmann, A., L. Bauer, et al. (2006). "Determination of trunk muscle forces for flexion and extension by using a validated finite element model of the lumbar spine and measured in vivo data." J Biomech 39(6):981-989.
    7. Viceconti M, Olsen S, Nolte LP,et al. Extracting clinically relevant data from finite element simulations. Clin Biomech.2005; 20(5):451-454.
    8. Wong, C., P. M. Gehrchen, et al. (2003). "Nonlinear finite-element analysis and biomechanical evaluation of the lumbar spine." IEEE Trans Med Imaging 22(6):742-746.
    1 Brekelmans WA, Poort HW, Slooff TJ. A new method to analyze the mechanical behaviour of skeletal parts. Acta Orthop Scand,1972.43(5):301-3I7.
    2 Belytschko TB, Andriacohi TP, Schuhz AB。et al. Analog studies of forces in human spine:computational techniques. J Biomech.1973; 6(4):361-371.
    3戴力扬,成培来,张文明,等.腰椎小天节的生物力学研究(三维有限元分析)(J).生物医学工程学杂志,1990,7(2):101-104.
    4 Bono CM, Khandha A. Residual sagittal motion after lumbar fusion:a finite element analysis with implications on radiographic flexion-extension criteria. Spine.2007.32:417422.
    5 Wilcox RK.11le biomeehanical effect of vertebroplasty on the adjacent vertebral body:a finite element study. Proc Inst Mech Eng,2006,220: 565-572.
    6 Dubosset J, Lavaste F, Lafage V.3D finite element simulation of Cotrel —Dalcmusset correction. Comput Aided Smg。 2004.9:17-25.
    7 Goel VK. Kim YE. Effects of injury on the spinal motion segmentmechanicsin the axial compression modle. Cline Biomech.1989; 4: 161-167.
    8 Kumar N, Judith MR. Kumar A, et al. Analysis of stress distribution in lumbar interbody fusion. Spine.2005; 30(15):1731-1735.
    9闫家智,吴志宏,等.腰椎后路单节段椎弓根螺钉内固定的三维有限元分析(J).中华医学杂志,2009,89(1);7-11.
    10 Polikeit, A., S. J. Ferguson, et al. (2003). "Factors influencing stresses in the lumbar spine after the insertion of intervertebral cages:finite element analysis." Eur Spine J 12(4):413-420.
    11 Polikeit, A., S. J. Ferguson, et al. (2003). "The importance of the endplate for interbody cages in the lumbar spine." Eur Spine J 12(6):556-561.
    12 Kumar, N., M. R. Judith, et al. (2005). "Analysis of stress distribution in lumbar interbody fusion." Spine (Phila Pa 1976) 30(15):1731-1735.
    13 Vadapalli, S., K. Sairyo, et al. (2006). "Biomechanical rationale for using polyetheretherketone (PEEK) spacers for lumbar interbody fusion-A finite element study." Spine (Phila Pa 1976) 31(26):E992-998.
    14 Chosa, E., K. Goto, et al. (2004). "Analysis of the effect of lumbar spine fusion on the superior adjacent intervertebral disk in the presence of disk degeneration, using the three-dimensional finite element method." J Spinal Disord Tech 17(2):134-139.
    15 Kim, Y. (2001). "Prediction of mechanical behaviors at interfaces between bone and two interbody cages of lumbar spine segments." Spine (Phila Pa 1976) 26(13):1437-1442.
    16 Chiang, M. F., Z. C. Zhong, et al. (2006). "Biomechanical comparison of instrumented posterior lumbar interbody fusion with one or two cages by finite element analysis." Spine (Phila Pa 1976) 31(19):E682-689.
    17 Tsuang, Y. H., Y. F. Chiang, et al. (2009). "Comparison of cage application modality in posterior lumbar interbody fusion with posterior instrumentation--a finite element study." Med Eng Phys 31(5):565-570.
    18敖俊,靳安民,方国芳,等.前路腰椎间融合后路关节突螺钉固定术螺钉应力的有限元研究(J).中国临床解剖学杂志,2008,26(4):429-432.
    19陈家麟,茅祖斌,吴小涛.四种经椎间孔腰椎间融合固定方式的三维有限元分析.中国组织工程研究与临床康复,2008,12(39):7605—7610.
    20 Galbusera, F., C. M. Bellini, et al. (2008). "Anterior cervical fusion:a bjomechanical comparison of 4 techniques. Laboratory investigation." J Neurosurg Spine 9(5):444-449.
    21 Rohlmann A, Zander T, Bergmann G. Effects of fusion bone stifiness on the mechanical behavior of lumbar spine after vertebral body replacement. Clin Biomech.2006; 21(3)221-227.
    22 Lund T. Oxland TR. Jost B, et al. Interbody cage stabilization in the lumbar spine:biomechanical evaluation of cage design, posterior instrumentation and bone density. J Bone Joint Surg Br.1998; 80:351-359.
    23 Dooris AP. Goel VK, Grosland NM. Loading-sharing between anterior and posterior elements in alumbar motion segment implanted with an artificial disc. Spine.2001:26:122.129.
    24周华军,张美超,李锋.人工颈椎间盘置换术后颈椎生物力学的有限元分析.生物骨科材料与临床研究,2007,4(5):1-5.
    25 Rohlmann, A., T. Zander, et al. (2005). "Effect of total disc replacement with ProDisc on intersegmental rotation of the lumbar spine." Spine (Phila Pa 1976) 30(7):738-743.
    26 Denozi6re G. Ku DN. Biomechanical compadsion between fusion of two vertebare and implantation of an artiflcal intervertebral disc. J Biomech.2006: 39(7):66-75.
    27 Grauer, J. N., A. Biyani, et al. (2006). "Biomechanics of two-level Charite artificial disc placement in comparison to fusion plus single-level disc placement combination." Spine J 6(6):659-666.
    28 Rohlmann, A., N. K. Burra, et al. (2007). "Comparison of the effects of bilateral posterior dynamic and rigid fixation devices on the loads in the lumbar spine:a finite element analysis." Eur Spine J 16(8):1223-1231.
    29 Rousseau, M. A., X. Bonnet, et al. (2008). "Influence of the geometry of a ball-and-socket intervertebral prosthesis at the cervical spine:a finite element study." Spine (Phila Pa 1976) 33(1):E10-14.
    30 Rundell, S. A., J. D. Auerbach, et al. (2008). "Total disc replacement positioning affects facet contact forces and vertebral body strains." Spine (Phila Pa 1976) 33(23):2510-2517.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700