单纯后路经肋横突孔单侧脊柱栓系治疗生长期脊柱侧弯的解剖和实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     青少年特发性脊柱侧弯(Adolescent Idiopathic Scoliosis, AIS)是青少年肌肉骨骼系统最常见的畸形之一,文献报道其发病率约为1-3%。目前对于这部分患者的治疗指南建议:对于侧弯50°以上的患者,进行脊柱融合术;而对于侧弯在25°到45°之间的患者,建议使用矫形支具治疗。脊柱融合术虽然能够矫正畸形,但是严重阻碍躯干和胸廓的发育,甚至危机患者心肺功能。而矫形支具只能延缓侧弯的发展,矫形作用不确定。而且,支具治疗存在着疗效不稳定和患者依从性差等问题。为了解决这个两难困境,近来有人提出使用脊柱非融合术,治疗生长期脊柱侧弯,目前使用的非融合方式主要有:前路椎体间骑缝钉,后路生长棒。但是,生长棒需要每半年一次手术,极大增加了手术和麻醉风险,以及并发症的发生。前路骑缝钉需要经前路开胸手术,内固定位置紧邻大血管,手术风险性高,且影响患者呼吸功能。鉴于目前非融合手术存在的问题,我们提出一种单纯后路,经肋横突孔单侧异体肌腱移植栓系,治疗生长期脊柱侧弯的手术方法。希望能够利用脊柱自身的生长发育达到矫正畸形的目的。
     研究目的
     通过幼猪侧弯模型,来研究单纯后路经肋横突孔,异体移植肌腱栓系,对脊柱生长调控,和矫正生长期脊柱侧弯的可行性和有效性,并通过Micro-CT和组织形态学初步探讨栓系的作用机制。另一方面,借助数字化人体平台和患者影像学资料库,从应用解剖和临床影像学等方面对拟手术区域-肋横突孔以及椎弓根-肋骨复合体进行系统研究,为这种方法的临床运用提供应用解剖学基础。
     研究方法
     本课题研究通过胸椎肋横突孔,单侧移植肌腱组织栓系,对于幼猪脊柱生长的调节作用。取8周大小健康约克夏猪17只,随机分为四组:空白对照组、单纯肌腱移植组、侧弯治疗组和侧弯未治疗组。空白组,不进行任何治疗,或肌腱移植操作,仅进行假手术操作;单纯肌腱移植组,仅进行后路异体肌腱移植;侧弯治疗组是指预先通过其他方法诱导实验动物出现Cobb角45-50度的脊柱侧弯,然后再进行后路肌腱移植的治疗手术;侧弯未治疗组是指同侧弯治疗组一同建立侧弯模型,但不进行治疗。四组动物手术后观察一定时间后处死,之后根据术前以及术后每月X线片,脊柱CT扫描,椎体Micro-CT和组织形态学表现,观察和评价单侧移植肌腱组织栓系对椎体的生长调控和侧弯矫正的效果并初步探讨机制。我们对上一部分,在动物实验中涉及到的手术区域,即肋横突孔和椎弓根-肋骨复合体,及其毗邻结构进行了系统的应用解剖学研究。利用我校数字人体数据集中,对3例可视化人体数据断面分割,三维重建胸段脊柱及毗邻结构,描述肋横突孔及椎弓根-肋骨复合体的解剖学特征,测量肋横突孔横截面大小,椎弓根-肋骨复合体横径、纵径、重合纵径,以及复合体区域内手术安全角,探讨肋横突孔及椎弓根-肋骨复合体的外科手术意义。随后,我们主要研究了原发性青少年脊柱侧弯(adolescent idiopathic scoliosis,AIS)患者的肋横突孔,以及椎弓根-肋骨复合体的形态学特征。回顾性分析了104例,2005年7月至2013年3月期间,于我院骨科行门诊,或术前CT扫描三维重建的AIS(右胸弯)患者影像学资料,和38例,2007年5月至2012年12月,在我院行CT检查但无脊柱畸形患者的资料,选取脊柱侧弯患者男49例,女75例;平均年龄10岁。Lenke分型:I型58例、Ⅲ型46例。主胸弯Cobb角平均为45.95°。正常对照组,男性15例,女性23例,平均年龄11岁。测量脊柱侧弯患者凸侧顶椎,以及上下相邻两个椎体的,肋横突孔横截面积,椎弓根-肋骨复合体和椎弓根横径并与正常对照组对比,分析AIS患者肋横突孔,椎弓根-肋骨复合体和椎弓根的形态学特点及影响因素。同时,我们通过对6例患者的2临床随访观察,进一步研究了单纯后路脊柱融合术对生长期脊柱的影响。
     研究结果
     动物手术16周后,与空白组和术前自身对比,单纯肌腱移植组动物,被诱导出三维结构性侧弯,伴有顶椎的楔形变,随后的Micro-CT和组织形态学结果,证明了肌腱栓系对椎体的生长调节作用。侧弯治疗组和未治疗组,所有动物,在侧弯诱导手术术后,出现一致的脊柱侧弯,在分别进行凸侧肌腱移植栓系,和空白手术后12周,治疗组脊柱侧弯程度,比治疗手术前,和未治疗组明显减轻;而侧弯未治疗组,治疗手术前后无显著变化。Micro-CT和组织形态学证实,单侧栓系,通过调节侧弯节段内椎体生长来矫正侧弯。对建立的数字化人体三维模型的解剖研究发现,椎弓根-肋骨复合体是三维立体结构,肋横突孔位于复合体内,肋横突孔内未走行任何重要神经血管结构,横截面随椎体水平下降而变小,肋横突孔可以作为放置内固定物的间隙;椎弓根-肋骨复合体横径明显大于椎弓根,但是有效纵径小于其横径;椎弓根-肋骨复合体区域手术安全角随水平变化较大,但有效工作范围恒定。影像学研究发现,侧弯组肋横突孔横截面积,明显大于正常组的对应节段面积。侧弯患者,主胸弯凹侧椎弓根横径明显小于凸侧,凹侧椎弓根一肋骨复合体横径明显大于凸侧;正常组左右侧椎弓根一肋骨复合体,以及椎弓根横径无显著差别;侧弯组顶椎,凹侧椎弓根横径明显小于正常组对应侧椎弓根横径;侧弯顶椎,凸侧椎弓根-肋骨复合体横径明显小于正常组对应横径;侧弯组,凹侧椎弓根横径明显小于正常组对应横径;除顶椎外,侧弯组,凹侧椎弓根-肋骨复合体横径均值大于正常组对应横径。正常组和侧弯组两侧椎弓根和椎弓根-肋骨复合体横径测量值均出现从头侧向尾侧逐渐增大的趋势。所有患者均完成至少2年随访,所有侧弯矫形保持良好,未发现有明显曲轴现象或肺功能不全。
     研究结论
     正常人群和年轻AIS患者肋横突孔和椎弓根-肋骨复合体内具有足够安全手术空间,单纯后路经过肋横突孔异体移植肌腱单侧脊柱栓系,可以调节脊柱的生长,从而矫正脊柱侧弯。这种手术方法,可能成为一种新型的治疗生长期脊柱侧弯的非融合手术方式。
Background: Adolescent idiopathic scoliosis (AIS) is one of the most commondeformities of the musculoskeletal system for young people. The incidence ranges from1%to3%. Spinal fusion is usually recommended for patient whose curve is greater than50°,and for those with curves between45°to25°, spinal bracing would be considered. However,the spinal fusion has several problems including restriction of the trunk height, limitation ofthe thoracic development and even compromise the pulmonary function. And the efficacyof bracing is not definite and could be compromised by poor compliances. Recently, thenon-fusion surgery for the treatment of immature scoliosis has been proposed, includinganterior vertebral staples and posterior growing rod. But the growing rod requires seriallengthening procedures before maturity and the anterior staples have to be put around majorvascular structures, both of which greatly increase the surgical risks and rate ofcomplications. We, therefore, propose a posterior only approach tethering procedure whichincludes implantation of an allograft tendon via the costo-transverse foramen. Our goal isthat this allograft tendon would be able to correct the spinal scoliosis by growth modulationwhile preserving the growth potential.
     Objectives:
     To investigate the feasibility and efficacy of spinal growth modulation and scoliosiscorrection with unilateral flexible tethering via the costo-transverse foramen on immatureporcine models, in addition, Micro-CT and histo-morphological analysis were done toillustrate the effects of tethering. On the other hand, based on the Chinese visible human(CVH) database and clinical radiology database of AIS, anatomical and radiological studywas done on the region of costo-transverse foramen and the pedicle-rib complex, whichfurther validated and supported the clinical application and feasibility of the tetheringprocedure.
     Methods:
     This IACUC-approved study included17eight weeks old immature Yorkshire pigs,which were randomized into four groups, including tendon tethering, sham operation,scoliosis treatment and scoliosis none treatment. In the initial study of tethering group andsham operation, scoliosis was induced using a previously harvested allograft tendoninserted as a tether into the costo-transverse foramen within the pedicle-rib complex.Afterwards, in the scoliosis treatment study, a first stage surgery was performed to initiate aspinal deformity by tethering the ribcage and spine. Serial radiographs were obtainedbi-weekly to confirm progression of spinal deformity. Once the animals had demonstrated aspinal deformity greater than45degrees, they underwent a second stage surgery of scoliosistreatment or sham treatment operations. For the treatment group a posterior convex sideallograft tendon tether was applied with a bone anchor in an effort to correct the deformityvia the costo-transvere foreman. For all four groups, the progression of deformity wasdocumented by monthly radiographs. Coronal, sagittal and axial changes were assessedusing the Cobb method, along with post mortem CT of the spines. In addition, Micro-CTand histo-morphological analysis were done to illustrate the effects of tendon tethering.Based on the CVH database, three dimensional model was generated to study theanatomical structures of costo-transverse foramen and the pedicle-rib complex. Parametersof the costo-transvere foramen and the pedicle rib-complex were measured as well. Thethree dimensional computered tomography(CT) data of104AIS patients(49males and75females, averaging10years old) who underwent CT examination in our institution fromJuly2005to March2013, and38matched normal people(15males and23females,averaging11years old) who underwent CT examination in our institution from May2007to December2012, were reviewed retrospectively to illustrate the morphologicalcharacteristics of the costo-transverse foramen and pedicle-rib complex. According to theLenke classification, there were58cases of Lenke I and46cases of Lenke III in the AISgroup. The average Cobb angles of the main thoraic curve was45.95degrees in the AISgroup. Based on the three dimensional reconstruction of CT data in Amira software, themorphological characteristics of the costo-transverse foramen and pedicle-rib complex indifferent levels were described and analyzed in both AIS and normal people. And comparisons were made within and between the AIS and normal people group. The possiblefactors contributing to the morphological changes in AIS patients were discussed andsummarized. In addition, the effects of posterior only spinal fusion surgery on immaturescoliosis spine were discussed in a clinical follow-up study.
     Results:
     The animals from tendon tethering and sham operation groups were observed for16weeks post-surgery. Significant three dimensional spinal deformities were induced in thetendon tethering group, compared to those of sham operation group. And the followingMicro-CT and histo-morphological analysis further illustrated the effects of the tether bythe demonstration of the changes within the vertebral trabecular and growth plates. In thescoliosis treatment study,12weeks after the second surgery, the deformities of thetreatment group were significantly smaller than those of none treatment group, and thescoliosis corrective and growth preserving effects of the tether were also interpreted by thefollowing Micro-CT and histo-morphological analysis. A three dimensional model of thecosto-transverse foramen and the pedicle-rib complex was generated. The anatomical studyproved that the pedicle-rib complex is a three dimensional structure, in whichcosto-transverse foramen is formed. The costo-transverse foramen varies among differentlevels, but all of them are large enough for tether placement. The sagittal effective diameterof the pedicle-rib complex is significantly smaller than that of the sagittal boundary of thecomplex. The safe zone within the pedicle-rib complex varies among levels, but theeffective ranges reached by approaches with the safe zones are consistent throughout alllevels. The cross sectional area of the costo-transverse foramen in AIS patients was largerthan those of normal matched people. The axial width of the pedicle-rib complex was largeron the concave side, and the pedicle was larger on the convex side. The axial width of thepedicle-rib complex on the concave side was smaller than that of normal matched people.The width of pedicle-rib complex of both groups were larger than those of pedicles, and allshowed the pattern of cranial to caudal decreasing. All patients were followed up for at least2years, the corrections were well maintained and there were no signs of crankshaft orrespiratory function defect.
     Conclusion: With the placement of a unilateral allograft tendon spinal tether via thecosto-transverse foreman, a significant spinal deformity can be produced on normal spine and a significant scoliosis can be corrected by applying this tethering procedure.Furthermore, the anatomical study of the costo-transverse foramen and the pedicle-ribcomplex of both normal and AIS population supported the clinical feasibility of theprocedure. These data suggest that an allograft tendon tethering approach may represent anovel fusion-less procedure to treat idiopathic scoliosis in immature population.
引文
1Hresko MT. Clinical practice. Idiopathic scoliosis in adolescents. The New England journal of medicine.2013;368(9):834-841
    2Weinstein SL, Dolan LA, Cheng JC, Danielsson A, Morcuende JA. Adolescent idiopathic scoliosis. Lancet.2008;371(9623):1527-1537.
    3Aronsson DD, Stokes IA. Nonfusion treatment of adolescent idiopathic scoliosis by growth modulation and remodeling.Journal of pediatric orthopedics.2011;31(1Suppl):S99-106.
    4Akel I, Yazici M. Growth modulation in the management of growing spine deformities. Journal of children'sorthopaedics.2009;3(1):1-9.
    1Akbarnia BA, Blakemore LC, Campbell RM, Jr., Dormans JP. Approaches for the very young child with spinaldeformity: what's new and what works. Instructional course lectures.2009;59:407-424.
    2Newton PO, Farnsworth CL, Faro FD, Mahar AT, Odell TR, Mohamad F, et al. Spinal growth modulation with ananterolateral flexible tether in an immature bovine model: disc health and motion preservation. Spine.2008;33(7):724-733.
    3Braun JT, Akyuz E, Ogilvie JW, Bachus KN. The efficacy and integrity of shape memory alloy staples and boneanchors with ligament tethers in the fusionless treatment of experimental scoliosis. The Journal of bone and joint surgery.2005;87(9):2038-2051.
    4Newton PO, Farnsworth CL, Upasani VV, Chambers RC, Varley E, Tsutsui S. Effects of intraoperative tensioning of ananterolateral spinal tether on spinal growth modulation in a porcine model. Spine.2011;36(2):109-117.
    5Zhang H, Sucato DJ. Unilateral pedicle screw epiphysiodesis of the neurocentral synchondrosis. Production ofidiopathic-like scoliosis in an immature animal model. The Journal of bone and joint surgery.2008;90(11):2460-2469
    6Moal B, Schwab F, Demakakos J, Lafage R, Riviere P, Patel A, et al. The impact of a corrective tether on a scoliosisporcine model: a detailed3D analysis with a20weeks follow-up. Eur Spine J.22(8):1800-1809.
    7Crawford CH,3rd, Lenke LG. Growth modulation by means of anterior tethering resulting in progressive correction ofjuvenile idiopathic scoliosis: a case report. The Journal of bone and joint surgery.2011;92(1):202-209.
    1Akbarnia BA, Blakemore LC, Campbell RM, Jr., Dormans JP. Approaches for the very young child with spinal
    2deformity: what's new and what works. Instructional course lectures.2009;59:407-424.Newton PO, Farnsworth CL, Upasani VV, Chambers RC, Varley E, Tsutsui S. Effects of intraoperative tensioning of ananterolateral spinal tether on spinal growth modulation in a porcine model. Spine.2011;36(2):109-117.
    3Braun JT, Hoffman M, Akyuz E, Ogilvie JW, Brodke DS, Bachus KN. Mechanical modulation of vertebral growth inthe fusionless treatment of progressive scoliosis in an experimental model. Spine.2006;31(12):1314-1320.
    4Newton PO, Farnsworth CL, Upasani VV, Chambers RC, Varley E, Tsutsui S. Effects of intraoperative tensioning of ananterolateral spinal tether on spinal growth modulation in a porcine model. Spine.2011;36(2):109-117.
    5Moal B, Schwab F, Demakakos J, Lafage R, Riviere P, Patel A, et al. The impact of a corrective tether on a scoliosis
    6porcine model: a detailed3D analysis with a20weeks follow-up. Eur Spine J.22(8):1800-1809.Crawford CH,3rd, Lenke LG. Growth modulation by means of anterior tethering resulting in progressive correction ofjuvenile idiopathic scoliosis: a case report. The Journal of bone and joint surgery.2011;92(1):202-209.
    1Zhang H, Sucato DJ. Unilateral pedicle screw epiphysiodesis of the neurocentral synchondrosis. Production ofidiopathic-like scoliosis in an immature animal model. The Journal of bone and joint surgery.2008;90(11):2460-2469.
    1Hresko MT. Clinical practice. Idiopathic scoliosis in adolescents. The New England journal of medicine.2013;368(9):834-841.
    2Akbarnia BA, Blakemore LC, Campbell RM, Jr., Dormans JP. Approaches for the very young child with spinaldeformity: what's new and what works. Instructional course lectures.2009;59:407-424.
    3Weinstein SL, Dolan LA, Wright JG, Dobbs MB. Effects of Bracing in Adolescents with Idiopathic Scoliosis. The NewEngland journal of medicine.2013.
    4Akel I, Yazici M. Growth modulation in the management of growing spine deformities. Journal of children'sorthopaedics.2009;3(1):1-9.
    5Olgun ZD, Ahmadiadli H, Alanay A, Yazici M. Vertebral body growth during growing rod instrumentation: growthpreservation or stimulation? Journal of pediatric orthopedics.2012;32(2):184-189.
    1Olgun ZD, Ahmadiadli H, Alanay A, Yazici M. Vertebral body growth during growing rod instrumentation: growthpreservation or stimulation? Journal of pediatric orthopedics.2012;32(2):184-189.
    2Newton PO, Farnsworth CL, Faro FD, Mahar AT, Odell TR, Mohamad F, et al. Spinal growth modulation with ananterolateral flexible tether in an immature bovine model: disc health and motion preservation. Spine.2008;33(7):724-733.
    3Braun JT, Akyuz E, Ogilvie JW, Bachus KN. The efficacy and integrity of shape memory alloy staples and boneanchors with ligament tethers in the fusionless treatment of experimental scoliosis. The Journal of bone and joint surgery.2005;87(9):2038-2051.
    4Newton PO, Farnsworth CL, Upasani VV, Chambers RC, Varley E, Tsutsui S. Effects of intraoperative tensioning of ananterolateral spinal tether on spinal growth modulation in a porcine model. Spine.2011;36(2):109-117.
    5Zhang H, Sucato DJ. Unilateral pedicle screw epiphysiodesis of the neurocentral synchondrosis. Production ofidiopathic-like scoliosis in an immature animal model. The Journal of bone and joint surgery.2008;90(11):2460-2469.
    6Moal B, Schwab F, Demakakos J, Lafage R, Riviere P, Patel A, et al. The impact of a corrective tether on a scoliosis
    7porcine model: a detailed3D analysis with a20weeks follow-up. Eur Spine J.22(8):1800-1809.Crawford CH,3rd, Lenke LG. Growth modulation by means of anterior tethering resulting in progressive correction ofjuvenile idiopathic scoliosis: a case report. The Journal of bone and joint surgery.2011;92(1):202-209.
    1Aronsson DD, Stokes IA. Nonfusion treatment of adolescent idiopathic scoliosis by growth modulation and remodeling.Journal of pediatric orthopedics.2011;31(1Suppl):S99-106.
    2Stokes IA, Spence H, Aronsson DD, Kilmer N. Mechanical modulation of vertebral body growth. Implications forscoliosis progression. Spine.1996;21(10):1162-1167.
    3Roaf R. The Treatment of Progressive Scoliosis by Unilateral Growth-Arrest. J Bone Joint Surg Br.1963;45:637-651.
    4Mente PL, Aronsson DD, Stokes IA, Iatridis JC. Mechanical modulation of growth for the correction of vertebralwedge deformities. J Orthop Res.1999;17(4):518-524.
    5Stokes IA, Burwell RG, Dangerfield PH. Biomechanical spinal growth modulation and progressive adolescentscoliosis--a test of the 'vicious cycle' pathogenetic hypothesis: summary of an electronic focus group debate of the IBSE.Scoliosis.2006;1:16.
    1Newton PO, Fricka KB, Lee SS, Farnsworth CL, Cox TG, Mahar AT. Asymmetrical flexible tethering of spine growthin an immature bovine model. Spine.2002;27(7):689-693.
    2Newton PO, Farnsworth CL, Faro FD, Mahar AT, Odell TR, Mohamad F, et al. Spinal growth modulation with ananterolateral flexible tether in an immature bovine model: disc health and motion preservation. Spine.2008;33(7):724-733.
    3Newton PO, Farnsworth CL, Upasani VV, Chambers RC, Varley E, Tsutsui S. Effects of intraoperative tensioning of ananterolateral spinal tether on spinal growth modulation in a porcine model. Spine.2011;36(2):109-117.
    4Braun JT, Ogilvie JW, Akyuz E, Brodke DS, Bachus KN, Stefko RM. Experimental scoliosis in an immature goatmodel: a method that creates idiopathic-type deformity with minimal violation of the spinal elements along the curve.Spine.2003;28(19):2198-2203.
    1Braun JT, Ogilvie JW, Akyuz E, Brodke DS, Bachus KN. Fusionless scoliosis correction using a shape memory alloystaple in the anterior thoracic spine of the immature goat. Spine.2004;29(18):1980-1989.
    2Braun JT, Akyuz E, Udall H, Ogilvie JW, Brodke DS, Bachus KN. Three-dimensional analysis of2fusionless scoliosistreatments: a flexible ligament tether versus a rigid-shape memory alloy staple. Spine.2006;31(3):262-268.
    3Szarek J, Kowalski IM, van Dam F, Zarzycki D, Pawlicki R, Fabczak J. Pathomorphological pattern of paravertebralmuscles of rabbits after long-term experimental electrostimulation. Pathology, research and practice.2003;4199(9):613-618.
    Gorman KF, Tredwell SJ, Breden F. The mutant guppy syndrome curveback as a model for human heritable spinalcurvature. Spine.2007;32(7):735-741.
    1Schwab F, Patel A, Lafage V, Farcy JP. A porcine model for progressive thoracic scoliosis. Spine.2009;
    234(11):E397-404.Newton PO, Farnsworth CL, Upasani VV, Chambers RC, Varley E, Tsutsui S. Effects of intraoperative tensioning of ananterolateral spinal tether on spinal growth modulation in a porcine model. Spine.2011;36(2):109-117.
    1Braun JT, Akyuz E, Udall H, Ogilvie JW, Brodke DS, Bachus KN. Three-dimensional analysis of2fusionless scoliosistreatments: a flexible ligament tether versus a rigid-shape memory alloy staple. Spine.2006;31(3):262-268.
    2Newton PO, Farnsworth CL, Upasani VV, Chambers RC, Varley E, Tsutsui S. Effects of intraoperative tensioning of ananterolateral spinal tether on spinal growth modulation in a porcine model. Spine.2011;36(2):109-117.
    3Dickson RA, Deacon P. Spinal growth. J Bone Joint Surg Br.1987;69(5):690-692.
    4Uchiyama T, Tanizawa T, Muramatsu H, Endo N, Takahashi HE, Hara T. A morphometric comparison of trabecularstructure of human ilium between microcomputed tomography and conventional histomorphometry. Calcified tissueinternational.1997;61(6):493-498.
    5Muller R, Van Campenhout H, Van Damme B, Van Der Perre G, Dequeker J, Hildebrand T, et al. Morphometricanalysis of human bone biopsies: a quantitative structural comparison of histological sections and micro-computedtomography. Bone.1998;23(1):59-66.
    1Voor MJ, Yang S, Burden RL, Waddell SW. In vivo micro-CT scanning of a rabbit distal femur: repeatability andreproducibility. Journal of biomechanics.2008;41(1):186-193.
    2Modi HN, Suh SW, Prjvc B, Hong JY, Yang JH, Park YH, et al. Bone quality and growth characteristics of growthplates following limb transplantation between animals of different ages--results of an experimental study in malesyngeneic rats. Journal of orthopaedic surgery and research.6:53.
    3Smit TH, Huyghe JM, Cowin SC. Estimation of the poroelastic parameters of cortical bone. Journal of biomechanics.2002;35(6):829-835.
    4Meir AR, Fairbank JC, Jones DA, McNally DS, Urban JP. High pressures and asymmetrical stresses in the scolioticdisc in the absence of muscle loading. Scoliosis.2007;2:4.
    5Tsantrizos A, Ito K, Aebi M, Steffen T. Internal strains in healthy and degenerated lumbar intervertebral discs. Spine.2005;30(19):2129-2137.
    6Stilwell DL, Jr. Structural deformities of vertebrae. Bone adaptation and modeling in experimental scoliosis andkyphosis. The Journal of bone and joint surgery.1962;44-A:611-634.
    7Eswaran SK, Gupta A, Adams MF, Keaveny TM. Cortical and trabecular load sharing in the human vertebral body. JBone Miner Res.2006;21(2):307-314.
    8Pazzaglia UE, Andrini L, Di Nucci A. The effects of mechanical forces on bones and joints. Experimental study on therat tail. J Bone Joint Surg Br.1997;79(6):1024-1030.
    1Laffosse JM, Accadbled F, Bonnevialle N, Gomez-Brouchet A, de Gauzy JS, Swider P. Remodelling of vertebralendplate subchondral bone in scoliosis: a micro-CT analysis in a porcine model. Clinical biomechanics (Bristol, Avon).2010;25(7):636-641.
    2Stokes IA, Burwell RG, Dangerfield PH. Biomechanical spinal growth modulation and progressive adolescentscoliosis--a test of the 'vicious cycle' pathogenetic hypothesis: summary of an electronic focus group debate of the IBSE.
    3Scoliosis.2006;1:16.Wilsman NJ, Farnum CE, Leiferman EM, Fry M, Barreto C. Differential growth by growth plates as a function ofmultiple parameters of chondrocytic kinetics. J Orthop Res.1996;14(6):927-936.
    1Mente PL, Aronsson DD, Stokes IA, Iatridis JC. Mechanical modulation of growth for the correction of vertebralwedge deformities. J Orthop Res.1999;17(4):518-524.
    2Bylski-Austrow DI, Wall EJ, Glos DL, Ballard ET, Montgomery A, Crawford AH. Spinal hemiepiphysiodesis decreasesthe size of vertebral growth plate hypertrophic zone and cells. The Journal of bone and joint surgery.2009;91(3):584-593.
    3Dickson RA, Deacon P. Spinal growth. J Bone Joint Surg Br.1987;69(5):690-692.
    4Bylski-Austrow DI, Wall EJ, Glos DL, Ballard ET, Montgomery A, Crawford AH. Spinal hemiepiphysiodesis decreasesthe size of vertebral growth plate hypertrophic zone and cells. The Journal of bone and joint surgery.2009;91(3):584-593.
    1Peacock EE, Jr. Some problems in flexor tendon healing. Surgery.1959;45(3):415-423.
    2Minami A, Ishii S, Ogino T, Oikawa T, Kobayashi H. Effect of the immunological antigenicity of the allogeneictendons on tendon grafting. The Hand.1982;14(2):111-119.
    3胡必寺,顾玉东.腱鞘内肌腱与腱鞘外肌腱移植的实验研究.中华外科杂志.1995;33(9):2.
    4杨文龙,王丹.95%乙醇浸泡异体肌腱的实验研究.中华书外科杂志.1997;13(2):2.
    5唐俊林,程国良,方光荣.化学处理的冻干异体几件移植的实验研究.中华手外科杂志.1997;13(2):3.
    6Peacock EE, Jr. Some problems in flexor tendon healing. Surgery.1959;45(3):415-423.
    7Minami A, Ishii S, Ogino T, Oikawa T, Kobayashi H. Effect of the immunological antigenicity of the allogeneictendons on tendon grafting. The Hand.1982;14(2):111-119.
    8Minami A, Usui M, Ishii S, Kobayashi H. The in vivo effects of various immunoreactive treatments on allogeneictendon grafts. The Journal of hand surgery.1983;8(6):888-893.
    1李涛,王愉思.异体肌腱移植的研究进展.医学临床研究.2008;25(12):4.
    2常文凯,梁炳生.手部屈肌腱粘连的研究进展.实用手外科学.2002;16(2):2.
    3高新生,尹大庆,金瑞侠.同种异体肌腱移植与肌腱库的建立.中华手外科学杂志.1996;12(2):3.
    4Shino K, Oakes BW, Horibe S, Nakata K, Nakamura N. Collagen fibril populations in human anterior cruciate ligamentallografts. Electron microscopic analysis. The American journal of sports medicine.1995;23(2):203-208; discussion209.
    1Chen CH, Shyu VB, Chen YC, Liao HT, Liao CJ, Chen CT. Reinforced bioresorbable implants for craniomaxillofacialosteosynthesis in pigs. The British journal of oral&maxillofacial surgery.2013.
    1Zhang YG, Zheng GQ, Zhang XS, Wang Y. Scoliosis model created by pedicle screw tethering in immature goats: thefeasibility, reliability, and complications. Spine.2009;34(21):2305-2310.
    2Newton PO, Fricka KB, Lee SS, Farnsworth CL, Cox TG, Mahar AT. Asymmetrical flexible tethering of spine growthin an immature bovine model. Spine.2002;27(7):689-693.
    3Newton PO, Farnsworth CL, Faro FD, Mahar AT, Odell TR, Mohamad F, et al. Spinal growth modulation with ananterolateral flexible tether in an immature bovine model: disc health and motion preservation. Spine.2008;33(7):724-733.
    4Braun JT, Hines JL, Akyuz E, Vallera C, Ogilvie JW. Relative versus absolute modulation of growth in the fusionlesstreatment of experimental scoliosis. Spine.2006;31(16):1776-1782.
    5Zhang YG, Zheng GQ, Zhang XS, Wang Y. Scoliosis model created by pedicle screw tethering in immature goats: the
    6feasibility, reliability, and complications. Spine.2009;34(21):2305-2310.Braun JT, Ogilvie JW, Akyuz E, Brodke DS, Bachus KN. Creation of an experimental idiopathic-type scoliosis in animmature goat model using a flexible posterior asymmetric tether. Spine.2006;31(13):1410-1414.
    1Thomas S, Dave PK. Experimental scoliosis in monkeys. Acta orthopaedica Scandinavica.1985;56(1):43-46.
    2Bozkus H, Crawford NR, Chamberlain RH, Valenzuela TD, Espinoza A, Yuksel Z, et al. Comparative anatomy of theporcine and human thoracic spines with reference to thoracoscopic surgical techniques. Surgical endoscopy.2005;19(12):1652-1665.
    3Dickson RA, Deacon P. Spinal growth. J Bone Joint Surg Br.1987;69(5):690-692.
    Schwab F, Patel A, Lafage V, Farcy JP. A porcine model for progressive thoracic scoliosis. Spine.2009;34(11):E397-404.
    1Carreau JH, Farnsworth CL, Glaser DA, Doan JD, Bastrom T, Bryan N, et al. The modulation of spinal growth withnitinol intervertebral stapling in an established swine model. Journal of children's orthopaedics.2012;6(3):241-253.
    1Braun JT, Hines JL, Akyuz E, Vallera C, Ogilvie JW. Relative versus absolute modulation of growth in the fusionlesstreatment of experimental scoliosis. Spine.2006;31(16):1776-1782.
    2Carreau JH, Farnsworth CL, Glaser DA, Doan JD, Bastrom T, Bryan N, et al. The modulation of spinal growth withnitinol intervertebral stapling in an established swine model. Journal of children's orthopaedics.2012;6(3):241-253.
    3Zhang H, Sucato DJ. Unilateral pedicle screw epiphysiodesis of the neurocentral synchondrosis. Production ofidiopathic-like scoliosis in an immature animal model. The Journal of bone and joint surgery.2008;90(11):2460-2469.
    4Moal B, Schwab F, Demakakos J, Lafage R, Riviere P, Patel A, et al. The impact of a corrective tether on a scoliosis5porcine model: a detailed3D analysis with a20weeks follow-up. Eur Spine J.22(8):1800-1809.
    Schwab F, Patel A, Lafage V, Farcy JP. A porcine model for progressive thoracic scoliosis. Spine.2009;34(11):E397-404.
    1Laffosse JM, Accadbled F, Bonnevialle N, Gomez-Brouchet A, de Gauzy JS, Swider P. Remodelling of vertebralendplate subchondral bone in scoliosis: a micro-CT analysis in a porcine model. Clinical biomechanics (Bristol, Avon).2010;25(7):636-641.
    1Mente PL, Aronsson DD, Stokes IA, Iatridis JC. Mechanical modulation of growth for the correction of vertebralwedge deformities. J Orthop Res.1999;17(4):518-524.
    1Gray H. Gray's Anatomy. London: Churchill Livingstone: Clemente DCD,1984.
    1Rong J, Wang Q, Liu K, Tan L, Ran X, Zhang S, et al. A new atlas localization approach for subthalamic nucleusutilizing Chinese visible human head datasets. PLoS One.2013;8(2):e57264.
    1Kim JH, Choi GM, Chang IB, Ahn SK, Song JH, Choi HC. Pedicular and extrapedicular morphometric analysis in thekorean population: computed tomographic assessment relevance to pedicle and extrapedicle screw fixation in thethoracic spine. Journal of Korean Neurosurgical Society.2009;46(3):9.
    2Dvorak M, MacDonald S, Gurr KR, Bailey SI, Haddad RG. An anatomic, radiographic, and biomechanical assessmentof extrapedicular screw fixation in the thoracic spine. Spine.1993;18(12):1689-1694.
    O'Brien MF, Lenke LG, Mardjetko S, Lowe TG, Kong Y, Eck K, et al. Pedicle morphology in thoracic adolescentidiopathic scoliosis: is pedicle fixation an anatomically viable technique? Spine.2000;25(18):2285-2293.
    1Vaccaro AR, Rizzolo SJ, Allardyce TJ, Ramsey M, Salvo J, Balderston RA, et al. Placement of pedicle screws in thethoracic spine. Part I: Morphometric analysis of the thoracic vertebrae. The Journal of bone and joint surgery.1995;77(8):1193-1199.
    2Husted DS, Haims AH, Fairchild TA, Kershaw TS, Yue JJ. Morphometric comparison of the pedicle rib unit to pediclesin the thoracic spine. Spine.2004;29(2):139-146.
    3Schiemann T, Tiede U, Hohne KH. Segmentation of the visible human for high-quality volume-based visualization.Medical image analysis.1997;1(4):263-270.
    Grau V, Mewes AU, Alcaniz M, Kikinis R, Warfield SK. Improved watershed transform for medical imagesegmentation using prior information. IEEE transactions on medical imaging.2004;23(4):447-458.
    1Park JS, Jung YW, Lee JW, Shin DS, Chung MS, Riemer M, et al. Generating useful images for medical applicationsfrom the Visible Korean Human. Computer methods and programs in biomedicine.2008;92(3):257-266.
    Zhang G, Liu Q, Zeng S, Luo Q. Organ dose calculations by Monte Carlo modeling of the updated VCH adult malephantom against idealized external proton exposure. Physics in medicine and biology.2008;53(14):3697-3722.
    1Zhang SX, Heng PA, Liu ZJ, Tan LW, Qiu MG, Li QY, et al. Creation of the Chinese visible human data set.Anatomical record.2003;275(1):190-195.
    Park JS, Jung YW, Lee JW, Shin DS, Chung MS, Riemer M, et al. Generating useful images for medical applicationsfrom the Visible Korean Human. Computer methods and programs in biomedicine.2008;92(3):257-266.
    1Gray H. Gray's Anatomy. London: Churchill Livingstone: Clemente DCD,1984.
    1Dvorak M, MacDonald S, Gurr KR, Bailey SI, Haddad RG. An anatomic, radiographic, and biomechanical assessmentof extrapedicular screw fixation in the thoracic spine. Spine.1993;18(12):1689-1694.
    2O'Brien MF, Lenke LG, Mardjetko S, Lowe TG, Kong Y, Eck K, et al. Pedicle morphology in thoracic adolescentidiopathic scoliosis: is pedicle fixation an anatomically viable technique? Spine.2000;25(18):2285-2293.
    Husted DS, Haims AH, Fairchild TA, Kershaw TS, Yue JJ. Morphometric comparison of the pedicle rib unit to pediclesin the thoracic spine. Spine.2004;29(2):139-146.
    1Vaccaro AR, Rizzolo SJ, Allardyce TJ, Ramsey M, Salvo J, Balderston RA, et al. Placement of pedicle screws in thethoracic spine. Part I: Morphometric analysis of the thoracic vertebrae. The Journal of bone and joint surgery.1995;77(8):1193-1199.
    2韦兴,侯树勋,史亚民,等.胸椎经“椎弓根-肋骨间”螺钉与椎弓根螺钉固定的抗拔出力比较.中国脊柱脊髓杂志.2006;16(8):623-625.
    3Panjabi MM, White AA,3rd. Basic biomechanics of the spine. Neurosurgery.1980;7(1):76-93.
    4Vaccaro AR, Rizzolo SJ, Allardyce TJ, Ramsey M, Salvo J, Balderston RA, et al. Placement of pedicle screws in thethoracic spine. Part I: Morphometric analysis of the thoracic vertebrae. The Journal of bone and joint surgery.1995;77(8):1193-1199.
    5Liljenqvist UR, Allkemper T, Hackenberg L, Link TM, Steinbeck J, Halm HF. Analysis of vertebral morphology inidiopathic scoliosis with use of magnetic resonance imaging and multiplanar reconstruction. The Journal of bone andjoint surgery.2002;84-A(3):359-368.
    Beall DP, Braswell JJ, Martin HD, Stapp AM, Puckett TA, Stechison MT. Technical strategies and anatomicconsiderations for parapedicular access to thoracic and lumbar vertebral bodies. Skeletal radiology.2007;36(1):47-52.
    1张永刚,王岩,刘郑生,等.数字化三维重建技术定量评估青少年特发性脊柱侧弯胸椎椎弓根的形态变化.中国临床康复.2005;9(22):13-15.
    1刘红光,吴小涛,孔翔飞,等.经胸椎椎弓根-肋骨途径置入螺钉安全角度的CT测量.中国脊柱脊髓杂志.2008;18(4):278-281.
    2Beall DP, Braswell JJ, Martin HD, Stapp AM, Puckett TA, Stechison MT. Technical strategies and anatomicconsiderations for parapedicular access to thoracic and lumbar vertebral bodies. Skeletal radiology.2007;36(1):47-52.
    3Husted DS, Yue JJ, Fairchild TA, Haims AH. An extrapedicular approach to the placement of screws in the thoracicspine: an anatomic and radiographic assessment. Spine.2003;28(20):2324-2330.
    Kim HS, Kim SW, Ju CI. Balloon Kyphoplasty through Extrapedicular Approach in the Treatment of Middle ThoracicOsteoporotic Compression Fracture: T5-T8Level. Journal of Korean Neurosurgical Society.2007;42(5):363-366.
    1Deviren V, Acaroglu E, Lee J, Fujita M, Hu S, Lenke LG, et al. Pedicle screw fixation of the thoracic spine: an in vitrobiomechanical study on different configurations. Spine.2005;30(22):2530-2537.
    1Lenke LG. The Lenke classification system of operative adolescent idiopathic scoliosis. Neurosurgery clinics of NorthAmerica.2007;18(2):199-206.
    1金国鑫,郭文力,李雷,等.二次测量三维CT重建数据在脊柱侧弯矫形术中的应用.中国修复重建外科杂志.2012;26(1):74-77.
    1Tian NF, Xu HZ, Wang XY, Chen QJ, Zheng LC. Morphometric comparisons between the pedicle and the pedicle ribunit in the immature Chinese thoracic spine: a computed tomographic assessment. Spine.2010;35(16):1514-1519.
    1Weinstein SL, Dolan LA, Cheng JC, Danielsson A, Morcuende JA. Adolescent idiopathic scoliosis. Lancet.2008;371(9623):1527-1537.
    2Aronsson DD, Stokes IA. Nonfusion treatment of adolescent idiopathic scoliosis by growth modulation and remodeling.Journal of pediatric orthopedics.2011;31(1Suppl):S99-106.
    3Crawford CH,3rd, Lenke LG. Growth modulation by means of anterior tethering resulting in progressive correction ofjuvenile idiopathic scoliosis: a case report. The Journal of bone and joint surgery.2011;92(1):202-209.
    Aronsson DD, Stokes IA. Nonfusion treatment of adolescent idiopathic scoliosis by growth modulation and remodeling.Journal of pediatric orthopedics.2011;31(1Suppl):S99-106.
    1Lavelle WF, Samdani AF, Cahill PJ, Betz RR. Clinical outcomes of nitinol staples for preventing curve progression inidiopathic scoliosis. Journal of pediatric orthopedics.2011;31(1Suppl):S107-113.
    2Hunt KJ, Braun JT, Christensen BA. The effect of two clinically relevant fusionless scoliosis implant strategies on thehealth of the intervertebral disc: analysis in an immature goat model. Spine.2009;35(4):371-377.
    3Trobisch PD, Samdani A, Cahill P, Betz RR. Vertebral body stapling as an alternative in the treatment of idiopathicscoliosis. Operative Orthopadie und Traumatologie.2011;23(3):5.
    4Akbarnia BA, Blakemore LC, Campbell RM, Jr., Dormans JP. Approaches for the very young child with spinaldeformity: what's new and what works. Instructional course lectures.2010;59:407-424.
    5Gray H. Gray's Anatomy. London: Churchill Livingstone: Clemente DCD,1984.
    6Kim JH, Choi GM, Chang IB, Ahn SK, Song JH, Choi HC. Pedicular and extrapedicular morphometric analysis in thekorean population: computed tomographic assessment relevance to pedicle and extrapedicle screw fixation in thethoracic spine. Journal of Korean Neurosurgical Society.2009;46(3):9.
    7Panjabi MM, White AA,3rd. Basic biomechanics of the spine. Neurosurgery.1980;7(1):76-93.
    1T. Glenn Pait M UT, MD, Kenan I. Arnautovic, MD and Ron M. Tribell Surgical Anatomy of the Thoracic Spine. In:Dickman CA RD PN, ed. Thoracoscopic Spine Surgery. New York: Thieme Medical Publishers;1999:57-67.
    2Crawford CH,3rd, Lenke LG. Growth modulation by means of anterior tethering resulting in progressive correction ofjuvenile idiopathic scoliosis: a case report. The Journal of bone and joint surgery.2011;92(1):202-209.
    Crawford CH,3rd, Lenke LG. Growth modulation by means of anterior tethering resulting in progressive correction ofjuvenile idiopathic scoliosis: a case report. The Journal of bone and joint surgery.2011;92(1):202-209.
    1Liljenqvist UR, Halm HF, Link TM. Pedicle screw instrumentation of the thoracic spine in idiopathic scoliosis. Spine.1997;22(19):2239-2245.
    1张永刚,王岩,刘郑生,等.数字化三维重建技术定量评估青少年特发性脊柱侧弯胸椎椎弓根的形态变化.中国临床康复.2005;9(22):13-15.
    2Kuraishi S, Takahashi J, Hirabayashi H, Hashidate H, Ogihara N, Mukaiyama K, et al. Pedicle morphology usingcomputed tomography-based navigation system in adolescent idiopathic scoliosis. Journal of spinal disorders&techniques.2013;26(1):22-28.
    3Panjabi MM, White AA,3rd. Basic biomechanics of the spine. Neurosurgery.1980;7(1):76-93.
    4Vaccaro AR, Rizzolo SJ, Allardyce TJ, Ramsey M, Salvo J, Balderston RA, et al. Placement of pedicle screws in thethoracic spine. Part I: Morphometric analysis of the thoracic vertebrae. The Journal of bone and joint surgery.1995;77(8):1193-1199.
    5Liljenqvist UR, Allkemper T, Hackenberg L, Link TM, Steinbeck J, Halm HF. Analysis of vertebral morphology inidiopathic scoliosis with use of magnetic resonance imaging and multiplanar reconstruction. The Journal of bone andjoint surgery.2002;84-A(3):359-368.
    6Dvorak M, MacDonald S, Gurr KR, Bailey SI, Haddad RG. An anatomic, radiographic, and biomechanical assessmentof extrapedicular screw fixation in the thoracic spine. Spine.1993;18(12):1689-1694.
    7殷渠东,郑祖根,蔡建平.置入胸椎“椎弓根-肋骨”单元螺钉的应用解剖和力学测试.中国临床解剖学杂志.2005;23(5):538-539.
    1O'Brien MF, Lenke LG, Mardjetko S, Lowe TG, Kong Y, Eck K, et al. Pedicle morphology in thoracic adolescentidiopathic scoliosis: is pedicle fixation an anatomically viable technique? Spine.2000;25(18):2285-2293.
    2刘新宇,郑燕平,原所茂,等.特发性脊柱侧凸患者胸椎椎弓根-肋骨联合体的CT测量.脊柱外科杂志.2006;4(4):233-235.
    3Parent S, Labelle H, Skalli W, de Guise J. Thoracic pedicle morphometry in vertebrae from scoliotic spines. Spine.2004;29(3):239-248.
    4Liljenqvist UR, Link TM, Halm HF. Morphometric analysis of thoracic and lumbar vertebrae in idiopathic scoliosis.Spine.2000;25(10):1247-1253.
    5刘红光,吴小涛,孔翔飞,等.经胸椎椎弓根-肋骨途径置入螺钉安全角度的CT测量.中国脊柱脊髓杂志.2008;18(4):278-281.
    6Liljenqvist UR, Allkemper T, Hackenberg L, Link TM, Steinbeck J, Halm HF. Analysis of vertebral morphology inidiopathic scoliosis with use of magnetic resonance imaging and multiplanar reconstruction. The Journal of bone andjoint surgery.2002;84-A(3):359-368.
    O'Brien MF, Lenke LG, Mardjetko S, Lowe TG, Kong Y, Eck K, et al. Pedicle morphology in thoracic adolescentidiopathic scoliosis: is pedicle fixation an anatomically viable technique? Spine.2000;25(18):2285-2293.
    1Liljenqvist UR, Allkemper T, Hackenberg L, Link TM, Steinbeck J, Halm HF. Analysis of vertebral morphology inidiopathic scoliosis with use of magnetic resonance imaging and multiplanar reconstruction. The Journal of bone andjoint surgery.2002;84-A(3):359-368.
    1Kuraishi S, Takahashi J, Hirabayashi H, Hashidate H, Ogihara N, Mukaiyama K, et al. Pedicle morphology usingcomputed tomography-based navigation system in adolescent idiopathic scoliosis. Journal of spinal disorders&techniques.2013;26(1):22-28.
    Xiong B, Sevastik B, Sevastik J, Hedlund R, Suliman I, Kristjansson S. Horizontal plane morphometry of normal andscoliotic vertebrae. A methodological study. Eur Spine J.1995;4(1):6-10.
    1Dacher JN, Zakine S, Monroe M, et al. Rib displacement threatening the spinal cord in a scoliotic child withneurofibromatosis. Pediatr Radiol.1995;25:58–59.
    2Deguchi M, Kawakami N, Saito H, et al. Paraparesis after rib penetration of the spinal canal in neurofibromatosisscoliosis. J Spine Disord.1995;8:363–367.
    3Flood BM, Butt WP, Dickson RA. Rib penetration of the intervertebral foraminae in neurofibromatosis. Spine.14986;11:172–174.
    Kamath SV, Kleinman PK, Ragland RL, et al. Intraspinal dislocation of the rib in neurofibromatosis: a case report.Pediatr Radiol.1995;25:538–539.
    1Major MR, Huizenga BA. Spinal cord compression by displaced ribs in neurofibromatosis. J Bone Joint Surg Am.1988;70:1100–1102.
    2Mukhtar IA, Letts M, Kontio K. Spinal cord impingement by a displaced rib in scoliosis due to Neurofibromatosis. CanJ Surg.2005;48:414–415.
    3Legrand B, Filipe G, Blamoutier A, et al. Intraspinal rib penetration in four patients in neurofibromatosis vertebraldeformities. Rev Chir Orthop Reparatrice Appar Mot.2003;89:57–61.
    Yalcin N, Bar-On AE, Yazici M. Impingement of spinal cord by dislocated rib in dystrophic scoliosis secondary toneurofibromatosis type1: radiological signs and management strategies. Spine.2008;33: E881–E886.
    1Michael H. Abdulian, Raymond W. Liu, Jochen P. Son-Hing, et al.Double Rib Penetration of the Spinal Canal in aPatient With Neurofibromatosis. J Pediatr Orthop2011;31:6–10.
    Jimmy Ton, Rebecca Stein-Wexler, Philip Yen, et al. Rib head protrusion into the central canal in type1neurofibromatosis. Pediatr Radiol (2010)40:1902–1909.
    1Crawford AH, Parikh S, Schorry E, et al. The immature spine in type-1neurofibromatosis. J Bone Joint Surg Am.2007;89(suppl1):123–142.
    Legrand B, Filipe G, Blamoutier A, et al. Intraspinal rib penetration in four patients in neurofibromatosis vertebraldeformities. Rev Chir Orthop Reparatrice Appar Mot.2003;89:57–61.
    3Ogose A, Hotta T, Uchiyama S, et al. Retroperitoneal malignant peripheral nerve sheath tumor associated withscoliosis in neurofibromatosis[J].J Spinal Disord,2001,14(3):260-263.
    4Koshhal KI, Ellis RD. Paraparesis after posterior spinal fusion in neurofibromatosis secondary to rib displacement:case report and literature review. J Pediatr Orthop.2000;20:799–801.
    5Khoshhal KI, Ellis RD (2000) Paraparesis after posterior spinal fusion in neurofibromatosis secondary to ribdisplacement: case report and literature review. J Pediatr Orthop20:799–801
    6Cappella M, Bettini N, Dema E et al (2008) Late post-operative paraparesis after rib penetration of the spinal canal in apatient with neurofibromatosis scoliosis. J Orthop Traumatol9:163–166
    1Gkiokas A, Hadzimichalis S, Vasiliadis E, et al. Painful rib hump: a new clinical sign for detecting intraspinal ribdisplacement in scoliosis due to neurofibromatosis. Scoliosis2006;1:10.
    1Deli E, Varnagy L. Teratological examination of Wofatox50EC (50%methylparathion) on pheasant embaryos. AnatAnz,1985,158:237-240.
    2Fishchenko V, Pechershii AG, Grigorovshii VV,et al. Experimental data on the morphogenesis of the spinalcompression syndrome in congenital scoliosis. Orthop Travmatol Protez,1989,9:26-31.
    3Tanaka H, Kimura Y, Ujino Y, The experimental study of scoliosis in bipedal rat in lathyrism. Arch Orthop TraumaSurg,1982,101:1-27.
    1Rivard CH, Labelle P, Simoneau R, et al. Moderate hypobaric hypoxia used as an inducer of congenital vertebralmalformation in mouse embryo. Chir Pediatr,1982,
    2Farley FA, Loder RT, Nolan BT, et al. Mouse model for thoracic congenital scoliosis.J Pediatr Orthop,2001,21:537-540.
    3Alexander PG, Tuan RS. Carbon monoxide-induced axial skeletal dysmorphogenesis in the chick embryo. Brith DefectsRes A Clin Mol Teratol,2003,67:219-230.
    4Wang XP, Jiang H,Raso J,et al. Characterization of the scoliosis that develops after pinealectomy in the chicken andcomparison with adolescent idiopathic scoliosis in humans. Spine,1997,22:2626-2635.
    5Kanemura T, Kawakami N, Deguchi M, et al. Natural course of experimental scoliosis in pinealectomizedchickens.Spine,1997,22;1563-1567.
    6Farley FA, Loder RT, Nolan BT, et al. Mouse model for thoracic congenital scoliosis.J Pediatr Orthop,2001,21:537-540.
    1Bagnall K, Raso J,Moreau M,et al. The development of scoliosis following pinealectomy in young chickens is not theresult of an artifact of the surgical procedure. Stud Health Technol Inform,2002,88:3-9.
    2Beuerlein M, Wang X,Moreau M,et al. Development of scoliosis following pinealectomy in young chickens is not theresult of an artifact of the surgical procedure. Microsc Res Tech,2001,53:81-86.
    3Farley FA, Loder RT, Nolan BT, et al. Mouse model for thoracic congenital scoliosis.J Pediatr Orthop,2001,21:537-540.
    4Alexander PG, Tuan RS. Carbon monoxide-induced axial skeletal dysmorphogenesis in the chick embryo. Brith DefectsRes A Clin Mol Teratol,2003,67:219-230.
    5Wang XP, Jiang H,Raso J,et al. Characterization of the scoliosis that develops after pinealectomy in the chicken andcomparison with adolescent idiopathic scoliosis in humans. Spine,1997,22:2626-2635.
    6O’ Kelly C, Wang X, Raso J, et al. The production of scoliosis after pinealectomy in young chickens, rats, and hamsters.Spine,1999,24(1):35-38.
    7Alexander PG, Tuan RS. Carbon monoxide-induced axial skeletal dysmorphogenesis in the chick embryo. Brith DefectsRes A Clin Mol Teratol,2003,67:219-230.
    8Machida M, Murai I,Miyashita Y, et al. Pathogenesis of idiopathic scoliosis. Experimental study in rats. Spine,1999,24(19):1985-1989.
    1李中实,康宇宁,刘成刚,等.光照后鸡褪黑素变化与脊柱侧凸关系的实验研究.中国脊柱脊髓杂志,2003,13:293-297.
    2王亭,胡有谷,郑英刚,等.褪黑素在鸡脊柱侧凸模型中的作用.中华骨科杂志,2002,22:623—627.
    1Pincott JR,Taffs LF. Experimental scoliosis in primates: a neurological cause. J Bone Joint Surg Br,1982,64:503-507.
    2Zeman RJ,Zhang Y, Etlinger JD. Clenbuterol, a beta2—adrenoceptor agonist, reduces scoliosis due to partialtransaction of rat spinal cord. Am J Physiol,1997,272: E712-E715.
    3Yamada K, Yamamoto H, Nakagawa Y, et al. Etiology of idiopathic scoliosis. Clin Orthop,1984,184:50-57.
    4Barrios C, Arrotegui JI. Experimental kyphoscolisosis induced in rats by selective brain stem damage. Int Orthop,1992,16:146-151.
    5Agadir M,Sevastik B,Sevastik J A, et al. Induction of scoliosis in the growing rabbit by unilateral rib-growthstimulation. Spine,1988,9:1065-1069.
    1Sevastik J,Agardir M,Sevastik B. Effects of rib elongation on the spine. II.Correctin of scoliosis in the rabbit. Spine,1990,15:826-829.
    2Suk SI, Song HS,Lee CK. Scoliosis induced by anterior and posterior rhizotomy. Spine,1989,14:692-697.
    3Pincott JR, Davies JS, Taffs LF. Scoliosis caused by section of dorsal spinal nerve roots.J Bone Joint Surg (Br),1984,66(1):27-29.
    1Garrosa M, Fernandez-Marino JR, Gayoso MJ,et al. Paravertebral muscles in experimental scolosis: a light andelectron microscopic study. Histol Histopathol,1998,13:927-937.
    2Deguchi M,Kavakami N,Kanemura T, et al. Experimental scoliosis induced by rib resection in chichens. J SpianlDisord,1995,8:179-185.
    1Poussa M, Schlenzka D, RItsila V. Scoliosis in growing rabbits induced with an extension splint. Acta Orthop Scand,1991,62:136—138.
    2Sarwark JF, Dabney KW, Salzman SK, et al. Experimental scoliosis in the rat.I.Methodology, anatomic features andneurologic characterization. Spine,1988,13:466471.
    3Tsuang YH, Yang RS,Chen PQ,et al. Experimental structural scoliosis in rabbits. J Formos Med Assoc,1992,91:886—890.
    4Kasuga K. Experimental scoliosis in the rat spine induced by binding the spinous processes. Nippon SeikeigekaGakkai Zasshi,1994,68;798-807.
    1郑国权,张永刚,王岩,等.单侧椎弓根螺钉内固定建立脊柱侧凸动物模型的影像学观察.中国脊柱脊髓杂志,2008,18:460463.
    2Stokes IA,Sponce H, Aronsson DD, et al. Mechanical modulation of vertebral body growth: Implications for scoliosisprogression. Spine,1996,10:1162—1167.
    3Newton PO,Fricka KB, Lee SS, et al. Asymmetrical flexible tethering of spine growth in an immature bovine model.Spine,2002,27(7):689-693.
    4Newton PO, Fam FD, Farsworth CL,et al. Multilevel spinal growth modulation with an anterolateral flexible tether inan immature bovine model. Spine,2005,30(23):2608-2613.
    1Braun JT, Akyuz E,Udall H, et al. Three dimensional analysis of2fusionless scoliosis treatment: a flexible ligamenttether verus a rigid shaped memory alloy staple. Spine,2006,31:262—268.
    2Pampliega T, Beguiristain JL, Artieda J. Neurologic complications after sublaminar wiring. An experimental study inlambs. Spine,1992,17:44H45.
    3郑国权,张永刚,王岩,等.单侧椎弓根螺钉内固定建立脊柱侧凸动物模型的影像学观察.中国脊柱脊髓杂志,2008,18:460463.
    4Kowalski IM,Szarek J,Zarzycki D, et al. Experimental scoliosis in the course of unilateral surface electrostimulationof the paravertebral muscles in rabbits: effects according to stimulation period. Eur Spine J,2001,10(6):490-494.
    1Szarek J, Kowalski IM, van Dam F, et al. Pathomorphological Pattern of paravertebral muscles of rabbits afterlong-term experimental electrostimulation. Pathol Res Pract,2003,199:613—618.
    2Gorman KF, Tredwell SJ,Breden F. The mutant guppy syndrome curveback as a model for human heritable spinalcurvature. Spine,2007,32(7):735—741.
    3Gorman KF, Breden F. Disprotionate body lengths correlate with idiopathic-type curvature in the curveback guppy.Spine,2010,35:511-516.
    1. Hresko MT. Clinical practice. Idiopathic scoliosis in adolescents. The New Englandjournal of medicine.2013;368(9):834-841.
    2. Weinstein SL, Dolan LA, Cheng JC, Danielsson A, Morcuende JA. Adolescentidiopathic scoliosis. Lancet.2008;371(9623):1527-1537.
    3. Aronsson DD, Stokes IA. Nonfusion treatment of adolescent idiopathic scoliosis bygrowth modulation and remodeling. Journal of pediatric orthopedics.2011;31(1Suppl):S99-106.
    4. Akel I, Yazici M. Growth modulation in the management of growing spine deformities.Journal of children's orthopaedics.2009;3(1):1-9.
    5. Akbarnia BA, Blakemore LC, Campbell RM, Jr., Dormans JP. Approaches for the veryyoung child with spinal deformity: what's new and what works. Instructional courselectures.2009;59:407-424.
    6. Newton PO, Farnsworth CL, Faro FD, Mahar AT, Odell TR, Mohamad F, et al. Spinalgrowth modulation with an anterolateral flexible tether in an immature bovine model:disc health and motion preservation. Spine.2008;33(7):724-733.
    7. Braun JT, Akyuz E, Ogilvie JW, Bachus KN. The efficacy and integrity of shapememory alloy staples and bone anchors with ligament tethers in the fusionlesstreatment of experimental scoliosis. The Journal of bone and joint surgery.2005;87(9):2038-2051.
    8. Newton PO, Farnsworth CL, Upasani VV, Chambers RC, Varley E, Tsutsui S. Effectsof intraoperative tensioning of an anterolateral spinal tether on spinal growthmodulation in a porcine model. Spine.2011;36(2):109-117.
    9. Zhang H, Sucato DJ. Unilateral pedicle screw epiphysiodesis of the neurocentralsynchondrosis. Production of idiopathic-like scoliosis in an immature animal model.The Journal of bone and joint surgery.2008;90(11):2460-2469.
    10. Moal B, Schwab F, Demakakos J, Lafage R, Riviere P, Patel A, et al. The impact of acorrective tether on a scoliosis porcine model: a detailed3D analysis with a20weeksfollow-up. Eur Spine J.22(8):1800-1809.
    11. Crawford CH,3rd, Lenke LG. Growth modulation by means of anterior tetheringresulting in progressive correction of juvenile idiopathic scoliosis: a case report. TheJournal of bone and joint surgery.2011;92(1):202-209.
    12. Braun JT, Hoffman M, Akyuz E, Ogilvie JW, Brodke DS, Bachus KN. Mechanicalmodulation of vertebral growth in the fusionless treatment of progressive scoliosis inan experimental model. Spine.2006;31(12):1314-1320.
    13. Weinstein SL, Dolan LA, Wright JG, Dobbs MB. Effects of Bracing in Adolescentswith Idiopathic Scoliosis. The New England journal of medicine.2013.
    14. Olgun ZD, Ahmadiadli H, Alanay A, Yazici M. Vertebral body growth during growingrod instrumentation: growth preservation or stimulation? Journal of pediatricorthopedics.2012;32(2):184-189.
    15. Stokes IA, Spence H, Aronsson DD, Kilmer N. Mechanical modulation of vertebralbody growth. Implications for scoliosis progression. Spine.1996;21(10):1162-1167.
    16. Roaf R. The Treatment of Progressive Scoliosis by Unilateral Growth-Arrest. J BoneJoint Surg Br.1963;45:637-651.
    17. Mente PL, Aronsson DD, Stokes IA, Iatridis JC. Mechanical modulation of growth forthe correction of vertebral wedge deformities. J Orthop Res.1999;17(4):518-524.
    18. Stokes IA, Burwell RG, Dangerfield PH. Biomechanical spinal growth modulation andprogressive adolescent scoliosis--a test of the 'vicious cycle' pathogenetic hypothesis:summary of an electronic focus group debate of the IBSE. Scoliosis.2006;1:16.
    19. Newton PO, Fricka KB, Lee SS, Farnsworth CL, Cox TG, Mahar AT. Asymmetricalflexible tethering of spine growth in an immature bovine model. Spine.2002;27(7):689-693.
    20. Braun JT, Ogilvie JW, Akyuz E, Brodke DS, Bachus KN, Stefko RM. Experimentalscoliosis in an immature goat model: a method that creates idiopathic-type deformitywith minimal violation of the spinal elements along the curve. Spine.2003;28(19):2198-2203.
    21. Braun JT, Ogilvie JW, Akyuz E, Brodke DS, Bachus KN. Fusionless scoliosiscorrection using a shape memory alloy staple in the anterior thoracic spine of theimmature goat. Spine.2004;29(18):1980-1989.
    22. Braun JT, Akyuz E, Udall H, Ogilvie JW, Brodke DS, Bachus KN. Three-dimensionalanalysis of2fusionless scoliosis treatments: a flexible ligament tether versus arigid-shape memory alloy staple. Spine.2006;31(3):262-268.
    23. Szarek J, Kowalski IM, van Dam F, Zarzycki D, Pawlicki R, Fabczak J.Pathomorphological pattern of paravertebral muscles of rabbits after long-termexperimental electrostimulation. Pathology, research and practice.2003;199(9):613-618.
    24. Gorman KF, Tredwell SJ, Breden F. The mutant guppy syndrome curveback as amodel for human heritable spinal curvature. Spine.2007;32(7):735-741.
    25. Schwab F, Patel A, Lafage V, Farcy JP. A porcine model for progressive thoracicscoliosis. Spine.2009;34(11):E397-404.
    26. Uchiyama T, Tanizawa T, Muramatsu H, Endo N, Takahashi HE, Hara T. Amorphometric comparison of trabecular structure of human ilium betweenmicrocomputed tomography and conventional histomorphometry. Calcified tissueinternational.1997;61(6):493-498.
    27. Muller R, Van Campenhout H, Van Damme B, Van Der Perre G, Dequeker J,Hildebrand T, et al. Morphometric analysis of human bone biopsies: a quantitativestructural comparison of histological sections and micro-computed tomography. Bone.1998;23(1):59-66.
    28. Voor MJ, Yang S, Burden RL, Waddell SW. In vivo micro-CT scanning of a rabbitdistal femur: repeatability and reproducibility. Journal of biomechanics.2008;41(1):186-193.
    29. Modi HN, Suh SW, Prjvc B, Hong JY, Yang JH, Park YH, et al. Bone quality andgrowth characteristics of growth plates following limb transplantation betweenanimals of different ages--results of an experimental study in male syngeneic rats.Journal of orthopaedic surgery and research.6:53.
    30. Smit TH, Huyghe JM, Cowin SC. Estimation of the poroelastic parameters of corticalbone. Journal of biomechanics.2002;35(6):829-835.
    31. Meir AR, Fairbank JC, Jones DA, McNally DS, Urban JP. High pressures andasymmetrical stresses in the scoliotic disc in the absence of muscle loading. Scoliosis.2007;2:4.
    32. Tsantrizos A, Ito K, Aebi M, Steffen T. Internal strains in healthy and degeneratedlumbar intervertebral discs. Spine.2005;30(19):2129-2137.
    33. Stilwell DL, Jr. Structural deformities of vertebrae. Bone adaptation and modeling inexperimental scoliosis and kyphosis. The Journal of bone and joint surgery.1962;44-A:611-634.
    34. Eswaran SK, Gupta A, Adams MF, Keaveny TM. Cortical and trabecular load sharingin the human vertebral body. J Bone Miner Res.2006;21(2):307-314.
    35. Pazzaglia UE, Andrini L, Di Nucci A. The effects of mechanical forces on bones andjoints. Experimental study on the rat tail. J Bone Joint Surg Br.1997;79(6):1024-1030.
    36. Laffosse JM, Accadbled F, Bonnevialle N, Gomez-Brouchet A, de Gauzy JS, Swider P.Remodelling of vertebral endplate subchondral bone in scoliosis: a micro-CT analysisin a porcine model. Clinical biomechanics (Bristol, Avon).2010;25(7):636-641.
    37. Wilsman NJ, Farnum CE, Leiferman EM, Fry M, Barreto C. Differential growth bygrowth plates as a function of multiple parameters of chondrocytic kinetics. J OrthopRes.1996;14(6):927-936.
    38. Bylski-Austrow DI, Wall EJ, Glos DL, Ballard ET, Montgomery A, Crawford AH.Spinal hemiepiphysiodesis decreases the size of vertebral growth plate hypertrophiczone and cells. The Journal of bone and joint surgery.2009;91(3):584-593.
    39. Dickson RA, Deacon P. Spinal growth. J Bone Joint Surg Br.1987;69(5):690-692.
    40. Peacock EE, Jr. Some problems in flexor tendon healing. Surgery.1959;45(3):415-423.
    41. Minami A, Ishii S, Ogino T, Oikawa T, Kobayashi H. Effect of the immunologicalantigenicity of the allogeneic tendons on tendon grafting. The Hand.1982;14(2):111-119.
    42.胡必寺,顾玉东.腱鞘内肌腱与腱鞘外肌腱移植的实验研究.中华外科杂志.1995;33(9):2.
    43.杨文龙,王丹.95%乙醇浸泡异体肌腱的实验研究.中华书外科杂志.1997;13(2):2.
    44.唐俊林,程国良,方光荣.化学处理的冻干异体几件移植的实验研究.中华手外科杂志.1997;13(2):3.
    45. Minami A, Usui M, Ishii S, Kobayashi H. The in vivo effects of variousimmunoreactive treatments on allogeneic tendon grafts. The Journal of hand surgery.1983;8(6):888-893.
    46.李涛,王愉思.异体肌腱移植的研究进展.医学临床研究.2008;25(12):4.
    47.常文凯,梁炳生.手部屈肌腱粘连的研究进展.实用手外科学.2002;16(2):2.
    48.高新生,尹大庆,金瑞侠.同种异体肌腱移植与肌腱库的建立.中华手外科学杂志.1996;12(2):3.
    49. Shino K, Oakes BW, Horibe S, Nakata K, Nakamura N. Collagen fibril populations inhuman anterior cruciate ligament allografts. Electron microscopic analysis. TheAmerican journal of sports medicine.1995;23(2):203-208; discussion209.
    50. Chen CH, Shyu VB, Chen YC, Liao HT, Liao CJ, Chen CT. Reinforced bioresorbableimplants for craniomaxillofacial osteosynthesis in pigs. The British journal of oral&maxillofacial surgery.2013.
    51. Zhang YG, Zheng GQ, Zhang XS, Wang Y. Scoliosis model created by pedicle screwtethering in immature goats: the feasibility, reliability, and complications. Spine.2009;34(21):2305-2310.
    52. Braun JT, Hines JL, Akyuz E, Vallera C, Ogilvie JW. Relative versus absolutemodulation of growth in the fusionless treatment of experimental scoliosis. Spine.2006;31(16):1776-1782.
    53. Braun JT, Ogilvie JW, Akyuz E, Brodke DS, Bachus KN. Creation of an experimentalidiopathic-type scoliosis in an immature goat model using a flexible posteriorasymmetric tether. Spine.2006;31(13):1410-1414.
    54. Thomas S, Dave PK. Experimental scoliosis in monkeys. Acta orthopaedicaScandinavica.1985;56(1):43-46.
    55. Bozkus H, Crawford NR, Chamberlain RH, Valenzuela TD, Espinoza A, Yuksel Z, etal. Comparative anatomy of the porcine and human thoracic spines with reference tothoracoscopic surgical techniques. Surgical endoscopy.2005;19(12):1652-1665.
    56. Carreau JH, Farnsworth CL, Glaser DA, Doan JD, Bastrom T, Bryan N, et al. Themodulation of spinal growth with nitinol intervertebral stapling in an establishedswine model. Journal of children's orthopaedics.2012;6(3):241-253.
    57. Gray H. Gray's Anatomy. London: Churchill Livingstone: Clemente DCD,1984.
    58. Rong J, Wang Q, Liu K, Tan L, Ran X, Zhang S, et al. A new atlas localizationapproach for subthalamic nucleus utilizing Chinese visible human head datasets. PLoSOne.2013;8(2):e57264.
    59. Kim JH, Choi GM, Chang IB, Ahn SK, Song JH, Choi HC. Pedicular andextrapedicular morphometric analysis in the korean population: computedtomographic assessment relevance to pedicle and extrapedicle screw fixation in thethoracic spine. Journal of Korean Neurosurgical Society.2009;46(3):9.
    60. Dvorak M, MacDonald S, Gurr KR, Bailey SI, Haddad RG. An anatomic, radiographic,and biomechanical assessment of extrapedicular screw fixation in the thoracic spine.Spine.1993;18(12):1689-1694.
    61. O'Brien MF, Lenke LG, Mardjetko S, Lowe TG, Kong Y, Eck K, et al. Pediclemorphology in thoracic adolescent idiopathic scoliosis: is pedicle fixation ananatomically viable technique? Spine.2000;25(18):2285-2293.
    62. Vaccaro AR, Rizzolo SJ, Allardyce TJ, Ramsey M, Salvo J, Balderston RA, et al.Placement of pedicle screws in the thoracic spine. Part I: Morphometric analysis of thethoracic vertebrae. The Journal of bone and joint surgery.1995;77(8):1193-1199.
    63. Husted DS, Haims AH, Fairchild TA, Kershaw TS, Yue JJ. Morphometric comparisonof the pedicle rib unit to pedicles in the thoracic spine. Spine.2004;29(2):139-146.
    64. Schiemann T, Tiede U, Hohne KH. Segmentation of the visible human for high-qualityvolume-based visualization. Medical image analysis.1997;1(4):263-270.
    65. Grau V, Mewes AU, Alcaniz M, Kikinis R, Warfield SK. Improved watershedtransform for medical image segmentation using prior information. IEEE transactionson medical imaging.2004;23(4):447-458.
    66. Park JS, Jung YW, Lee JW, Shin DS, Chung MS, Riemer M, et al. Generating usefulimages for medical applications from the Visible Korean Human. Computer methodsand programs in biomedicine.2008;92(3):257-266.
    67. Zhang G, Liu Q, Zeng S, Luo Q. Organ dose calculations by Monte Carlo modeling ofthe updated VCH adult male phantom against idealized external proton exposure.Physics in medicine and biology.2008;53(14):3697-3722.
    68. Zhang SX, Heng PA, Liu ZJ, Tan LW, Qiu MG, Li QY, et al. Creation of the Chinesevisible human data set. Anatomical record.2003;275(1):190-195.
    69.韦兴,侯树勋,史亚民,等.胸椎经“椎弓根-肋骨间”螺钉与椎弓根螺钉固定的抗拔出力比较.中国脊柱脊髓杂志.2006;16(8):623-625.
    70. Panjabi MM, White AA,3rd. Basic biomechanics of the spine. Neurosurgery.1980;7(1):76-93.
    71. Liljenqvist UR, Allkemper T, Hackenberg L, Link TM, Steinbeck J, Halm HF.Analysis of vertebral morphology in idiopathic scoliosis with use of magneticresonance imaging and multiplanar reconstruction. The Journal of bone and jointsurgery.2002;84-A(3):359-368.
    72. Beall DP, Braswell JJ, Martin HD, Stapp AM, Puckett TA, Stechison MT. Technicalstrategies and anatomic considerations for parapedicular access to thoracic and lumbarvertebral bodies. Skeletal radiology.2007;36(1):47-52.
    73.刘红光,吴小涛,孔翔飞,等.经胸椎椎弓根-肋骨途径置入螺钉安全角度的CT测量.中国脊柱脊髓杂志.2008;18(4):278-281.
    74.张永刚,王岩,刘郑生,等.数字化三维重建技术定量评估青少年特发性脊柱侧弯胸椎椎弓根的形态变化.中国临床康复.2005;9(22):13-15.
    75. Husted DS, Yue JJ, Fairchild TA, Haims AH. An extrapedicular approach to theplacement of screws in the thoracic spine: an anatomic and radiographic assessment.Spine.2003;28(20):2324-2330.
    76. Kim HS, Kim SW, Ju CI. Balloon Kyphoplasty through Extrapedicular Approach inthe Treatment of Middle Thoracic Osteoporotic Compression Fracture: T5-T8Level.Journal of Korean Neurosurgical Society.2007;42(5):363-366.
    77. Deviren V, Acaroglu E, Lee J, Fujita M, Hu S, Lenke LG, et al. Pedicle screw fixationof the thoracic spine: an in vitro biomechanical study on different configurations.Spine.2005;30(22):2530-2537.
    78. Lenke LG. The Lenke classification system of operative adolescent idiopathicscoliosis. Neurosurgery clinics of North America.2007;18(2):199-206.
    79.金国鑫,郭文力,李雷,等.二次测量三维CT重建数据在脊柱侧弯矫形术中的应用.中国修复重建外科杂志.2012;26(1):74-77.
    80.殷翔许,周强,等.椎弓根螺钉固定三维矫治特发性脊柱侧凸的疗效.第三军医大学学报.2007;29(14):1440-1442.
    81. Tian NF, Xu HZ, Wang XY, Chen QJ, Zheng LC. Morphometric comparisons betweenthe pedicle and the pedicle rib unit in the immature Chinese thoracic spine: acomputed tomographic assessment. Spine.2010;35(16):1514-1519.
    82. Lavelle WF, Samdani AF, Cahill PJ, Betz RR. Clinical outcomes of nitinol staples forpreventing curve progression in idiopathic scoliosis. Journal of pediatric orthopedics.2011;31(1Suppl):S107-113.
    83. Hunt KJ, Braun JT, Christensen BA. The effect of two clinically relevant fusionlessscoliosis implant strategies on the health of the intervertebral disc: analysis in animmature goat model. Spine.2009;35(4):371-377.
    84. Trobisch PD, Samdani A, Cahill P, Betz RR. Vertebral body stapling as an alternativein the treatment of idiopathic scoliosis. Operative Orthopadie und Traumatologie.2011;23(3):5.
    85. Akbarnia BA, Blakemore LC, Campbell RM, Jr., Dormans JP. Approaches for the veryyoung child with spinal deformity: what's new and what works. Instructional courselectures.2010;59:407-424.
    86. Davis MA. Posterior spinal fusion versus anterior/posterior spinal fusion foradolescent idiopathic scoliosis: a decision analysis. Spine.2009;34(21):2318-2323.
    87. T. Glenn Pait M UT, MD, Kenan I. Arnautovic, MD and Ron M. Tribell SurgicalAnatomy of the Thoracic Spine. In: Dickman CA RD PN, ed. Thoracoscopic SpineSurgery. New York: Thieme Medical Publishers;1999:57-67.
    88. Liljenqvist UR, Halm HF, Link TM. Pedicle screw instrumentation of the thoracicspine in idiopathic scoliosis. Spine.1997;22(19):2239-2245.
    89. Kuraishi S, Takahashi J, Hirabayashi H, Hashidate H, Ogihara N, Mukaiyama K, et al.Pedicle morphology using computed tomography-based navigation system inadolescent idiopathic scoliosis. Journal of spinal disorders&techniques.2013;26(1):22-28.
    90.殷渠东,郑祖根,蔡建平.置入胸椎“椎弓根-肋骨”单元螺钉的应用解剖和力学测试.中国临床解剖学杂志.2005;23(5):538-539.
    91.刘新宇,郑燕平,原所茂,等.特发性脊柱侧凸患者胸椎椎弓根-肋骨联合体的CT测量.脊柱外科杂志.2006;4(4):233-235.
    92. Parent S, Labelle H, Skalli W, de Guise J. Thoracic pedicle morphometry in vertebraefrom scoliotic spines. Spine.2004;29(3):239-248.
    93. Liljenqvist UR, Link TM, Halm HF. Morphometric analysis of thoracic and lumbarvertebrae in idiopathic scoliosis. Spine.2000;25(10):1247-1253.
    94. Takeshita K, Maruyama T, Chikuda H, Shoda N, Seichi A, Ono T, et al. Diameter,length, and direction of pedicle screws for scoliotic spine: analysis by multiplanarreconstruction of computed tomography. Spine.2009;34(8):798-803.
    95. Xiong B, Sevastik B, Sevastik J, Hedlund R, Suliman I, Kristjansson S. Horizontalplane morphometry of normal and scoliotic vertebrae. A methodological study. EurSpine J.1995;4(1):6-10.
    [1] Deli E, Varnagy L. Teratological examination of Wofatox50EC (50%methylparathion) on pheasant embaryos. Anat Anz,1985,158:237-240.
    [2] Fishchenko V, Pechershii AG, Grigorovshii VV,et al. Experimental data on themorphogenesis of the spinal compression syndrome in congenital scoliosis. OrthopTravmatol Protez,1989,9:26-31.
    [3] Tanaka H, Kimura Y, Ujino Y, The experimental study of scoliosis in bipedal rat inlathyrism. Arch Orthop Trauma Surg,1982,101:1-27.
    [4] Rivard CH, Labelle P, Simoneau R, et al. Moderate hypobaric hypoxia used as aninducer of congenital vertebral malformation in mouse embryo. Chir Pediatr,1982,
    [5] Farley FA, Loder RT, Nolan BT, et al. Mouse model for thoracic congenital scoliosis.JPediatr Orthop,2001,21:537-540.
    [6] Alexander PG, Tuan RS. Carbon monoxide-induced axial skeletal dysmorphogenesisin the chick embryo. Brith Defects Res A Clin Mol Teratol,2003,67:219-230.
    [7] Wang XP, Jiang H,Raso J,et al. Characterization of the scoliosis that develops afterpinealectomy in the chicken and comparison with adolescent idiopathic scoliosis inhumans. Spine,1997,22:2626-2635.
    [8] Kanemura T, Kawakami N,Deguchi M, et al. Natural course of experimental scoliosisin pinealectomized chickens.Spine,1997,22;1563-1567.
    [9] Machida M, Dubousset J5Satoch T, et al. Pathologic mechanism of experimentalscoliosis in pinealectomized chickens. Spine,2001,26: E385-E391.
    [10] O’ Kelly C, Wang X, Raso J, et al. The production of scoliosis after pinealectomy inyoung chickens, rats, and hamsters. Spine,1999,24(1):35-38.
    [11] Cheung KM C,Lu DS, Poon AM S,et al. Effect of melatonin suppression on scoliosisdevelopment in chickens by either constant light or surgical pinealectomy. Spine,2003,28:1941—1944.
    [12] Cheung KM C, Wang T, Hu YG, e t al. Prmiary thoracolumbar scoliosis inpinealectomized chickens. Spine,2003,28:2499-2504.
    [13] BagnallK, Raso J, Moreau M, et al. The development of scoliosis followingpinealectomy in young chickens is not the result of an artifact of the surgical procedure.Stud Health Technol Inform,2002,88:3-9.
    [14] Beuerlein M, Wang X,Moreau M,et al. Development of scoliosis followingpinealectomy in young chickens is not the result of an artifact of the surgical procedure.Microsc Res Tech,2001,53:81-86.
    [15] Beuerlein M, Wilson J,Moreau M,et al. The critical stage of pinealectomy surgeryafter which scoliosis is produced in young chickens. Spine,2001,26:237-240.
    [16] Machida M, Murai I, Miyashita Y, et al. Pathogenesis of idiopathic scoliosis.Experimental study in rats. Spine,1999,24(19):1985-1989.
    [17] Cheung KM,Wang T,Poon AM, et al. The effect of pinealectomy on scoliosisdevelopment in young nonhuman primats. Spine,2005,30:2009—2013.
    [18]李中实,康宇宁,刘成刚,等.光照后鸡褪黑素变化与脊柱侧凸关系的实验研究.中国脊柱脊髓杂志,2003,13:293-297.
    [19]王亭,胡有谷,郑英刚,等.褪黑素在鸡脊柱侧凸模型中的作用.中华骨科杂志,2002,22:623—627.
    [20] Machida M, Dubousset J, Yamada T, et al. Experimental scoliosis inmelatonin-deficient C57BL/6J mice without pinealectomy. J Pineal Res,2006,41:1-7.
    [21] Barrios C, Tunon MT, De Salis JA, et al. Scoliosis induced by medullary damage: anexperimental study in rabbits. Spine,1987,12(5):433439.
    [22] Pincott JR,Taffs LF. Experimental scoliosis in primates: a neurological cause. J BoneJoint Surg Br,1982,64:503-507.
    [23] Zeman RJ,Zhang Y, Etlinger JD. Clenbuterol, a beta2—adrenoceptor agonist, reducesscoliosis due to partial transaction of rat spinal cord. Am J Physiol,1997,272:E712-E715.
    [24] Yamada K, Yamamoto H, Nakagawa Y, et al. Etiology of idiopathic scoliosis. ClinOrthop,1984,184:50-57.
    [25] Barrios C, Arrotegui JI. Experimental kyphoscolisosis induced in rats by selectivebrain stem damage. Int Orthop,1992,16:146-151.
    [26] Agadir M,Sevastik B,Sevastik J A, et al. Induction of scoliosis in the growing rabbitby unilateral rib-growth stimulation. Spine,1988,9:1065-1069.
    [27] Sevastik J,Agardir M,Sevastik B. Effects of rib elongation on the spine. II.Correctinof scoliosis in the rabbit. Spine,1990,15:826-829.
    [28] Suk SI, Song HS,Lee CK. Scoliosis induced by anterior and posterior rhizotomy.Spine,1989,14:692-697.
    [29] Pincott JR, Davies JS, Taffs LF. Scoliosis caused by section of dorsal spinal nerveroots.J Bone Joint Surg (Br),1984,66(1):27-29.
    [30] Pal GP, Bhatt RH, Patel VS. Mechanism of production of experimental scoliosis inrabbits. Spine,1991,16:137—142.
    [31] Garrosa M, Fernandez-Marino JR, Gayoso MJ, et al. Paravertebral muscles inexperimental scolosis: a light and electron microscopic study. Histol Histopathol,1998,13:927-937.
    [32] Werneck LC,Cousseau VA, Graells XS, et al. Muscle study in experimental scoliosisin rabbits with costotransversectomy: evidence of ischemic process. Eur Spine J,2008,17:726-733.
    [33] Sevastik J,Agadir M, Sevastik B. Effects of rib elongation on the spine: Distortion ofthe vertebral alignment in the rabbit. Spine,1991,6:687—688.
    [34] Deguchi M,Kavakami N,Kanemura T, et al. Experimental scoliosis induced by ribresection in chichens. J Spianl Disord,1995,8:179-185.
    [35] De SalisJ, Beguiristain JL,Canadell J. The production of experimental scoliosis byselective arterial ablation. Int Orthop,1980,3:311—315.
    [36] Poussa M, Schlenzka D, RItsila V. Scoliosis in growing rabbits induced with anextension splint. Acta Orthop Scand,1991,62:136—138.
    [37] Sarwark JF, Dabney KW, Salzman SK, et al. Experimental scoliosis in therat.I.Methodology, anatomic features and neurologic characterization. Spine,1988,13:466471.
    [38] Tsuang YH, Yang RS,Chen PQ,et al. Experimental structural scoliosis in rabbits. JFormos Med Assoc,1992,91:886—890.
    [39] Kasuga K. Experimental scoliosis in the rat spine induced by binding the spinousprocesses. Nippon Seikeigeka Gakkai Zasshi,1994,68;798-807.
    [40] Carpintero P, Mesa M, Garcia J,et al. Scoliosia induced by asymmetric lordosis androtation: an experimental study. Spine,1997,22:2202-2206.
    [41] Stokes IA,Sponce H, Aronsson DD, et al. Mechanical modulation of vertebral bodygrowth: Implications for scoliosis progression. Spine,1996,10:1162—1167.
    [42] Newton PO,Fricka KB, Lee SS, et al. Asymmetrical flexible tethering of spine growthin an immature bovine model. Spine,2002,27(7):689-693.
    [43] Newton PO, Fam FD, Farsworth CL,et al. Multilevel spinal growth modulation withan anterolateral flexible tether in an immature bovine model. Spine,2005,30(23):2608-2613.
    [44] Braun JT, Ogilvie JW, Akyuz E,et al. Experimental scoliosis in an immature goatmodel: a method that creates idiopathic type deformity with minimal violation of thespinal elements along the curve. Spine,2003,28(19):2198-2203.
    [45] Braun JT, Akyuz E,Udall H, et al. Three dimensional analysis of2fusionless scoliosistreatment: a flexible ligament tether verus a rigid shaped memory alloy staple. Spine,2006,31:262—268.
    [46] Pampliega T, Beguiristain JL, Artieda J. Neurologic complications after sublaminarwiring. An experimental study in lambs. Spine,1992,17:44H45.
    [47]郑国权,张永刚,王岩,等.单侧椎弓根螺钉内固定建立脊柱侧凸动物模型的影像学观察.中国脊柱脊髓杂志,2008,18:460463.
    [48] Zhang Y,Zheng G,Zhang X, et al. Scoliosis Model Created by Pedicle ScrewTethering in Immature Goats: the Feasibility, Reliability, and Complications. Spine,2009,34:2305-2310.
    [49] Zhang Y,Wang Y, Zheng G, et al. Unilateral pedicle screws asymmetric tethering: aninnovative method to create idiopathic deformity. J Orthop Surg,2007,2:18,
    [50] Joe T. Studies of experimental scoliosis produced by electrical stimulation: withspecial reference to the histochemical properties of the muscle. Nippon Ika DaigakuZasshi,1990,57(5):416426.
    [51] Kowalski IM,Szarek J,Zarzycki D, et al. Experimental scoliosis in the course ofunilateral surface electrostimulation of the paravertebral muscles in rabbits: effectsaccording to stimulation period. Eur Spine J,2001,10(6):490-494.
    [52] Szarek J, Kowalski IM, van Dam F, et al. Pathomorphological Pattern of paravertebralmuscles of rabbits after long-term experimental electrostimulation. Pathol Res Pract,2003,199:613—618.
    [53] Gorman KF, Tredwell SJ,Breden F. The mutant guppy syndrome curveback as amodel for human heritable spinal curvature. Spine,2007,32(7):735—741.
    [54] Gorman KF, Breden F. Disprotionate body lengths correlate with idiopathic-typecurvature in the curveback guppy. Spine,2010,35:511-516.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700