H_2S对大鼠缺血性神经损伤的保护作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     通过在体实验观察外源性硫化氢(H_2S)对大鼠海马CA1区锥体细胞和大鼠胶质瘤细胞在缺血损伤时的保护作用,并探讨相关机制。
     方法
     ⑴40只雄性wistar大鼠随机分成4组:假手术组、缺血组、H_2S组、缺血+H_2S组,每组10只。采用双侧颈总动脉永久结扎(2VO)的方法建立慢性脑缺血大鼠模型;H_2S组和缺血+H_2S组大鼠给予腹腔注射NaHS(5.6mg/kg/day)处理。利用Morris水迷宫实验(MWM)观察比较各组大鼠空间学习、记忆能力;各组大鼠在MWM测试后分别断头取脑,测定海马内H_2S含量;通过组织学方法(HE染色)观察各组大鼠海马CA1区锥体细胞的形态结构。
     ⑵32只雄性wistar大鼠随机分为4组,每组8只,分组及处理方法同⑴。在体记录各组大鼠海马CA3、CA1区的局部场电位,用计算神经生物学方法分析大鼠海马CA3、CA1区神经网络的振荡模态(包括θ波段和γ波段)并进行比较;分别在体记录各组大鼠海马CA1区的长时程增强(LTP),并用免疫组织化学法观察各组大鼠海马CA1区生长相关蛋白(GAP-43)的表达情况。
     ⑶40只雄性Sprague-Dawley大鼠随机分成4组:假手术组,H_2S组,肿瘤组,肿瘤+H_2S组,每组10只。选用大鼠C6胶质瘤细胞系,通过纹状体内微量细胞注射的方法建立大鼠恶性胶质瘤(GBM)动物模型,H_2S组和肿瘤+H_2S组大鼠在脑内注射1周后给予腹腔注射NaHS(5.6mg/kg)1次;脑内注射3周后,各组大鼠分别断头取脑,肿瘤侧半脑用于制备冰冻切片,HE染色观察瘤内细胞形态,并计算瘤体体积;免疫组化染色观察瘤内血管内皮标记蛋白CD34、缺氧诱导因子-1α(HIF-1α)和金属基质蛋白酶-2(MMP-2)的阳性表达情况,评估瘤体内微血管密度(MVD);肿瘤对侧半脑用于脑内H_2S含量测定。
     结果
     ⑴慢性脑缺血大鼠海马内H_2S含量显著降低(缺血组vs.假手术组,P<0.05);经外源性H_2S处理后,慢性脑缺血大鼠海马内的H_2S含量显著升高(缺血+H_2S组vs.缺血组,P<0.05),但仍低于假手术组(缺血+H_2S组vs.假手术组,P<0.05)。
     ⑵MWM结果表明,与假手术组大鼠相比,缺血组大鼠的逃避潜伏期明显延长(P<0.01),目标象限百分比显著减少(P<0.001),穿越平台次数明显减少(P<0.001);经外源性H_2S腹腔注射处理后,缺血+H_2S组大鼠的逃避潜伏期(秒)明显缩短(定位巡航第5天,缺血组与缺血+H_2S组相比为:15.91±2.51vs.8.09±1.50,P<0.01),目标象限百分比(%)明显增加(缺血组与缺血+H_2S组相比为:27.27±3.37vs.37.25±3.92,P<0.05),穿越平台次数(次)显著增加(缺血组与缺血+H_2S组相比为:1.83±0.27vs.3±0.46,P<0.05)。四组大鼠的平均游泳速度无显著性差别(P>0.05)。
     ⑶假手术组和H_2S组的CA1区锥体细胞形态正常。缺血组海马的CA1区锥体细胞出现明显的核固缩现象,胞浆染色不均,难以分辨正常的胞体形态,细胞周围可见明显水肿,细胞分布散乱不均;缺血+H_2S组海马的CA1区锥体细胞也可见核固缩现象,但明显少于缺血组,细胞分布趋于均匀,胞周水肿也明显减少,胞浆染色也较均匀,可见多数锥体细胞的形态趋于正常。
     ⑷对局部场电位的计算神经生物学分析结果表明,缺血会导致CA3与CA1之间的θ节律和γ节律相位同步性显著减弱,给予H_2S后,两个脑区减弱的相位同步得到显著恢复。缺血导致CA3-CA1通路θ与γ节律上的信息流单方向指数c2的显著下降,而给予H_2S后,这种下降趋势得到恢复。
     ⑸与假手术组相比,缺血组的场兴奋性突触后电位(fEPSPs)斜率百分比显著降低(123.33±2.62vs.112.35±2.52,P<0.001),在使用外源性H_2S处理后,缺血+H_2S组大鼠的fEPSPs斜率百分比得到明显提高(缺血+H_2S组vs.缺血组:124.99±3.64vs.112.35±2.52,P<0.001)。
     ⑹GAP-43主要表达于锥体细胞的胞体及其附近,缺血组的GAP-43阳性表达最低,缺血+H_2S组的GAP-43阳性表达介于假手术组和缺血组之间。缺血组与假手术组比较,P<0.001;缺血组与缺血+H_2S组比较,P<0.001。
     ⑺一次性给予低剂量NaHS(5.6mg/kg)可促进荷瘤鼠GBM瘤体的生长,表现为瘤体体积明显增大(P<0.001),瘤体组织出现空洞,坏死、出血明显增多,新生血管明显增多。
     ⑻肿瘤+H_2S组与肿瘤组大鼠脑内H_2S的含量均高于假手术组(P<0.05),肿瘤+H_2S组H_2S含量比肿瘤组显著提高(P<0.05);肿瘤+H_2S组大鼠脑内的CD34的阳性表达明显高于肿瘤组(P<0.001);肿瘤组和肿瘤+H_2S组瘤内的MVD(条/mm2)测定结果分别为41.2±7.9和97.0±10.8,具有极显著性差异,P<0.001;与肿瘤组相比,肿瘤+H_2S组大鼠瘤体内HIF-1α和MMP-2的阳性表达量均显著增多(P<0.001)。
     结论
     ⑴外源性H_2S可提高缺血大鼠模型海马内H_2S的含量;
     ⑵外源性H_2S可改善慢性脑缺血大鼠的空间认知障碍,其机制与H_2S可改善慢性脑缺血导致的大鼠海马锥体细胞的形态结构异常有关;
     ⑶慢性脑缺血可造成海马内慢γ振荡与θ振荡模态的改变;外源性H_2S可使慢性脑缺血导致的θ与γ模态改变得到一定程度的恢复,这有可能是H_2S对抗慢性脑缺血认知损伤的一个新的机制;
     ⑷H_2S可增强慢性脑缺血时大鼠海马CA1区神经元LTP,这是H_2S改善脑缺血导致的大鼠空间认知障碍的神经电生理机制,这种电生理作用与H_2S促进脑缺血大鼠海马CA1区GAP-43的表达有关;
     ⑸一次性给予低剂量(5.6mg/kg)的外源性H_2S可促进GBM瘤体的血管新生,促进瘤体的生长,其机制与外源性H_2S促进瘤体的HIF-1α和MMP-2表达有关;
     ⑹H_2S对缺血的海马锥体细胞和缺血的胶质瘤细胞都具有神经保护作用。
Objective
     ⑴To investigate whether exogenous hydrogen sulfide (H_2S) attenuates theneuronal injury in the hippocampal CA1region induced by chronic brain ischemia.
     ⑵To address the neuroprotective effect of H_2S on aberrant glial cells inglioblastoma (GBM).
     ⑶To explore the mechanism of the neuroprotective effect of H_2S on ischemicneurons in hippocampus as well as glial cell in GBM.
     Methods
     In the present study, experiments were divided into3parts. In the first andsecond parts, a global model of cerebral ischemia was established by two vesselocclusion (2VO), and the experimental rats were divided into4groups: sham group,H_2S group (NaHS injected,5.6mg/kg/day, i.p.),2VO group and2VO-H_2S group(NaHS injected post2VO,5.6mg/kg/day, i.p.). For the first part experiment, theperformances of learning and memory were examined by the Morris water maze(MWM). As an H_2S donor, NaHS was administered intraperitoneally (5.6mg/kg/day,i.p.). The morphology of neurons in hippocampus was determined by hematoxylinand eosin (HE) staining, and H_2S content in hippocampus was evaluated. In thesecond part of the present experiments, LTP from hippocampus Schaffer collaterals toCA1region was performed. Before the LTP induction, the local field potentials (LFPs)were recorded. Growth-associated protein-43(GAP-43) expression in thehippocampus of each rat was analyzed by immunohistochemical staining. In addition,a novel general partial directed coherence (gPDC) algorithm was employed todetermine the coupling interaction between CA3and CA1in hippocampus in twofrequency bands (theta rhythm and gamma rhythm). In the third part of the presentstudy, in vivo GBM model was conducted using adult rats with intracerebral injectionof rat C6glioma cell line, and another4groups were involved: sham group, H_2Sgroup, GBM group and GBM-H_2S group. To observe the H_2S enhance effect onangiogenesis in GBM, an intraperitoneal injection of NaHS was administrated. HE staining, angiogenesis examination and immunohistochemical analysis of thehypoxia-inducible factor-1alpha (HIF-1α), matrix metalloproteinase-2(MMP-2) andCD34expressions were performed, respectively. Each section stained withCD34-related antigen was also to highlight the blood vessels for evaluating the tumormicrovessel density (MVD-CD34).
     Results
     ⑴Exogenous H_2S significantly improved spatial learning and memory deficitsinduced by brain ischemia (P<0.01). Exogenous H_2S inhibited the edema aroundpyramidal neurons and the nuclear shrink induced by ischemia. Intraperitonealinjection with a certain concentration of NaHS (5.6mg/kg/day) could increase thecontent of H_2S in hippocampus of2VO animals. A subnormal level of H_2S content inhippocampus was existed in2VO rats. The H_2S level in hippocampus in2VO-H_2Sgroup was elevated after treated with NaHS, while it was lower than that in shamgroup. It can be seen that the H_2S level in hippocampus was associated with the dataobtained from behavior and morphology tests.
     ⑵Exogenous H_2S enhanced the LTP in the hippocampus of2VO rats, andpromoted the expression of GAP-43in the CA1region of hippocampus post ischemia.The phase locked values (PLV) were significantly increased in theta and gammarhythms after H_2S treatment in2VO rats. The unidirectional influence from CA3toCA1reduced significantly at theta and gamma rhythms in2VO rats, and enhancedafter H_2S treatment, which were associated with the LTP alterations.
     ⑶After NaHS injection, the clinical symptoms of tumor-bearing rats becamemore serious, and the dramatic distress and obvious weight loss were found. HEstaining showed more evidence of tumor in GBM-H_2S animal brains than that inGBM animal brains. The mean tumor volume became much larger in GBM-H_2S ratsthan that in GBM animals (P<0.001). Immunohistochemical analysis exhibited thatthe HIF-1α, MMP-2and CD34expressions were obviously increased after NaHSintraperitoneal injection in GBM-H_2S rats. And the MVD-CD34was markedly higherin GBM-H_2S group.
     Conclusions
     ⑴the H_2S content in hippocampus could be increased by treating with a certain concentration of exogenous H_2S. H_2S could improve impairment of learning andmemory in2VO rats. The underlying mechanism was associated with improvementof the edema around pyramidal neurons and the nuclear shrink induced by ischemia.
     ⑵Exogenous H_2S enhanced synaptic plasticity in the hippocampus of2VO rats,The underlying mechanism was associated with H_2S promoted the expression ofGAP-43in the CA1region of post-ischemic hippocampus. The changes of oscillatorypattern in hippocampal neurons induced by2VO got retrieved in a degree by H_2Streatment, which might represent a novel recognition to the mechanism of H_2Simproving cognitive impairments.
     ⑶H_2S serves as a stimulator in the angiogenesis of GBM via multiplemechanisms including the increase of HIF-1α and MMP-2.
     ⑷Exogenous H_2S has neuroprotective effects on both pyramidal neurons in theCA1region of hippocampus and glial cell in GBM when ischemic injury existed inthese two kinds of neuron.
引文
[1] Warenycia, M.W., L.R. Goodwin, C.G. Benishin, et al. Acute hydrogen sulfide poisoning.Demonstration of selective uptake of sulfide by the brainstem by measurement of brainsulfide levels. Biochem Pharmacol,1989,38(6):973-981
    [2] Goodwin, L.R., D. Francom, F.P. Dieken, et al. Determination of sulfide in brain tissue by gasdialysis/ion chromatography: postmortem studies and two case reports. J Anal Toxicol,1989,13(2):105-109
    [3] Savage, J.C. and D.H. Gould. Determination of sulfide in brain tissue and rumen fluid byion-interaction reversed-phase high-performance liquid chromatography. J Chromatogr,1990,526(2):540-545
    [4] Wang, R. Two's company, three's a crowd: can H2S be the third endogenous gaseoustransmitter? Faseb J,2002,16(13):1792-1798
    [5] Abe, K. and H. Kimura. The possible role of hydrogen sulfide as an endogenousneuromodulator. J Neurosci,1996,16(3):1066-1071
    [6] Beltowski, J. Hydrogen sulfide as a biologically active mediator in the cardiovascular system.Postpy higieny i medycyny doswiadczalnej (Online),2004,58:285-291
    [7] Tang, C., X. Li, and J. Du. Hydrogen sulfide as a new endogenous gaseous transmitter in thecardiovascular system. Curr Vasc Pharmacol,2006,4(1):17-22
    [8] Pearson, R.J., T. Wilson, and R. Wang. Endogenous hydrogen sulfide and the cardiovascularsystem-what's the smell all about? Clin Invest Med,2006,29(3):146-150
    [9] Rochette, L. and C. Vergely. Hydrogen sulfide (H2S), an endogenous gas with odor of rotteneggs might be a cardiovascular function regulator. Ann Cardiol Angeiol (Paris),2008,57(3):136-138
    [10] Wang, X.-B., H.-F. Jin, and J.-B. Du. Role of gas signaling molecule hydrogen sulfide incardiovascular diseases. Zhongguo Dang Dai Er Ke Za Zhi,2009,11(9):790-793
    [11] Yamagishi, K., K. Mishima, Y. Ohgami, et al. A synthetic ceramide analog ameliorates spatialcognition deficit and stimulates biosynthesis of brain gangliosides in rats with cerebralischemia. Eur J Pharmacol,2003,462(1-3):53-60
    [12] Catania, M.A., M.C. Marciano, A. Parisi, et al. Erythropoietin prevents cognition impairmentinduced by transient brain ischemia in gerbils. Eur J Pharmacol,2002,437(3):147-150
    [13] Iwasaki, K., Y. Kitamura, Y. Ohgami, et al. The disruption of spatial cognition and changes inbrain amino acid, monoamine and acetylcholine in rats with transient cerebral ischemia.Brain Res,1996,709(2):163-172
    [14] Meyer, J.S., K. Obara, K. Muramatsu, et al. Cognitive performance after small strokescorrelates with ischemia, not atrophy of the brain. Dementia,1995,6(6):312-322
    [15] Zhao, W., J. Zhang, Y. Lu, et al. The vasorelaxant effect of H(2)S as a novel endogenousgaseous K(ATP) channel opener. Embo J,2001,20(21):6008-6016
    [16] Hosoki, R., N. Matsuki, and H. Kimura. The possible role of hydrogen sulfide as anendogenous smooth muscle relaxant in synergy with nitric oxide. Biochem Biophys ResCommun,1997,237(3):527-531
    [17] Zhao, W. and R. Wang. H(2)S-induced vasorelaxation and underlying cellular and molecularmechanisms. Am J Physiol Heart Circ Physiol,2002,283(2): H474-480
    [18] Kimura, H. Hydrogen sulfide as a neuromodulator. Mol Neurobiol,2002,26(1):13-19
    [19] Mustafa, A.K., M.M. Gadalla, and S.H. Snyder. Signaling by gasotransmitters. Sci Signal,2009,2(68): re2
    [20] Gadalla, M.M. and S.H. Snyder. Hydrogen sulfide as a gasotransmitter. J Neurochem,2010,113(1):14-26
    [21] Calvert, J.W., W.A. Coetzee, and D.J. Lefer. Novel insights into hydrogen sulfide--mediatedcytoprotection. Antioxid Redox Signal,2010,12(10):1203-1217
    [22] Taoka, S., M. West, and R. Banerjee. Characterization of the heme and pyridoxal phosphatecofactors of human cystathionine beta-synthase reveals nonequivalent active sites.Biochemistry-Us,1999,38(9):2738-2744
    [23] Taoka, S. and R. Banerjee. Characterization of NO binding to human cystathioninebeta-synthase: Possible implications of the effects of CO and NO binding to the humanenzyme. J Inorg Biochem,2001,87(4):245-251
    [24] Kabil, O. and R. Banerjee. Redox biochemistry of hydrogen sulfide. J Biol Chem,2010,285(29):21903-21907
    [25] Diwakar, L. and V. Ravindranath. Inhibition of cystathionine-gamma-lyase leads to loss ofglutathione and aggravation of mitochondrial dysfunction mediated by excitatory amino acidin the CNS. Neurochem Int,2007,50(2):418-426
    [26] Shibuya, N., M. Tanaka, M. Yoshida, et al.3-Mercaptopyruvate sulfurtransferase produceshydrogen sulfide and bound sulfane sulfur in the brain. Antioxid Redox Signal,2009,11(4):703-714
    [27] Ishigami, M., K. Hiraki, K. Umemura, et al. A source of hydrogen sulfide and a mechanismof its release in the brain. Antioxid Redox Signal,2009,11(2):205-214
    [28] Tan, B.H., P.T.H. Wong, and J.-S. Bian. Hydrogen sulfide: a novel signaling molecule in thecentral nervous system. Neurochem Int,2010,56(1):3-10
    [29] Dombkowski, R.A., M.J. Russell, and K.R. Olson. Hydrogen sulfide as an endogenousregulator of vascular smooth muscle tone in trout. Am J Physiol Regul Integr Comp Physiol,2004,286(4): R678-685
    [30] Kimura, H. Hydrogen sulfide induces cyclic AMP and modulates the NMDA receptor.Biochem Biophys Res Commun,2000,267(1):129-133
    [31] Yong, Q.C., C.H. Choo, B.H. Tan, et al. Effect of hydrogen sulfide on intracellular calciumhomeostasis in neuronal cells. Neurochem Int,2010,56(3):508-515
    [32] Nagai, Y., M. Tsugane, J.-I. Oka, et al. Hydrogen sulfide induces calcium waves in astrocytes.Faseb J,2004,18(3):557-559
    [33] Dello Russo, C., G. Tringali, E. Ragazzoni, et al. Evidence that hydrogen sulphide canmodulate hypothalamo-pituitary-adrenal axis function: in vitro and in vivo studies in the rat.J Neuroendocrinol,2000,12(3):225-233
    [34] Navarra, P., C. Dello Russo, C. Mancuso, et al. Gaseous neuromodulators in the control ofneuroendocrine stress axis. Ann N Y Acad Sci,2000,917:638-646
    [35] Blackstone, E., M. Morrison, and M.B. Roth. H2S induces a suspended animation-like statein mice. Science,2005,308(5721):518
    [36] Whiteman, M., J.S. Armstrong, S.H. Chu, et al. The novel neuromodulator hydrogen sulfide:an endogenous peroxynitrite 'scavenger'? J Neurochem,2004,90(3):765-768
    [37] Kimura, Y. and H. Kimura. Hydrogen sulfide protects neurons from oxidative stress. Faseb J,2004,18(10):1165-1167
    [38] Kimura, Y., R. Dargusch, D. Schubert, et al. Hydrogen sulfide protects HT22neuronal cellsfrom oxidative stress. Antioxid Redox Signal,2006,8(3-4):661-670
    [39] Florian, B., R. Vintilescu, A.T. Balseanu, et al. Long-term hypothermia reduces infarctvolume in aged rats after focal ischemia. Neurosci Lett,2008,438(2):180-185
    [40] Jiang, L.-h., X. Luo, W.a. He, et al. Effects of exogenous hydrogen sulfide on apoptosisproteins and oxidative stress in the hippocampus of rats undergoing heroin withdrawal. ArchPharm Res,2011,34(12):2155-2162
    [41] Zhang, L.-M., C.-X. Jiang, and D.-W. Liu. Hydrogen sulfide attenuates neuronal injuryinduced by vascular dementia via inhibiting apoptosis in rats. Neurochem Res,2009,34(11):1984-1992
    [42] Patacchini, R., P. Santicioli, S. Giuliani, et al. Hydrogen sulfide (H2S) stimulatescapsaicin-sensitive primary afferent neurons in the rat urinary bladder. Br J Pharmacol,2004,142(1):31-34
    [43] Eto, K., T. Asada, K. Arima, et al. Brain hydrogen sulfide is severely decreased inAlzheimer's disease. Biochem Biophys Res Commun,2002,293(5):1485-1488
    [44] Lee, M., V. Tazzari, D. Giustarini, et al. Effects of hydrogen sulfide-releasing L-DOPAderivatives on glial activation: potential for treating Parkinson disease. J Biol Chem,2010,285(23):17318-17328
    [45] Hu, L.-F., M. Lu, C.X. Tiong, et al. Neuroprotective effects of hydrogen sulfide onParkinson's disease rat models. Aging Cell,2010,9(2):135-146
    [46] Han, Y., J. Qin, X. Chang, et al. Modulating effect of hydrogen sulfide ongamma-aminobutyric acid B receptor in recurrent febrile seizures in rats. Neurosci Res,2005,53(2):216-219
    [47] Han, Y., J. Qin, X. Chang, et al. Hydrogen sulfide may improve the hippocampal damageinduced by recurrent febrile seizures in rats. Biochem Biophys Res Commun,2005,327(2):431-436
    [48] Belardinelli, M.C., A. Chabli, B. Chadefaux-Vekemans, et al. Urinary sulfur compounds inDown syndrome. Clin Chem,2001,47(8):1500-1501
    [49] Ichinohe, A., T. Kanaumi, S. Takashima, et al. Cystathionine beta-synthase is enriched in thebrains of Down's patients. Biochem Biophys Res Commun,2005,338(3):1547-1550
    [50] Tyagi, N., S. Givvimani, N. Qipshidze, et al. Hydrogen sulfide mitigates matrixmetalloproteinase-9activity and neurovascular permeability in hyperhomocysteinemic mice.Neurochem Int,2010,56(2):301-307
    [51] Shan, X., R.L. Dunbrack, Jr., S.A. Christopher, et al. Mutations in the regulatory domain ofcystathionine beta synthase can functionally suppress patient-derived mutations in cis. HumMol Genet,2001,10(6):635-643
    [52] Yao, Y., D.D. Han, T. Zhang, et al. Quercetin improves cognitive deficits in rats with chroniccerebral ischemia and inhibits voltage-dependent sodium channels in hippocampal CA1pyramidal neurons. Phytother Res,2010,24(1):136-140
    [53] Higashi, H., J.R. Meno, A.S. Marwaha, et al. Hippocampal injury and neurobehavioraldeficits following hyperglycemic cerebral ischemia: effect of theophylline and ZM241385. JNeurosurg,2002,96(1):117-126
    [54] Zhang, L., F. Fu, X. Zhang, et al. Escin attenuates cognitive deficits and hippocampal injuryafter transient global cerebral ischemia in mice via regulating certain inflammatory genes.Neurochem Int,2010,57(2):119-127
    [55] Dekanski, D., V. Selakovic, V. Piperski, et al. Protective effect of olive leaf extract onhippocampal injury induced by transient global cerebral ischemia and reperfusion inMongolian gerbils. Phytomedicine,2011,18(13):1137-1143
    [56] Meno, J.R., H. Higashi, A.J. Cambray, et al. Hippocampal injury and neurobehavioral deficitsare improved by PD81,723following hyperglycemic cerebral ischemia. Exp Neurol,2003,183(1):188-196
    [57] Li, Z., Y. Wang, Y. Xie, et al. Protective effects of exogenous hydrogen sulfide on neurons ofhippocampus in a rat model of brain ischemia. Neurochem Res,2011,36(10):1840-1849
    [58] Xu, X., Z. Li, Z. Yang, et al. Decrease of synaptic plasticity associated with alteration ofinformation flow in a rat model of vascular dementia. Neuroscience,2012,206:136-143
    [59] Nozaki, H., K. Tanaka, S. Gomi, et al. Role of the ryanodine receptor in ischemic braindamage--localized reduction of ryanodine receptor binding during ischemia in hippocampusCA1. Cell Mol Neurobiol,1999,19(1):119-131
    [60] Pulsinelli, W.A. Selective neuronal vulnerability: morphological and molecularcharacteristics. Progress in brain research,1985,63:29-37
    [61] Crepel, V., J. Epsztein, and Y. Ben-Ari. Ischemia induces short-and long-term remodeling ofsynaptic activity in the hippocampus. J Cell Mol Med,2003,7(4):401-407
    [62] Schmidt-Kastner, R. and T.F. Freund. Selective vulnerability of the hippocampus in brainischemia. Neuroscience,1991,40(3):599-636
    [63] Walha, K., F. Ricolfi, Y. Bejot, et al. Hippocampus: A "Forgotten" Border Zone of BrainIschemia. J Neuroimaging,2011, doi:10.1111/j.1552-6569.2011.00610.x.
    [64]范文辉,李露斯,刘之荣.血管性痴呆的动物模型、神经病理及其胆碱能机制.中国临床康复2002,6(21):3172-3173
    [65]王守春,张昱,常明,等.慢性脑缺血痴呆大鼠神经细胞凋亡的研究.中国临床康复,2003,7(25):3412-3413
    [66]常明则,王新来,吴海琴,等.慢性脑缺血痴呆大鼠额叶细胞凋亡的研究.疑难病杂志,2008,7(11):648-650
    [67]刘汇波,叶翠飞,李斌,等.双侧颈总动脉结扎对大鼠学习记忆功能和海马组织形态学的影响.基础医学与临床,1998,18(04):54-58
    [68] Tay, A.S., L.F. Hu, M. Lu, et al. Hydrogen sulfide protects neurons against hypoxic injury viastimulation of ATP-sensitive potassium channel/protein kinase C/extracellularsignal-regulated kinase/heat shock protein90pathway. Neuroscience,2010,167(2):277-286
    [69] Wong, P.T.H., K. Qu, G.N. Chimon, et al. High plasma cyst(e)ine level may indicate poorclinical outcome in patients with acute stroke: possible involvement of hydrogen sulfide. JNeuropathol Exp Neurol,2006,65(2):109-115
    [70] Qu, K., C.P.L.H. Chen, B. Halliwell, et al. Hydrogen sulfide is a mediator of cerebralischemic damage. Stroke,2006,37(3):889-893
    [71] Hu, L.-F., M. Lu, P.T. Hon Wong, et al. Hydrogen sulfide: neurophysiology andneuropathology. Antioxid Redox Signal,2011,15(2):405-419
    [72]曾小鲁,辜清,戴惠娟.海马的形态结构与生理功能.生物学通报,1996,31(03):1-3
    [73] McAuliffe, J.J., L. Miles, and C.V. Vorhees. Adult neurological function following neonatalhypoxia-ischemia in a mouse model of the term neonate: water maze performance isdependent on separable cognitive and motor components. Brain Res,2006,1118(1):208-221
    [74] Oliveira, A.A., C.R.A. Nogueira, V.S. Nascimento, et al. Evaluation of levetiracetam effectson pilocarpine-induced seizures: cholinergic muscarinic system involvement. Neurosci Lett,2005,385(3):184-188
    [75]隋南,陈双双,匡培梓.海马结构、前额皮层或尾-壳核损毁对大鼠空间认知能力的影响.心理学报,1992,(04):415-421
    [76] Moser, M.B., E.I. Moser, E. Forrest, et al. Spatial learning with a minislab in the dorsalhippocampus. Proc Natl Acad Sci U S A,1995,92(21):9697-9701
    [77] Kumaran, D., M. Udayabanu, R.U. Nair, et al. Benzamide protects delayed neuronal deathand behavioural impairment in a mouse model of global cerebral ischemia. Behav Brain Res,2008,192(2):178-184
    [78] de Vasconcellos, A.P.S., A.I. Zugno, A.H.D.P. Dos Santos, et al. Na+,K(+)-ATPase activity isreduced in hippocampus of rats submitted to an experimental model of depression: effect ofchronic lithium treatment and possible involvement in learning deficits. Neurobiol LearnMem,2005,84(2):102-110
    [79] Pulsinelli, W.A. and T.E. Duffy. Regional energy balance in rat brain after transient forebrainischemia. J Neurochem,1983,40(5):1500-1503
    [80] Kirino, T., Y. Tsujita, and A. Tamura. Induced tolerance to ischemia in gerbil hippocampalneurons. J Cereb Blood Flow Metab,1991,11(2):299-307
    [81] Kirino, T. and K. Sano. Fine structural nature of delayed neuronal death following ischemiain the gerbil hippocampus. Acta Neuropathol,1984,62(3):209-218
    [82]贾健民,贾健平.啮齿动物全脑缺血模型和海马选择易损伤性研究进展.国外医学.脑血管疾病分册,1994,2(01):34-38
    [83]刘乃红,王锐,王晔,等. EphA4受体在大鼠前脑缺血/再灌注后海马CA1区神经元迟发性死亡中的作用观察.中国医疗前沿,2011,6(09):20-21
    [84]柴旭斌,刘兴波. MK801对大鼠脑缺血再灌注后海马CA1区c-fos基因表达及神经元凋亡的影响.生物技术通讯,2011,22(04):532-535
    [85]张旭,滕大才,徐铁军,等. NMDA受体2A亚单位mRNA和蛋白质在大鼠海马前脑缺血再灌注损伤中的变化.河北医药,2011,33(19):2894-2896
    [86]陈远寿,潘贵书,秦伟,等.促红细胞生成素上调海马pCREB表达和改善脑缺血小鼠认知功能.中国病理生理杂志,2011,27(04):722-726
    [87]孙绍骞,于春艳,刘玉和.大鼠大脑局部脑缺血周围区海马及大脑皮质CLIC4及14-3-3gamma蛋白的表达及其意义.中国老年学杂志,2012,32(01):106-108
    [88]李逸尘,姜信诚,景玉宏,等.大鼠脑缺血再灌注后海马CA1区血管内皮细胞生长因子与突触素的关系.兰州大学学报,2010,36(01):9-16
    [89]李爱丽,姚建华,朱洪权.大鼠全脑缺血再灌注额叶、海马、丘脑IGF-1的表达.中国老年学杂志,2011,31(18):3572-3573
    [90]萨丽波,李宇.海马区Bcl-2蛋白在新生大鼠脑缺血后的表达.沈阳医学院学报,2011,13(01):16-18
    [91]郭铁.慢性脑缺血老龄大鼠海马区突触素及NMDAR2B表达的研究.中国实用神经疾病杂志,2011,14(11):24-26
    [92]李艳伟,赵晋英,黄俊,等.脑缺血诱导大鼠皮层和海马二价金属离子转运体1表达增加的研究.神经解剖学杂志,2011,27(03):301-306
    [93]周丽,王绍博.短暂脑缺血发作内源性H2S及CBS检测的意义.中国实用医药,2009,4(23):20-21
    [94]邵建林,朱俊超,王俊科,等.胱硫醚β-合酶/硫化氢和血红素氧合酶-1/一氧化碳体系在大鼠脑缺血再灌注损伤中的作用.中华麻醉学杂志,2006,26(05):439-442
    [95]熊文欣,李文峰.硫化氢对脑缺血再灌注损伤大鼠血清及脑组织NO和NOS的影响.现代中西医结合杂志,2010,19(16):1971-1972
    [96]周银燕,邵建林,梁荣毕,等.内源性H2S和NO在大鼠脑缺血-再灌注损伤中的相互作用.昆明医学院学报,2010,31(10):31-36
    [97]任彩丽,李东亮,赵红岗,等.全脑缺血-再灌注大鼠脑组织内源性硫化氢的动态变化.中国脑血管病杂志,2008,5(04):177-181
    [98] Johansen, D., K. Ytrehus, and G.F. Baxter. Exogenous hydrogen sulfide (H2S) protectsagainst regional myocardial ischemia-reperfusion injury--Evidence for a role of K ATPchannels. Basic Res Cardiol,2006,101(1):53-60
    [99] Ji, Y., Q.-f. Pang, G. Xu, et al. Exogenous hydrogen sulfide postconditioning protects isolatedrat hearts against ischemia-reperfusion injury. Eur J Pharmacol,2008,587(1-3):1-7
    [100] Tripatara, P., N.S.A. Patel, M. Collino, et al. Generation of endogenous hydrogen sulfide bycystathionine gamma-lyase limits renal ischemia/reperfusion injury and dysfunction. LabInvest,2008,88(10):1038-1048
    [101] Xu, Z., G. Prathapasinghe, N. Wu, et al. Ischemia-reperfusion reducescystathionine-beta-synthase-mediated hydrogen sulfide generation in the kidney. Am JPhysiol Renal Physiol,2009,297(1): F27-35
    [102] Prathapasinghe, G.A., Y.L. Siow, and K. O. Detrimental role of homocysteine in renalischemia-reperfusion injury. Am J Physiol Renal Physiol,2007,292(5): F1354-1363
    [103] Jha, S., J.W. Calvert, M.R. Duranski, et al. Hydrogen sulfide attenuates hepaticischemia-reperfusion injury: role of antioxidant and antiapoptotic signaling. Am J PhysiolHeart Circ Physiol,2008,295(2): H801-806
    [104] Fu, Z., X. Liu, B. Geng, et al. Hydrogen sulfide protects rat lung from ischemia-reperfusioninjury. Life Sci,2008,82(23-24):1196-1202
    [105] Henderson, P.W., A.L. Weinstein, A.M. Sohn, et al. Hydrogen sulfide attenuates intestinalischemia-reperfusion injury when delivered in the post-ischemic period. J GastroenterolHepatol,2010,25(10):1642-1647
    [106] Bian, J.-S., Q.C. Yong, T.-T. Pan, et al. Role of hydrogen sulfide in the cardioprotectioncaused by ischemic preconditioning in the rat heart and cardiac myocytes. J Pharmacol ExpTher,2006,316(2):670-678
    [107] Elrod, J.W., J.W. Calvert, J. Morrison, et al. Hydrogen sulfide attenuates myocardialischemia-reperfusion injury by preservation of mitochondrial function. Proc Natl Acad Sci US A,2007,104(39):15560-15565
    [108] Sivarajah, A., M.C. McDonald, and C. Thiemermann. The production of hydrogen sulfidelimits myocardial ischemia and reperfusion injury and contributes to the cardioprotectiveeffects of preconditioning with endotoxin, but not ischemia in the rat. Shock,2006,26(2):154-161
    [109] Bliksoen, M., M.-L. Kaljusto, J. Vaage, et al. Effects of hydrogen sulphide onischaemia-reperfusion injury and ischaemic preconditioning in the isolated, perfused rat heart.Eur J Cardiothorac Surg,2008,34(2):344-349
    [110] Calvert, J.W., S. Jha, S. Gundewar, et al. Hydrogen sulfide mediates cardioprotectionthrough Nrf2signaling. Circ Res,2009,105(4):365-374
    [111] Sodha, N.R., R.T. Clements, J. Feng, et al. The effects of therapeutic sulfide on myocardialapoptosis in response to ischemia-reperfusion injury. Eur J Cardiothorac Surg,2008,33(5):906-913
    [112] Osipov, R.M., M.P. Robich, J. Feng, et al. Effect of hydrogen sulfide in a porcine model ofmyocardial ischemia-reperfusion: comparison of different administration regimens andcharacterization of the cellular mechanisms of protection. J Cardiovasc Pharmacol,2009,54(4):287-297
    [113] Gong, Q.-H., Q. Wang, L.-L. Pan, et al. Hydrogen sulfide attenuateslipopolysaccharide-induced cognitive impairment: a pro-inflammatory pathway in rats.Pharmacol Biochem Behav,2010,96(1):52-58
    [114] Lee, M., V. Tazzari, D. Giustarini, et al. Effects of hydrogen sulfide-releasing L-DOPAderivatives on glial activation: potential for treating Parkinson disease. J Biol Chem,2010,285(23):17318-17328
    [115] Nicholson, C.K. and J.W. Calvert. Hydrogen sulfide and ischemia-reperfusion injury.Pharmacol Res,2010,62(4):289-297
    [116] Henderson, P.W., A.L. Weinstein, J. Sung, et al. Hydrogen sulfide attenuatesischemia-reperfusion injury in in vitro and in vivo models of intestine free tissue transfer.Plast Reconstr Surg,2010,125(6):1670-1678
    [117] Kang, K., M. Zhao, H. Jiang, et al. Role of hydrogen sulfide in hepaticischemia-reperfusion-induced injury in rats. Liver Transpl,2009,15(10):1306-1314
    [118] Bos, E.M., H.G.D. Leuvenink, P.M. Snijder, et al. Hydrogen sulfide-inducedhypometabolism prevents renal ischemia/reperfusion injury. J Am Soc Nephrol,2009,20(9):1901-1905
    [119] D'Hooge, R. and P.P. De Deyn. Applications of the Morris water maze in the study oflearning and memory. Brain Res Brain Res Rev,2001,36(1):60-90
    [120] Khorshidahmad, T., K. Tabrizian, G. Vakilzadeh, et al. Interactive effects of a protein kinaseAII inhibitor and testosterone on spatial learning in the Morris water maze. Behav Brain Res,2012,228(2):432-439
    [121] Hosseini, M., H.A. Nemati Karimooy, M.A.R. Hadjzadeh, et al. Inducible nitric oxidesynthase inhibitor aminoguanidine, differently affects Morris water maze tasks ofovariectomized and naive female rats. Acta Physiol Hung,2011,98(4):421-432
    [122] Warner, T.A. and R.C. Drugan. Morris water maze performance deficit produced byintermittent swim stress is partially mediated by norepinephrine. Pharmacol Biochem Behav,2012,101(1):24-34
    [123] Miyoshi, E., E.C. Wietzikoski, M. Bortolanza, et al. Both the dorsal hippocampus and thedorsolateral striatum are needed for rat navigation in the Morris water maze. Behav BrainRes,2012,226(1):171-178
    [124] Samhan-Arias, A.K., M.A. Garcia-Bereguiain, and C. Gutierrez-Merino. Hydrogen sulfideis a reversible inhibitor of the NADH oxidase activity of synaptic plasma membranes.Biochem Biophys Res Commun,2009,388(4):718-722
    [125] Kimura, Y., Y.-I. Goto, and H. Kimura. Hydrogen sulfide increases glutathione productionand suppresses oxidative stress in mitochondria. Antioxid Redox Signal,12(1):1-13
    [126] Tyagi, N., K.S. Moshal, U. Sen, et al. H2S protects against methionine-induced oxidativestress in brain endothelial cells. Antioxid Redox Signal,2009,11(1):25-33
    [127] Ren, C., A. Du, D. Li, et al. Dynamic change of hydrogen sulfide during global cerebralischemia-reperfusion and its effect in rats. Brain Res,2010,1345:197-205
    [128] Yin, W.-L., J.-Q. He, B. Hu, et al. Hydrogen sulfide inhibits MPP(+)-induced apoptosis inPC12cells. Life Sci,2009,85(7-8):269-275
    [129] Cai, J., J. Du, Z.-h. Ge, et al. Effect of Kangxin Capsule on the expression of nerve growthfactors in parietal lobe of cortex and hippocampus CA1area of vascular dementia model rats.Chin J Integr Med,2006,12(4):292-296
    [130] Sabbatini, M., A. Catalani, C. Consoli, et al. The hippocampus in spontaneouslyhypertensive rats: an animal model of vascular dementia? Mech Ageing Dev,2002,123(5):547-559
    [131] Bergles, D.E., J.D. Roberts, P. Somogyi, et al. Glutamatergic synapses on oligodendrocyteprecursor cells in the hippocampus. Nature,2000,405(6783):187-191
    [132] Slezak, M., F.W. Pfrieger, and Z. Soltys. Synaptic plasticity, astrocytes and morphologicalhomeostasis. J Physiol Paris,2006,99(2-3):84-91
    [133]谭来勋,孙圣刚.星形胶质细胞调节突触可塑性机制的研究进展.卒中与神经疾病,2007,14(01):58-60
    [134]谢玉丰.神经胶质细胞与突触可塑性研究新进展.生理科学进展,2007,38(02):111-115
    [135] Hayashi, Y., H. Ishibashi, K. Hashimoto, et al. Potentiation of the NMDA receptor-mediatedresponses through the activation of the glycine site by microglia secreting soluble factors.Glia,2006,53(6):660-668
    [136] Lin, S.-c. and D.E. Bergles. Synaptic signaling between GABAergic interneurons andoligodendrocyte precursor cells in the hippocampus. Nat Neurosci,2004,7(1):24-32
    [137]方松,余化霖. Morris水迷宫实验中海马相关空间学习记忆的研究进展.国际病理科学与临床杂志,2010,30(04):321-326
    [138]韩太真.突触可塑性与长时程增强现象的研究进展.西安交通大学学报(医学版),2005,26(04):305-308
    [139] Bliss, T.V. and G.L. Collingridge. A synaptic model of memory: long-term potentiation inthe hippocampus. Nature,1993,361(6407):31-39
    [140] Voronin, L.L. and E. Cherubini."Presynaptic silence" may be golden. Neuropharmacology,2003,45(4):439-449
    [141] Squire, L.R., C.E.L. Stark, and R.E. Clark. The medial temporal lobe. Annu Rev Neurosci,2004,27:279-306
    [142] Bland, B.H., J. Bird, J. Jackson, et al. Medial septal modulation of the ascending brainstemhippocampal synchronizing pathways in the freely moving rat. Hippocampus,2006,16(1):11-19
    [143] Bragin, A., G. Jando, Z. Nadasdy, et al. Gamma (40-100Hz) oscillation in the hippocampusof the behaving rat. J Neurosci,1995,15(1Pt1):47-60
    [144] Buzsaki, G., L.W. Leung, and C.H. Vanderwolf. Cellular bases of hippocampal EEG in thebehaving rat. Brain Res,1983,287(2):139-171
    [145] Leung, L.W., F.H. Lopes da Silva, and W.J. Wadman. Spectral characteristics of thehippocampal EEG in the freely moving rat. Electroencephalogr Clin Neurophysiol,1982,54(2):203-219
    [146] Stumpf, C. The fast component in the electrical activity of rabbit's hippocampus.Electroencephalogr Clin Neurophysiol,1965,18:477-486
    [147] Leung, L.S. Fast (beta) rhythms in the hippocampus: a review. Hippocampus,1992,2(2):93-98
    [148] Canolty, R.T., E. Edwards, S.S. Dalal, et al. High gamma power is phase-locked to thetaoscillations in human neocortex. Science,2006,313(5793):1626-1628
    [149] Colgin, L.L., T. Denninger, M. Fyhn, et al. Frequency of gamma oscillations routes flow ofinformation in the hippocampus. Nature,2009,462(7271):353-357
    [150] Soltesz, I. and M. Deschenes. Low-and high-frequency membrane potential oscillationsduring theta activity in CA1and CA3pyramidal neurons of the rat hippocampus underketamine-xylazine anesthesia. J Neurophysiol,1993,70(1):97-116
    [151] Jensen, O. and J.E. Lisman. Hippocampal sequence-encoding driven by a corticalmulti-item working memory buffer. Trends Neurosci,2005,28(2):67-72
    [152] Jensen, O. and L.L. Colgin. Cross-frequency coupling between neuronal oscillations. TrendsCogn Sci,2007,11(7):267-269
    [153] Lisman, J.E. and M.A. Idiart. Storage of7+/-2short-term memories in oscillatorysubcycles. Science,1995,267(5203):1512-1515
    [154] Senior, T.J., J.R. Huxter, K. Allen, et al. Gamma oscillatory firing reveals distinctpopulations of pyramidal cells in the CA1region of the hippocampus. J Neurosci,2008,28(9):2274-2286
    [155] Csicsvari, J., B. Jamieson, K.D. Wise, et al. Mechanisms of gamma oscillations in thehippocampus of the behaving rat. Neuron,2003,37(2):311-322
    [156]王奎,许琳,严明,等.海马θ振荡的研究进展.生理科学进展,2008,39(04):331-334
    [157] Brun, V.H., S. Leutgeb, H.-Q. Wu, et al. Impaired spatial representation in CA1after lesionof direct input from entorhinal cortex. Neuron,2008,57(2):290-302
    [158] Brun, V.H., M.K. Otnass, S. Molden, et al. Place cells and place recognition maintained bydirect entorhinal-hippocampal circuitry. Science,2002,296(5576):2243-2246
    [159] Fyhn, M., S. Molden, M.P. Witter, et al. Spatial representation in the entorhinal cortex.Science,2004,305(5688):1258-1264
    [160] Hafting, T., M. Fyhn, S. Molden, et al. Microstructure of a spatial map in the entorhinalcortex. Nature,2005,436(7052):801-806
    [161] Tort, A.B.L., R.W. Komorowski, J.R. Manns, et al. Theta-gamma coupling increases duringthe learning of item-context associations. Proc Natl Acad Sci U S A,2009,106(49):20942-20947
    [162] Axmacher, N., M.M. Henseler, O. Jensen, et al. Cross-frequency coupling supportsmulti-item working memory in the human hippocampus. Proc Natl Acad Sci U S A,2010,107(7):3228-3233
    [163] D'Esposito, M. From cognitive to neural models of working memory. Philos Trans R SocLond B Biol Sci,2007,362(1481):761-772
    [164] Fuster, J.M. Cortical dynamics of memory. Int J Psychophysiol,2000,35(2-3):155-164
    [165] Ranganath, C. Working memory for visual objects: complementary roles of inferiortemporal, medial temporal, and prefrontal cortex. Neuroscience,2006,139(1):277-289
    [166] Jones, M.W. and M.A. Wilson. Theta rhythms coordinate hippocampal-prefrontalinteractions in a spatial memory task. PLoS Biol,2005,3(12): e402
    [167] Hyman, J.M., E.A. Zilli, A.M. Paley, et al. Medial prefrontal cortex cells show dynamicmodulation with the hippocampal theta rhythm dependent on behavior. Hippocampus,2005,15(6):739-749
    [168] Siapas, A.G., E.V. Lubenov, and M.A. Wilson. Prefrontal phase locking to hippocampaltheta oscillations. Neuron,2005,46(1):141-151
    [169] Yamamoto, Y., N. Shioda, F. Han, et al. Nobiletin improves brain ischemia-induced learningand memory deficits through stimulation of CaMKII and CREB phosphorylation. Brain Res,2009,1295:218-229
    [170] Gasparova, Z., P. Jariabka, and S. Stolc. Effect of transient ischemia on long-termpotentiation of synaptic transmission in rat hippocampal slices. Neuro Endocrinol Lett,2008,29(5):702-705
    [171] Thomson, M.A., M.H. Pellet-Gondret, F. Willig, et al. Effects of unilateral cerebral ischemiaon the hippocampal theta depth profile in the ether-anesthetized Mongolian gerbil. ExpNeurol,1988,99(1):225-233
    [172] Kasaba, T., Y. Saito, S. Sakura, et al. The effects of thiamylal, ketamine and nicardipine onthe hippocampal theta waves produced by cerebral ischemia in cats. Masui,1990,39(7):870-876
    [173] Monmaur, P., M. Allix, D. Schoevaert-Brossault, et al. Effects of transient cerebral ischemiaon the hippocampal dentate theta (theta) profile in the acute rat: a study4-5monthsfollowing recirculation. Brain Res,1990,508(1):124-134
    [174] Lou, W., J. Xu, H. Sheng, et al. Multichannel linear descriptors analysis for event-relatedEEG of vascular dementia patients during visual detection task. Clin Neurophysiol,2011,122(11):2151-2156
    [175] Erkinjuntti, T., T. Larsen, R. Sulkava, et al. EEG in the differential diagnosis betweenAlzheimer's disease and vascular dementia. Acta Neurol Scand,1988,77(1):36-43
    [176] Signorino, M., E. Pucci, E. Brizioli, et al. EEG power spectrum typical of vascular dementiain a subgroup of Alzheimer patients. Arch Gerontol Geriatr,1996,23(2):139-151
    [177] Kida, K., M. Yamada, K. Tokuda, et al. Inhaled hydrogen sulfide preventsneurodegeneration and movement disorder in a mouse model of Parkinson's disease.Antioxid Redox Signal,2011,15(2):343-352
    [178] Liu, Y.-Y. and J.-S. Bian. Hydrogen sulfide protects amyloid-beta induced cell toxicity inmicroglia. J Alzheimers Dis,2010,22(4):1189-1200
    [179]唐建民,刘振伟,丁爱石,等.海马脑片缺氧损伤电位机制的研究.中国应用生理学杂志,1996,12(2):165-169
    [180] Tominaga, S., S. Satoh, H. Nagase, et al. Hypergastric acid secretion in rats withventromedial hypothalamic lesions. Physiol Behav,1993,53(6):1177-1182
    [181] Duzel, E., W.D. Penny, and N. Burgess. Brain oscillations and memory. Curr OpinNeurobiol,2010,20(2):143-149
    [182] Colgin, L.L. and E.I. Moser. Gamma oscillations in the hippocampus. Physiology(Bethesda),2010,25(5):319-329
    [183] Buzsaki, G. Theta oscillations in the hippocampus. Neuron,2002,33(3):325-340
    [184] Malenka, R.C. and R.A. Nicoll. Long-term potentiation--a decade of progress? Science,1999,285(5435):1870-1874
    [185] Malenka, R.C. and M.F. Bear. LTP and LTD: an embarrassment of riches. Neuron,2004,44(1):5-21
    [186] Routtenberg, A., I. Cantallops, S. Zaffuto, et al. Enhanced learning after geneticoverexpression of a brain growth protein. Proc Natl Acad Sci U S A,2000,97(13):7657-7662
    [187] Nagasawa, K., T. Tarui, S. Yoshida, et al. Hydrogen sulfide evokes neurite outgrowth andexpression of high-voltage-activated Ca2+currents in NG108-15cells: involvement of T-typeCa2+channels. J Neurochem,2009,108(3):676-684
    [188] Benowitz, L.I., N.I. Perrone-Bizzozero, R.L. Neve, et al. GAP-43as a marker for structuralplasticity in the mature CNS. Progress in brain research,1990,86309-320
    [189] Kombian, S.B., R.J. Reiffenstein, and W.F. Colmers. The actions of hydrogen sulfide ondorsal raphe serotonergic neurons in vitro. J Neurophysiol,1993,70(1):81-96
    [190] Lee, S.W., Y.-S. Hu, L.-F. Hu, et al. Hydrogen sulphide regulates calcium homeostasis inmicroglial cells. Glia,2006,54(2):116-124
    [191] Lu, M., C.H. Choo, L.-F. Hu, et al. Hydrogen sulfide regulates intracellular pH in ratprimary cultured glia cells. Neurosci Res,2010,66(1):92-98
    [192] Osipova, D., A. Takashima, R. Oostenveld, et al. Theta and gamma oscillations predictencoding and retrieval of declarative memory. J Neurosci,2006,26(28):7523-7531
    [193] Lisman, J. The theta/gamma discrete phase code occuring during the hippocampal phaseprecession may be a more general brain coding scheme. Hippocampus,2005,15(7):913-922
    [194] Uhlhaas, P.J., C. Haenschel, D. Nikolic, et al. The role of oscillations and synchrony incortical networks and their putative relevance for the pathophysiology of schizophrenia.Schizophr Bull,2008,34(5):927-943
    [195] Kahana, M.J. The cognitive correlates of human brain oscillations. J Neurosci,2006,26(6):1669-1672
    [196] Kirov, R., C. Weiss, H.R. Siebner, et al. Slow oscillation electrical brain stimulation duringwaking promotes EEG theta activity and memory encoding. Proc Natl Acad Sci U S A,2009,106(36):15460-15465
    [197] Penttonen, M., A. Kamondi, L. Acsady, et al. Gamma frequency oscillation in thehippocampus of the rat: intracellular analysis in vivo. Eur J Neurosci,1998,10(2):718-728
    [198] Sabolek, H.R., S.C. Penley, J.R. Hinman, et al. Theta and gamma coherence along theseptotemporal axis of the hippocampus. J Neurophysiol,2009,101(3):1192-1200
    [199] Yener, G.G., B. Guntekin, A. Oniz, et al. Increased frontal phase-locking of event-relatedtheta oscillations in Alzheimer patients treated with cholinesterase inhibitors. Int JPsychophysiol,2007,64(1):46-52
    [200] Ford, J.M., B.J. Roach, R.S. Hoffman, et al. The dependence of P300amplitude on gammasynchrony breaks down in schizophrenia. Brain Res,2008,1235:133-142
    [201] Baccala, L.A. and K. Sameshima. Partial directed coherence: a new concept in neuralstructure determination. Biol Cybern,2001,84(6):463-474
    [202] Winterhalder, M., B. Schelter, W. Hesse, et al. Comparison directed of linear signalprocessing techniques to infer interactions in multivariate neural systems. Signal Process,2005,85(11):2137-2160
    [203] Baccala, L.A., K. Sameshima, and D.Y. Takahashi. Generalized partial directed coherence.Proceedings of the200715th International Conference on Digital Signal Processing,2007,163-166
    [204] Smirnov, D., B. Schelter, M. Winterhalder, et al. Revealing direction of coupling betweenneuronal oscillators from time series: phase dynamics modeling versus partial directedcoherence. Chaos,2007,17(1):013111
    [205] Hasselmo, M.E. What is the function of hippocampal theta rhythm?--Linking behavioraldata to phasic properties of field potential and unit recording data. Hippocampus,2005,15(7):936-949
    [206] Hakami, T., N.C. Jones, E.A. Tolmacheva, et al. NMDA receptor hypofunction leads togeneralized and persistent aberrant gamma oscillations independent of hyperlocomotion andthe state of consciousness. PLoS One,2009,4(8): e6755
    [207] Carlen, M., K. Meletis, J.H. Siegle, et al. A critical role for NMDA receptors in parvalbumininterneurons for gamma rhythm induction and behavior. Mol Psychiatry,2011,doi:10.1038/mp.2011.31.
    [208] Masuoka, T. and C. Kamei. The ameliorating effects of NMDA receptor agonists onhistamine H1antagonist-induced memory and hippocampal theta disruptions are preventedby the H3receptor agonist in rats. Brain Res Bull,2009,79(6):422-425
    [209] Zhang, M., C. Zheng, M. Quan, et al. Directional indicator on neural oscillations as ameasure of synaptic plasticity in chronic unpredictable stress rats. Neurosignals,2011,19(4):189-197
    [210] Zetter, B.R. Angiogenesis and tumor metastasis. Annu Rev Med,1998,49:407-424
    [211] Folkman, J. Tumor angiogenesis: therapeutic implications. N Engl J Med,1971,285(21):1182-1186
    [212] Folkman, J. Anti-angiogenesis: new concept for therapy of solid tumors. Ann Surg,1972,175(3):409-416
    [213] Shing, Y., J. Folkman, R. Sullivan, et al. Heparin affinity: purification of a tumor-derivedcapillary endothelial cell growth factor. Science,1984,223(4642):1296-1299
    [214] Folkman, J. and M. Klagsbrun. Angiogenic factors. Science,1987,235(4787):442-447
    [215] Sidky, Y.A. and R. Auerbach. Lymphocyte-induced angiogenesis in tumor-bearing mice.Science,1976,192(4245):1237-1238
    [216] Polverini, P.J., P.S. Cotran, M.A. Gimbrone, Jr., et al. Activated macrophages inducevascular proliferation. Nature,1977,269(5631):804-806
    [217] Miguez, M., L. Davel, and E.S. de Lustig. Lymphocyte-induced angiogenesis: correlationwith the metastatic incidence of two murine mammary adenocarcinomas. InvasionMetastasis,1986,6(5):313-320
    [218] Meininger, C.J. and B.R. Zetter. Mast cells and angiogenesis. Semin Cancer Biol,1992,3(2):73-79
    [219] Freeman, M.R., F.X. Schneck, M.L. Gagnon, et al. Peripheral blood T lymphocytes andlymphocytes infiltrating human cancers express vascular endothelial growth factor: apotential role for T cells in angiogenesis. Cancer Res,1995,55(18):4140-4145
    [220] Fernig, D.G. and J.T. Gallagher. Fibroblast growth factors and their receptors: aninformation network controlling tissue growth, morphogenesis and repair. Prog GrowthFactor Res,1994,5(4):353-377
    [221] Dvorak, H.F., L.F. Brown, M. Detmar, et al. Vascular permeability factor/vascularendothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol,1995,146(5):1029-1039
    [222] Claffey, K.P. and G.S. Robinson. Regulation of VEGF/VPF expression in tumor cells:consequences for tumor growth and metastasis. Cancer Metastasis Rev,1996,15(2):165-176
    [223] Harris, A.L. Hypoxia--a key regulatory factor in tumour growth. Nat Rev Cancer,2002,2(1):38-47
    [224] Pugh, C.W. and P.J. Ratcliffe. Regulation of angiogenesis by hypoxia: role of the HIFsystem. Nat Med,2003,9(6):677-684
    [225] Kewley, R.J., M.L. Whitelaw, and A. Chapman-Smith. The mammalian basichelix-loop-helix/PAS family of transcriptional regulators. Int J Biochem Cell Biol,2004,36(2):189-204
    [226] Shchors, K. and G. Evan. Tumor angiogenesis: cause or consequence of cancer? Cancer Res,2007,67(15):7059-7061
    [227] Forsythe, J.A., B.H. Jiang, N.V. Iyer, et al. Activation of vascular endothelial growth factorgene transcription by hypoxia-inducible factor1. Mol Cell Biol,1996,16(9):4604-4613
    [228] Kelly, B.D., S.F. Hackett, K. Hirota, et al. Cell type-specific regulation of angiogenicgrowth factor gene expression and induction of angiogenesis in nonischemic tissue by aconstitutively active form of hypoxia-inducible factor1. Circ Res,2003,93(11):1074-1081
    [229] Calvani, M., A. Rapisarda, B. Uranchimeg, et al. Hypoxic induction of anHIF-1alpha-dependent bFGF autocrine loop drives angiogenesis in human endothelial cells.Blood,2006,107(7):2705-2712
    [230]杨健,陈增良.血管新生与肿瘤生长的研究进展.浙江大学学报(医学版),2001,30(04):189-192
    [231] Kargiotis, O., C. Chetty, C.S. Gondi, et al. Adenovirus-mediated transfer of siRNA againstMMP-2mRNA results in impaired invasion and tumor-induced angiogenesis, inducesapoptosis in vitro and inhibits tumor growth in vivo in glioblastoma. Oncogene,2008,27(35):4830-4840
    [232] Ezhilarasan, R., U. Jadhav, I. Mohanam, et al. The hemopexin domain of MMP-9inhibitsangiogenesis and retards the growth of intracranial glioblastoma xenograft in nude mice. IntJ Cancer,2009,124(2):306-315
    [233] de Oliveira, M.S., G. Cechim, E. Braganhol, et al. Anti-proliferative effect of thegastrin-release peptide receptor antagonist RC-3095plus temozolomide in experimentalglioblastoma models. J Neurooncol,2009,93(2):191-201
    [234] Grobben, B., P.P. De Deyn, and H. Slegers. Rat C6glioma as experimental model systemfor the study of glioblastoma growth and invasion. Cell Tissue Res,2002,310(3):257-270
    [235] Wang, Y.-Y., S.-C. Liu, Z. Yang, et al. Impaired hippocampal synaptic plasticity in C6glioma-bearing rats. J Neurooncol,2011,103(3):469-477
    [236] Kirsch, M., J. Strasser, R. Allende, et al. Angiostatin suppresses malignant glioma growth invivo. Cancer Res,1998,58(20):4654-4659
    [237] Wasita, B., H. Kamitani, Y. Kinoshita, et al. A rat glioblastoma model with diffuseleptomeningeal gliomatosis induced by intracarotid injection of C6glioma cells. Neurol Res,2009,31(5):453-462
    [238] Morrone, F.B., D.L. Oliveira, P. Gamermann, et al. In vivo glioblastoma growth is reducedby apyrase activity in a rat glioma model. BMC Cancer,2006,6:226
    [239] Bouterfa, H., T. Picht, D. Kess, et al. Retinoids inhibit human glioma cell proliferation andmigration in primary cell cultures but not in established cell lines. Neurosurgery,2000,46(2):419-430
    [240] Bengtson, N.W. and D.I. Linzer. Inhibition of tumor growth by the antiangiogenic placentalhormone, proliferin-related protein. Mol Endocrinol,2000,14(12):1934-1943
    [241] Saleh, M., A. Wiegmans, Q. Malone, et al. Effect of in situ retroviral interleukin-4transferon established intracranial tumors. J Natl Cancer Inst,1999,91(5):438-445
    [242] Keunen, O., M. Johansson, A. Oudin, et al. Anti-VEGF treatment reduces blood supply andincreases tumor cell invasion in glioblastoma. Proc Natl Acad Sci U S A,108(9):3749-3754
    [243] Auguste, P., D.B. Gursel, S. Lemiere, et al. Inhibition of fibroblast growth factor/fibroblastgrowth factor receptor activity in glioma cells impedes tumor growth by bothangiogenesis-dependent and-independent mechanisms. Cancer Res,2001,61(4):1717-1726
    [244] Farrell, C.L., P.A. Stewart, and R.F. Del Maestro. A new glioma model in rat: the C6spheroid implantation technique permeability and vascular characterization. J Neurooncol,1987,4(4):403-415
    [245] San-Galli, F., P. Vrignaud, J. Robert, et al. Assessment of the experimental model oftransplanted C6glioblastoma in Wistar rats. J Neurooncol,1989,7(3):299-304
    [246] Auer, R.N., R.F. Del Maestro, and R. Anderson. A simple and reproducible experimental invivo glioma model. Can J Neurol Sci,1981,8(4):325-331
    [247] Whittle, I.R., D.C. Macarthur, G.P. Malcolm, et al. Can experimental models of rodentimplantation glioma be improved? A study of pure and mixed glioma cell line tumours. JNeurooncol,1998,36(3):231-242
    [248] Qipshidze, N., N. Metreveli, P.K. Mishra, et al. Hydrogen Sulfide Mitigates CardiacRemodeling During Myocardial Infarction via Improvement of Angiogenesis. Int J Biol Sci,2012,8(4):430-441
    [249] Papapetropoulos, A., A. Pyriochou, Z. Altaany, et al. Hydrogen sulfide is an endogenousstimulator of angiogenesis. Proc Natl Acad Sci U S A,2009,106(51):21972-21977
    [250] Wang, M.-J., W.-J. Cai, N. Li, et al. The hydrogen sulfide donor NaHS promotesangiogenesis in a rat model of hind limb ischemia. Antioxid Redox Signal,2010,12(9):1065-1077
    [251] Mamun, M.H., H. Kamitani, Y. Kinoshita, et al. Cerebral ischemia promotes richpseudopalisading necrosis in the rat c6glioblastoma model. Neurol Med Chir (Tokyo),2009,49(7):294-299
    [252] Weidner, N. Intratumor microvessel density as a prognostic factor in cancer. Am J Pathol,1995,147(1):9-19
    [253] Givvimani, S., C. Munjal, R. Gargoum, et al. Hydrogen sulfide mitigates transition fromcompensatory hypertrophy to heart failure. J Appl Physiol,2011,110(4):1093-1100
    [254] Wang, T.-C., I.-T. Hsiao, Y.-K. Cheng, et al. Noninvasive monitoring of tumor growth in arat glioma model: comparison between neurological assessment and animal imaging. JNeurooncol,2011,104(3):669-678
    [255] Wippold, F.J.,2nd, M. Lammle, F. Anatelli, et al. Neuropathology for the neuroradiologist:palisades and pseudopalisades. AJNR Am J Neuroradiol,2006,27(10):2037-2041
    [256] Mathai, J.C., A. Missner, P. Kugler, et al. No facilitator required for membrane transport ofhydrogen sulfide. Proc Natl Acad Sci U S A,2009,106(39):16633-16638
    [257] Whitfield, N.L., E.L. Kreimier, F.C. Verdial, et al. Reappraisal of H2S/sulfide concentrationin vertebrate blood and its potential significance in ischemic preconditioning and vascularsignaling. Am J Physiol Regul Integr Comp Physiol,2008,294(6): R1930-1937
    [258] Hu, L.-F., M. Lu, Z.-Y. Wu, et al. Hydrogen sulfide inhibits rotenone-induced apoptosis viapreservation of mitochondrial function. Mol Pharmacol,2009,75(1):27-34
    [259] Lee, M., C. Schwab, S. Yu, et al. Astrocytes produce the antiinflammatory andneuroprotective agent hydrogen sulfide. Neurobiol Aging,2009,30(10):1523-1534
    [260] Assimakopoulou, M., G. Sotiropoulou-Bonikou, T. Maraziotis, et al. Microvessel density inbrain tumors. Anticancer Res,1997,17(6D):4747-4753
    [261] Liu, X., L. Pan, Y. Zhuo, et al. Hypoxia-inducible factor-1alpha is involved in thepro-angiogenic effect of hydrogen sulfide under hypoxic stress. Biol Pharm Bull,2010,33(9):1550-1554
    [262] Gillespie, D.L., K. Whang, B.T. Ragel, et al. Silencing of hypoxia inducible factor-1alphaby RNA interference attenuates human glioma cell growth in vivo. Clin Cancer Res,2007,13(8):2441-2448
    [263] Ryan, H.E., M. Poloni, W. McNulty, et al. Hypoxia-inducible factor-1alpha is a positivefactor in solid tumor growth. Cancer Res,2000,60(15):4010-4015
    [264] Kaur, B., F.W. Khwaja, E.A. Severson, et al. Hypoxia and the hypoxia-inducible-factorpathway in glioma growth and angiogenesis. Neuro Oncol,2005,7(2):134-153
    [265]姚强.基质金属蛋白酶及其与恶性肿瘤的关系.中外医疗,2010(06):181
    [266] Xiao, M., N.-X. Zhou, Z.-Q. Huang, et al. The ratio of MMP-2to TIMP-2in hilarcholangiocarcinoma: a semi-quantitative study. Hepatobiliary Pancreat Dis Int,2004,3(4):599-602
    [267] Rojiani, M.V., J. Alidina, N. Esposito, et al. Expression of MMP-2correlates with increasedangiogenesis in CNS metastasis of lung carcinoma. Int J Clin Exp Pathol,2010,3(8):775-781

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700