三自由度空间柔性并联机器人动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柔性机器人、并联机器人是机器人领域中的两个前沿课题。由于柔性串联机器人满足了现代工业在轻质、高精度和高加速度运动等方面的要求,近三十多年来得到了快速发展。并联机器人具有运动惯量小、刚度大、运动精度高等优点,与串联机器人在结构和性能方面形成互补关系,从而扩大了机器人的应用范围。随着对机器人在高精度、高效率等方面要求的不断提高,同时具有柔性机器人和并联机器人两方面特点的柔性并联机器人将成为机器人领域的一个新方向。因此,进行这方面的研究具有重要的理论意义和实用价值。
     本文将并联机器人与柔性机器人有机地结合起来,以具有柔性构件的三自由度空间并联机器人为分析对象,全面研究诸如动力学建模与分析、虚拟样机仿真、动态特性和优化设计、运动规划和动力规划等空间柔性并联机器人动力学分析和综合方面的问题。
     首先,进行了具有柔性构件的空间并联机器人的动力学建模和求解。建立了一种空间柔性梁单元模型,推导了柔性梁单元的动力学方程和并联机器人支链的动力学方程。利用系统运动学约束和动力学约束,装配支链的动力学方程得到柔性并联机器人的系统动力学方程。讨论了柔性并联机器人动力学方程的求解,并通过数值算例分析了动平台的动力学响应。
     其次,进行了柔性并联机器人的虚拟样机仿真。以SAMCEF软件为平台,分别建立了3-RRS、3-RSR和3-RRC柔性并联机器人的虚拟样机。分析了这些柔性并联机器人的位移误差、速度、加速度和动应力等的变化情况。通过数值计算结果和SAMCEF软件仿真结果的对比,验证了本文所建动力学模型的有效性和正确性。
     再次,开展了柔性并联机器人的动态特性分析和机构优化设计的研究。分析了柔性并联机构系统的固有频率与设计参数的关系。由此,提出了基于系统固有频率的机构优化设计模型,以运动误差、动应力等为约束条件,进行了构件参数的结构优化设计。
     最后,分别进行了柔性并联机器人系统的输入运动规划和动力规划。通过柔性并联机器人的初始位形选择和输入运动规划,达到了降低系统运动误差的目的;通过柔性并联机器人系统的动力规划,降低了系统驱动力矩的波动。
The study of flexible robots and parallel manipulators are two important components and advanced topics of robotics. Over the past three decades, the flexible serial robot has developed rapidly due to its light weight, high accuracy and high-acceleration motion, which met the requirements of the development of modern industry. The parallel manipulators provide a new way to improve the performance of robots in terms of lower inertia, higher stiffness and accuracy. Due to the complement to the serial robots in structure and performance, as a result, the application of robot is extended. With the increasing requirements of high precision and high efficiency, the flexible parallel manipulator characterized by both the flexible robot and the parallel manipulator will be a new hot topic in robotics research. Therefore, the research on the flexible parallel manipulator is of great theoretical significance and practical value.
     In this dissertation, the parallel manipulators and the flexible robots were combined, and the 3-DOF (Degree Of Freedom) spatial parallel manipulators with flexible links were investigated. The dynamic analysis and synthesis of the flexible parallel manipulators, such as dynamic modeling and analysis, virtual prototype simulation, dynamic characteristic and optimal design, and kinematic/dynamic planning etc, were studied and discussed in a comprehensive manner.
     Firstly, the dynamic modeling and solution of the spatial parallel manipulators with flexible links were studied. A model of spatial flexible beam element was proposed, and the dynamic equations of elements and branches of the parallel manipulator were derived. Using the kinematic and dynamic constraint equations of the parallel manipulator, the overall system dynamic equations of the parallel manipulator were obtained by assembling the dynamic equations of branches. The dynamic responses of the moving platform were analyzed through numerical simulation.
     Secondly, the virtual prototype simulation of spatial flexible parallel manipulator was derived. The virtual prototypes of 3-RRS, 3-RSR and 3-RRC flexible parallel manipulator were established on the basis of the SAMCEF software, respectively. The displacement error, velocity, acceleration and dynamic stress of these flexible parallel manipulators were analyzed. The comparison results of the numerical simulation and SAMCEF software showed that the effectiveness and correctness of the dynamic models proposed in this dissertation.
     Thirdly, the dynamic characteristics of the flexible parallel manipulator and design optimization of the parallel mechanism were furtherly investigated. The relationship of the natural frequency and design parameters of the parallel mechanism were studied. Then, the optimal design model of the flexible parallel manipulator based on natural frequency of the system was derived. The motion errors and dynamic stresses are regarded as constraints, and the optimal design of the links parameters was carried out to obtain the parallel mechanism with optimal comprehensive performance.
     Finally, the input motion programming and dynamic planning of the flexible parallel manipulators were discussed, respectively. The input motion programming and initial configuration selection were applied to decrease the motion error of the moving platform. The dynamic planning was applied to decrease the fluctuation of driving torques.
引文
1黄真,赵永生,赵铁石.高等空间机构学.北京:高等教育出版社, 2006:1~300.
    2黄真,孔令富,方跃法.并联机器人机构学理论及控制.北京:机械工业出版社, 1997:1~350
    3 Jorge Angeles著,宋伟刚译.机器人机械系统原理理论、方法和算法.北京:机械工业出版社, 2004:15~268.
    4 Gao Feng, Li Weimin, Zhao Xianchao, etal. New Kinematic Structures for 2-, 3-, 4-, and
    5-DOF Parallel Manipulator Designs. Mechanism and Machine Theory. 2002, 37(11):1395~1411
    5杨廷力.机器人机构拓扑结构学.北京:机械工业出版社, 2004:1~120
    6 C. Innocenti, V. P. Castelli. Forward Kinematics of the General 6-6 Fully Parallel Mechanism: An Exhaustive Numerical Approach via a Mono-Dimensional-Search Algorithm. ASME Journal of Mechanical Design, 1993,115(1):932~937
    7 J. P. Merlet. Parallel Manipulators:Kinamatics, Singular Configurations and Compliance. Pro.
    3rd Conf. on Advanced Robotics. Le Chesnay, France, Inst. Nat. Recherchet Inf. Autom., 1987:126~135
    8 M. Raghavan. The Stewart Platform of General Geometry Has 40 Configurations. Trans. ASME, Journal Mechanical Design. 1993,115:277~282
    9 M. L. Husty. An Algorithm for Solving the Direct Kinematics of General Stewart-Gough Platforms. Mechanism and Machine Theory, 1996,31(4):365~379
    10曲义远,黄真.空间六自由度并联机构位置的三维搜索方法.机器人, 1989,3(5):25~29
    11陈永,严静.同伦迭代法及应用于一般6-SPS并联机器人机构正位置问题.机械科学与技术, 1997,16(2):189~194
    12李维嘉.六自由度并联运动机构正向解的研究.华中理工大学学报, 1997,25(4):38~40
    13刘安心,杨廷力.求一般6-SPS并联机器人机构的全部位置正解.机械科学与技术, 1996,15(4):543~546
    14甘东明,廖启征,王品,魏世民.新型6-CCS并联机器人机构的运动学正解及仿真.中国机械工程, 2007,18(24):2903~2906
    15陈学生,陈在礼,孔民秀.并联机器人研究的进展与现状.机器人, 2002,112(9):464~470
    16 Carlo Innocenti, Vicenzo Parenti-Castelli. Direct Position Analysis of the Stewart Platform Mechanism. Mechanism and Machine Theory, 1990,25(6):611~621
    17 J. C. Faugère, D. Lazard. Combinatorial Classes of Parallel Manipulators. Mech. and Mach.Theory, 1995,30(6):765~776
    18梁崇高,荣辉.一种Stewart平台机械手位移正解.机械工程学报, 1991,27(2):26~30
    19 Wen Fuan, C. G. Liang. Displacement Analysis of the 6-6 Stewart Platform Mechanisms. Mechanism and Machine Theory, 1994,29(4):547~557
    20文福安,李静宜,梁崇高.一般6-6型平台并联机器人机构位置正解.机械科学与技术, 1993,5(1):41~47
    21饶青,陈宁新,白师贤. 6-6型Stewart并联机器人的正向位移分析.机械科学与技术, 1994,51(3):46~52
    22赵铁石,黄真.一种新型四自由度并联平台机构及其位置分析.机械科学与技术, 2000,19(6):927~929
    23范守文,徐礼钜,周肇飞.基于数学—符号法的空间4自由度并联机构位置正解.机械工程学报, 2002,38(9):57~60
    24宋伟刚,张国伟.基于径向基函数神经网络的并联机器人运动学正解问题.东北大学学报, 2004,25(4):386~389
    25 K. Han, Y. Hung, W. Y. Youm. New Resolution Scheme of the Forward Kinematics of Parallel Manipulators Using Extra Sensors. ASME Journal of Mechanical Design, 1996,118(1):214~219
    26 I. A. Ryu J. Bonev. A New Method for Solving the Direct Kinematics of General 6-6 Stewart Platform Using Three Linear Extra Sensors. Mechanism and Machine Theory, 2000,35(1): 423~436
    27黄真,孔宪文.具有冗余度空间并联机构的运动分析.机械工程学报, 1995,31(3):44~50
    28王洪波,黄真.六自由度并联机器人的拉格朗日方程.机器人, 1990,90(1):23~26
    29夏富杰.空间并联机构运动分析的有限元法.机械科学与技术, 1998,17(1):60~62
    30黄田,李江.空间机构运动学的网络分析方法.天津大学学报, 1995,28(5):600~604
    31 E. F. Fichter. A Stewart Platform Based Manipulator: General Theory and Practical Construction. The International Journal of Robotics Research, 1986,5(2):157~182
    32 W. Q. D. Do, D. C. H. Yang. Inverse Dynamic Analysis and Simulation of a Platform Type of Robot. Journal of Robotic Systems, 1988,5(3):209~227
    33 Z. Geng, L. S. Haynes, J. D. Lee, et al. On the Dynamic Model and Kinematic Analysis of a Class of Stewart Platforms . Robotics and Autonomous Systems, 1992,9(4):237~254
    34 Bhaskar Dasgupta, T. S. Mruthyunjaya. A Newton-Euler Formulation for the Inverse Dynamics of the Stewart Platform Manipulator. Mechanism and Machine Theory, 1998,33(8):1135~1152
    35 Bhaskar Dasgupta, T. S. Mruthyunjaya. Closed-Form Dynamic Equations of the General Stewart Platform through the Newton–Euler Approach . Mechanism and Machine Theory, 1998,33(7):993~1012
    36 A. Codourey. Dynamic Modeling of Parallel Robots for Computed-Torque Control Implementation . The International Journal of Robots Research, 1998,17(12):12~18
    37 Bhaskar Dasgupta, Prasun Choudhury. A General Strategy Based on the Newton-Euler Approach for the Dynamic Formulation of Parallel Manipulators. Mechanism and Machine Theory, 1999,34(6):801~824
    38 J. G. Wang, C. M. Gosselin. A New Approach for the Dynamic Analysis of Parallel Manipulators. Multibody System Dynamics, 1998,2(3):317~334
    39 L. W. Tsai. Solving the Inverse Dynamics of a Stewart-Grough Manipulator by the Principle of Virtual Work. ASME Journal of Mechanical Design, 2000,122(5):3~9
    40孔宪文.六自由度并联机器人动力学方程.机器人, 1991,13(5):42~45
    41郭祖华,陈五一. 6-UPS型并联机构的刚体动力学模型.机械工程学报, 2002,38(11):53~57
    42刘敏杰,李从心.基于速度变换的Stewart平台机械手动力学分析.机械工程学报, 2000,36(5):38~41
    43刘敏杰,田涌涛,李从心.并联机器人动力学的子结构Kane方法.上海交通大学学报, 2001,35(7):1032~1035
    44张国伟,宋伟刚.并联机器人动力学问题的Kane方法.系统仿真学报, 2004,16(7):1386~1391
    45孔令富,张世辉,肖文辉,等.基于牛顿—欧拉方法的6-PUS并联机构刚体动力学模型.机器人, 2004,26(5):395~399
    46 J. F. Li. Inverse Kinematic and Dynamic Analysis of 3-DOF Parallel Mechanism. Chinese Journal of Mechanical Engineering, 2003,16(1):54~58
    47李剑锋,王新华,魏源迁,等. 3-RSR并联机构的微分运动学及动力学分析.北京工业大学学报, 2003,29(4):418~423
    48白志富,韩先国,陈五一.基于Lagrange方程三自由度并联机构动力学研究.北京航空航天大学学报, 2004,30(1):51~54
    49杨志永,赵学满,黄田,等.并联机构动力学建模及伺服系统参数辨识.天津大学学报, 2004,37(6):475~479
    50 K. H. Hunt. Structural Kinematic of in-Parallel-Actuated Robot Arms. Journal of Mechanism, Transmissions and Automation in Design, 1983,105(4):705~712
    51 J. P. Merlet. Parallel Manipulators Part 2: Singular Configurations and Grassmann Geometry. Technical report, INRIA, Sophia Antipols, France, 1988:66~70
    52 J. P. Merlet. Singular Configurations of Parallel Manipulators and Grassmann Geometry. The International Journal of Robotics Research, 1989,8(5):45~56
    53 N. Mouly, J. P. Merlet. Singular Configurations and Direct Kinematics of a New Parallel Manipulator. IEEE International Conference on Robotics and Automation, Nice, France,Publby IEEE, Piscataway, NJ, United States,1992:320~325
    54 J. P. Merlet. ON the Infinitesimal Motion of a Parallel Manipulator in Singular Configuration. IEEE International Conference on Robotics and Automation, Nice, France, 1992:338~343
    55 C. M. Gosselin, J. Angeles. Singularity Analysis of Closed-Loop Kinematic Chains. IEEE Transactions on Robotics and Automation, 1990,6(3):281~290
    56 C. M. Gosselin.Determination of the Workspace of 6-DOF Parallel Manipulators. Journal of Mechanism Design, 1990,112(3):331~336
    57 J. Sefrioui, C. M. Gosselin. Singularity Analysis and Representation of Planar Parallel Manipulators. Robotics and Autonomous System, 1992,115(10):209~224
    58 J. G. Wang, C. M. Gosselin. Kinematic Analysis and Singularity Representation of Spatial Five-Degree-of-Freedom Parallel Manipulators. Journal of Robotic Systems, 1997,14(12): 851~869
    59 B. M. St-Onge, C. M. Gosselin. Singularity Analysis and Representation of the General Gough-Stewart Platform. The International Journal of Robotics Research, 2000,19(3): 271~288
    60 Z. Huang, Y. S. Zhao, J. Wang, etal. Kinematic Principle and Geometrical Condition of General-Linear-Complex Special Configuration of Parallel Manipulators. Mechanism and Machine Theory, 1999,34(8):1171~1186
    61 Z. Huang, X. Du. General-Linear-Complex Special Configuration Analysis of 3/6-SPS Stewart Parallel Manipulator. China Mechanical Engineering, 1999,10(9):997~1000
    62 Z. Huang, L. H. Chen, Y. W. Li. The Singularity Principle and Property of Stewart Parallel Manipulator. Journal of Robotic Systems, 2003,(4):163~176
    63李艳文.几类空间并联机器人的奇异研究.秦皇岛:燕山大学博士论文, 2005:1~100
    64唐国宝,黄田. Delta并联机构精度标定方法研究.机械工程学报, 2003,39(8):55~60
    65邹豪,王启义,余晓流,赵明扬.并联Stewart机构位姿误差分析.东北大学学报(自然科学版), 2000,21(3):301~304
    66黄真,方跃法.六自由度并联机器人的随机位姿误差分析.东北重型机械学院报, 1989,13(3):1~9
    67赵新华,解宁,温殿英.并联六自由度平台机械误差识别算法.机械工程学报, 2000,36(12):25~28
    68 B. Fallahi, H. Y. Lai. A Study of the Workspace of Five-Bar Closed Loop Manipulator. Mechanism and Machine Theory, 1994,29(5):759~765
    69 C. M. Gosselin, J. Angeles. The optimum Kinematic Design of a Planar 3-DOF Parallel Manipulator. ASME J. Mech. Trans. and Aut. In Des., 1988,110(8):35~4l
    70 C. M. Gosselin, J. Angeles. Singularity Analysis of Closed-Loop. Kinematic Chains. IEEETrans. on Rob. and Aut., 1990,6(3):281~290
    71 C. M. Gosselin, J. Angeles. Kinematic Inversion of Parallel Manipulator in the Presence of Incompletely Specified Tasks. ASME J. of Mech. Des., 1990,112(2):454~500
    72 C. M. Gosselin, J. Angeles. Singularity Analysis of Closed-Loop Kinematic Chains. IEEE Trans. on Rob. and Aut., 1990,6(3):28l~290
    73 C. M. Gosselin. De termination of the Workspace of 6-DOF Parallel Manipulators. Journal of Mech. Design, 1990,112(3):331~336
    74黄田,汪劲松, D. J. Whitehouse. Stewart并联机器人位置空间解析.中国科学(E辑), 1998,28(2):136~145
    75 O. Ma, J. Angeles. Architecture Singularities of Parallel Manipulators. Int. J. of Robotics and Automation, 1992,7(1): 23~29
    76 K. E. Zanganeh, J. Angeles. Kinematic Isotropy and the Optimum Design of Parallel Manipulator. Int. J. of Robotics Research, 1997,16(2):185~197
    77 C. Gosselin, J. Angels. A Globe Performance Index for the Kinematic Optimization of Robotic Manipulators. J. Mech. Design, 1991,113(3):220~226
    78 C. Goseelin. The Optimum Design of Robotic Manipulators Using Dexterity Indices. Journal of Robotics and Autonomous Systems, 1992,9(4):213~226
    79 V. Kumar. Characterization of Workspaces of Parallel Manipulators. ASME J. of Mechanical Design, 1992,114(2):368~375
    80 R. S. Stonghton, T. Arai. A Modified Stewart Platform Manipulators with Improved Dexterity. IEEE J. of Robotics and Automation, 1993,9(2):166~172
    81 S. Bhattacharya. On the Optimum Design of Stewart Platform Type Parallel Manipulators . Robotics, 1995,13(2):133~140
    82孙立宁,董为,杜志江.基于几何非线性方法的大行程柔性并联机器人位置解.机械工程学报, 2005,41(10): 1~74
    83夏富杰.空间并联机构运动分析的有限元法.机械科学与技术, 1998,17(1):60~62
    84蔡胜利,余跃庆,白师贤.弹性并联机器人输入运动规划.机械设计与研究, 1997,(3):24~25
    85丁希仑, Selig John Mark,戴建生.具有空间复合变形构件的机械系统分析方法.机械工程学报, 2005,41(8):63~68
    86 Shao-Chi Wang, Hiromitsu Hikita, Hiroshi Kubo, Yong-Sheng Zhao, Zhen Huang and Tohru Ifukube. Kinematics and Dynamics of a 6 Degree-of-Freedom Fully Parallel Manipulator with Elastic Joints. Mechanism and Machine Theory, 2003,38(5):439~461
    87 Xiaoyun Wang, James K. Mills. Dynamic Modeling of a Flexible-link Planar Parallel Platform Using a Substructuring Approach, Mechanism and Machine Theory, 2006,41(6):671~687
    88 G. Piras, W. L. Cleghorn, J. K. Mills. Dynamic Finite-element Analysis of a Planar High-speed, High-precision Parallel Manipulator with Flexible Links. Mechanism and Machine Theory, 2005,40(7):849~862
    89蔡胜利,余跃庆,白师贤.弹性平面并联机器人的KED分析.机械科学与技术, 1997,16(2):261~265
    90黄真,方跃法.并联机器人的弹性位姿误差分析.机械科学与技术, 1991,12(2):54~61
    91姚建新,陈永.并联型工业机器人的运动弹性动力学研究.机器人, 1996,18(6):328~331
    92唐锡宽,金德闻.机械动力学.高等教育出版社, 1984:169~194
    93冯志友,李永刚,张策,杨廷力.并联机器人机构运动与动力分析研究现状及展望.中国机械工程, 2006,17(9):979~984
    94张汝清,殷学纲,董明.计算结构动力学.重庆大学出版社, 1987:35~38
    95倪振华.振动力学.西安:西安交通大学出版社, 1989:166~276
    96 A. Konno, M. Uehiyama. Modeling of a Flexible Manipulator Dynamics Based on the Holzer’s Method. Journal of Japan Robot Institute. 1994,12(7):1021~1028
    97 W. H. Sunada, S. Dubowsky. On the Dynamic Analysis and Behavior of Industrial Robotic Manipulators with Elastic Members. ASME Journal of Mechanisms, Transmission and Automation in Design, 1983,105(1):42~51
    98曹彤,孙杏初.机器人弹性动力学研究及结构综合优化.机械工程学报. 1995,31(5):64~69
    99 Xiaochun Gao, Zhiying King and Qixian Zhang. A Hybrid Beam Element for Mathematical Modeling of High-Speed Flexible Linkages. Mechanism and Machine Theory, 1989,24(1):29~36
    100 A. Midha, D. A. Frohrib, A. G. Erdman. Finite Element Approach to Mathematical Modeling of High-Speed Elastic Linkages. Mechanism and Machine Theory, 1977,13(6):603~618
    101 Musat D. Sorin, Bogdan I. Epureanu. Finite-Element Modeling in Flexible-Mechanism Dynamics. Transactions of the Canadian Society for Mechanical Engineering, 2002,26(1):57~73
    102 K. Mahna Vinod, Nanik T. Asnani. Computational Techniques for Finite Element Method Based Kineto-Elasto Dynamic Analysis of Mechanisms, Machine Element and Machine Dynamics, ASME, 1994,71(10):81~87
    103 D. Surdilovic, M. Vukobratovic. One Method for Efficient Dynamic Modeling of Flexible Manipulators. Mechanism and Machine Theory, 1996,31(3):297~315
    104 H. Du, M. K. Lim, K. M. Liew. A Nonliner Finite Element Model for Dynamics of Flexible Manipulators. Mechanism and Machine Theory, 1996,31(8):1109~1119
    105徐晨,张景绘,史维祥.一个高精度单臂柔性机械手的动力学模型.机器人. 1992,14(5):8~11
    106陈炜,余跃庆,张绪平,苏丽颖.欠驱动柔性机器人的动力学建模与耦合特性.机械工程学报. 2006,42(6):16~23
    107殷学纲,蹇开林,黄尚廉.运动柔性梁振动主动控制的有限段分析,应用力学学报. 1998,15(4):22~26
    108 Zhang Dajun, Liu Youwu, Yun Chao, eta1. Flexible Multibody System Dynamics-finite segment Method. Chinese Journal of Mechanical Engineering, 1994,7(2):156~162
    109王树新,员今天,石菊荣,刘又午.柔性机械臂建模理论与控制方法研究综述.机器人, 2002,24(1):86~91
    110荣莉莉,范懋基.机器人弹性手臂的模型与控制.机器人. 1992,14(1):32~37
    111 Li Chang-jin, T. S. Sankar. Systemic Methods for Efficient Modeling and Dynamics Computation of Flexible Robotic Manipulators. IEEE Transactions on Systems, Man. and Cybernetics, 1993,23(1):77~94
    112 R. J. Theodore, A. Ghosal. Comparision of the Assumed Modes and Finite Element Models for Flexible Multi-link Manipulators. International Journal of Robotics Research, 1995,14(2):91~111
    113王大龙,陆佑方,陈塑寰,李晓光.双连杆柔性机械臂的非线性轨迹跟踪控制.吉林工业大学学报, 1996,26(2):53~58
    114王大龙,陆佑方,郭九大.单连杆柔性机械臂动力学模型分析.吉林工业大学(自然科学学报), 1998,28(2):51~56
    115刘才山,王建明,阎绍泽,刘又午.滑模变结构控制在柔性机械臂中的应用.天津大学学报(自然科学与工程技术版), 1999,32(2):244~247
    116张承龙,王从庆.空间柔性双臂机器人的动力学建模及控制.南京理工大学学报, 2005,29(增刊):70~72
    117 G. Naganathan, A. H. Soni. Coupling Effects of Kinematics and Flexibility in Manipulators . Int. Journal of Robotics Research, 1987,6(1):75~84
    118 G. Naganathan, A. H. Soni. An Analytical and Experimental Investigation of Flexible Manipulator Performance. Proceedings of IEEE International Conference on Robotics and Automation, Raleigh, NC, USA, IEEE, NewYork, NY, USA,1987:767~773
    119 K. H. Low, M. A. Vidyasagar. Lagranian Formulation of the Dynamic Model for Flexible Manipulator Systems. ASME Journal Dunamic System Modelling and Control, 1988,110(2):175~181
    120 A. De Luca, B. Sicilano. Closed-form Dynamic Model of Planar Multilink Light Weight Robots. IEEE Transactions on System, Man, and Cyhernetics, 1991,21(4):826~839
    121 L. W. Chang, J. F. Hamilton. Dynamic of Robotic Manipulator with Flexible Links. ASME Journal Dynamic System Modelling and Control, 1991,113(1):54~59
    122 B. Choi, H. B. Lee. Compliant control of joint constrained flexible manipulator. Proc. Of the American Control Conference, Seattle, WA, USA, 1995:356~371
    123苏文敬,吴立成,孙富春,孙增圻.空间柔性双臂机器人系统建模、控制与仿真研究.系统仿真学报, 2003,15(8):1098~1105
    124樊晓平,颜全胜.平面双连杆受限柔性机器人臂的动力学建模.控制理论与应用, 1998,15(6):933~938
    125 S. S. Ge, T. H. Lee. Nonlinear Feedback Controller for a Single-link Flexible Manipulator Based Finite Element Model. Journal of Robotic Systems, 1997,14(3):165~178
    126刘才山,陈滨,阎绍泽.基于Hamilton原理的柔性多体系统动力学建模方法.导弹与航天运载技术, 1999(5):32~36
    127章定国,周胜丰.柔性杆柔性铰机器人动力学分析.应用数学和力学, 2006,27(5):615~623
    128管贻生,安永辰.机器人手臂弹性动力学分析的Kane方法.机器人, 1992,14(1):45~51.
    129边宇枢,陆震.柔性机器人动力学建模的一种方法.北京航空航天大学学报, 1999,25(4):486~490
    130薛克宗,赵平.挠性机械臂三维动力学建模与单挠性臂数值模拟.清华大学学报, 1993,33(5):73~81
    131赵平,薛克宗.空间柔性机械臂三维动力学数值仿真.工程力学, 1996,13(1):103~114.
    132范子杰,卢秉恒,顾崇衔.机器人柔性手臂的动力学有限元分析.应用力学学报, 1990,7(3):35~42
    133张策,黄永强,王子良,等.弹性连杆机构的分析与设计(第二版).北京:机械工业出版社, 1997:1~260
    134 J. N. Bricout, J. C. Debus, P. Micheau. A Finite Element Model for the Dynamics of Flexible Manipulators. Mechanism and Machine Theory, 1990,25(1):119~128
    135 G. Naganathan, A. H. Soni. Nonlinearmodeling of Kinematic and Flexibility Effects in Manipulator Design. ASME Journal of Mechanism, Transmissions and Automation in Design, 1988(3):110~120
    136 S. G. Yue, Y. Q. Yu, S. X. Bai. Flexible Rotor Beam Element for the Manipulators with Joint and Link Flexibility. Mechanism and Machine Theory, 1997,32(2):209~219
    137 T. R. Kane, R. R. Ryan, A. K. Banerjee. Dynamics of a Cantilever Beam Attached to a Moving Base. Journal of Guidance, Control and Dynamics, 1987,10(2):139~151
    138靳春梅,邱阳,樊灵,张陵.基于FMD理论的间隙机构动力学研究.机械工程学报, 2001,37(7):19~23
    139郭军,李传辉,代桂成.双连杆柔性机械臂的动力学仿真.宇航学报, 2006,27(5):1044~1049
    140 K. J. Bathe, E. L. Wilson. Numerical Methods in Finite Element Analysis. Prentice-Hall, Inc, Englewood Cliffs, New Jersey, 1976:308~362
    141张策,黄永强,王子良,陈树勋,等.弹性连杆机构的分析与设计(第二版).北京:机械工业出版社, 1997:1~265
    142窦建武.柔性机器人协调操作的运动学和动力学研究,北京:北京工业大学博士论文, 2001:1~150
    143刘迎春.冗余度柔性协调操作机器人的运动学和动力学研究,北京:北京工业大学博士论文, 2004:1~160
    144张绪平.空间柔性冗余度机器人动力学分析与综合.北京:北京工业大学博士论文, 1999:1~90
    145丁希仑, J. M. Selig.空间弹性变形构件的李群和李代数分析方法.机械工程学报, 2005, 41(1):16~23
    146清华大学工程力学系固体力学教研组振动组编.机械振动(上册).机械工业出版社, 1978:279~288
    147李德葆.振动模态分析及其应用.北京:宇航出版社, 1989:20~272
    148陆启韶.常微分方程的定性方法和分叉.北京:北京航空航天大学出版社, 1989:1~258
    149刘豹.现代控制理论(第2版).北京:机械工业出版社, 2002:1~200
    150邹慧君,高峰.现代机构学进展.高等教育出版社, 2007,25(7):129~337
    151李剑锋.并联机床曲面加工的刀轨规划及动力学建模研究[博士后研究报告].北京:清华大学, 2001:57~87
    152陈文凯. 3-RSR并联机器人运动学和动力学建模及仿真.上海:华东交通大学硕士论文, 2006:1~50
    153 G. R. Dunlop, T. P. Jones. Position Analysis of a 3-Dof Parallel Manipulator. Mechanism and Machine Theory, 1997,32(8):903~920
    154 R. B. Hertz, P. C. Hughes. Kinematic Analysis of a General Double-tripod Parallel Manipulator. Mechanism and Machine Theory, 1998,33(6):683~696
    155杜兆才.平面柔性并联机器人动力学分析与综合.北京:北京工业大学博士论文, 2008:1~160
    156宋轶民,余跃庆,张策,马金盛.柔性机器人动力学分析与振动控制研究综述.机械设计, 2003,20(4):1~5
    157陆佑方.柔性多体系统动力学.北京:高等教育出版社, 1996:1~280.
    158李嘉,陈恳,董怡,张伯鹏.并联柔性铰机器人的静刚度研究.清华大学学报(自然科学版), 1999,39(8):16~20
    159 Kok-Meng Lee, Dharman K. Shan. Kinematic Analysis of a Three-Degreesof-Freedom In-Parallel Actyated Manipulator. IEEE Journal of Robotics and Automation,1988,4(3):354-360.
    160 Kok-Meng Lee, Dharman K. Shan. Dynamic Analysis of a Three-Degreesof-Freedom In-Parallel Actyated Manipulator. IEEE Journal of Robotics and Automation, 1988,4(3):361-367.
    161吕英民,陈海亮,仇伟德.材料力学.石油大学出版社, 1994:1~216
    162杨桂通.弹性力学简明教程.清华大学出版社, 2006:1~66
    163 Gere James M. Mechanics of Materials. China Machine Press, 2004:67~738

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700