下辽河平原耕地土壤有机碳时空变化及固碳潜力估算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤碳库是全球碳循环的重要组成部分,在全球碳收支中占主导地位。与自然土壤比较,耕地土壤由于受到人类长期的干预,其与大气间的碳交换强度增大。尤其是在全球变暖受到关注的情况下,耕地土壤是碳“源”还是“汇”,已经成为当今土壤学领域的研究热点。本文在总结前人研究基础上,通过大量历史资料和试验数据的整理分析,利用GIS技术研究了我省重要流域——下辽河平原区土壤有机碳的时空变化、储量及固碳潜力,为提高耕地碳储量和土壤有机质提升目标等方面提供依据。研究获得以下主要结果。
     (1)1980年以来,下辽河平原耕地土壤有机碳含量总体呈下降趋势,空间分布差异逐渐减小。2010年耕地土壤有机碳平均含量比1980年低5.05%。从土壤有机碳含量空间分布的变化看,呈南部增加、北部降低的趋势。1980年与2010年土壤有机碳均属中等空间自相关,分析两期的变程数据,30年来其分布的均一性减弱,在小范围内的变异加强,整体分布趋向复杂。
     (2)下辽河平原土地利用方式(旱田和水田)和年降水量是影响土壤碳变化的主要因素,旱田促使有机碳含量降低,水田促进了该区域土壤有机碳含量的提高。
     (3)20世纪80年代初,下辽河平原耕层土壤有机碳密度平均为2.72kg m-2,空间分布上表现为由东南向西北降低的趋势;2010年有机碳密度平均为2.70kg m-2,空间上无明显差异性,地区间差异较小。1980年耕地耕层有机碳库总量为67.24Tg,2010年则为66.53Tg,总体上减少了0.71Tg。
     (4)利用1980年第二次土壤普查数据和2010年耕地地力评价数据,结合近30年来的调查研究资料和田间试验数据,建立该地区耕地土壤固碳潜力模型。预测该地区土壤固碳潜力(饱和碳密度)为4.95kg m-2,其空间分异明显,整体表现为东部高西部低、北部高南部低;根据最新土壤调查数据所建立的模型进行估算,该区域潜在耕地土壤碳汇密度增加值为2.25kg m-2,可增加耕地土壤固碳量为57.52Tg。
Soil carbon pool is an important part of the global carbon cycle and can affect the global carbon balance. Compared with natural soil, the strength of the carbon exchange between cultivated land and atmosphere is increased due to human intervention. The research on soil carbon source and sink has become the hot topic in soil science. There are a lot of cultived land in lower reaches of Liaohe river plain and have played a key role in the carbon cycle in the Northeast of China. So the spatial and temporal variations of soil organic carbon (SOC), stock and carbon sequestration potential have been studied by using GIS technique. The main results obtained from the research are as following:
     (1) The SOC contents in farmland here were declined since1980. The differences of spatial distribution decreased gradually. SOC content in farmland in2010was5.05%lower than that in1980. From the changes in spatial distribution, the SOC contents appeared to increase in the south and decrease in the north. From a statistical point of view, SOC was medium spatial autocorrelation in1980and2010. The ranges of variations and the uniformity of SOC in the two periods were declined, but strengthened in a small range. The overall distribution inclined to be complexity in the past30years.
     (2) The land utilization type (dryland and paddy field) and the annual precipitation are the main factors influencing the changes of SOC. The SOC content reduced in dryland and increased in paddy field.
     (3) In the early1980s, the average SOC density in arable layer (0-20cm) was2.72kg m-2, which shows the trend of reducing from southeast to northwest in the spatial distribution; In2010the average SOC density was2.70kg m-2, which has no obvious difference in the spatial distribution. The SOC stock of arable layer in this area in1980was67.24Tg and66.53Tg in2010, with a decrease of0.71Tg.
     (4) The models of SOC sequestration potential in farmland here were established combining with the survey data and the field test data in past30years. The SOC sequestration potential (saturation) was predicated to reach4.95kg m-2, with an obvious spatial differentiation. According to the models established by latest survey data, the added value of density of SOC sequestration potential will be2.25kg m-2and SOC stock will be57.52Tg in farmland.
引文
[1]陈静,王学军,陶澍.2005.天津地区土壤有机碳和粘粒对PAHs纵向分布的影响[J].环境科学研究,18(4):79-83.
    [2]陈庆强,沈承德,易惟熙.1998.土壤碳循环研究进展[J].地球科学进展,13(6):555-563.
    [3]杜宝华,杨平,全乘风.1996.农田土壤二氧化碳释放问题的研究.水土保持研究,3(3):100-103.
    [4]方华军,朱平,任军,等.2003.用RothC-2613模型模拟玉米连作下长期施肥对黑土有机碳的影响[J].中国农业科学,36(11):1318-1324.
    [5]方精云,刘国华,徐高龄等.1996a.我国森林植被的生物量和净生产[J].生态学报,16(5):497-508.
    [6]方精云,刘国华,徐篙龄.1996b.中国陆地生态系统的碳循环及其全球意义[M].见:王庚辰,温玉璞主编.温室气体浓度和排放监测及相关过程.北京:中国环境科学出版社,129-139.
    [7]高鲁鹏,梁文举,姜勇,等.2004.利用CENTURY模型研究东北黑土有机碳的动态变化[J].应用生态学报,15(5):36-401.
    [8]高鲁鹏,梁文举.2003.土壤有机质模型的比较分析[J].应用生态学报,14(10):1804- 1808.
    [9]高鲁鹏,梁文举,赵军,等.2005.气候变化对黑土有机碳库影响模拟研究[J].辽宁工程技术大学学报,24(2):285-291.
    [10]高鹏,史学正,于东升,等.2008.基于WebGIS的中国土壤信息查询系统研究[J].土壤,40(1):9-15.
    [11]和丽萍,孟广涛,方向京.2004.珠江源头站马地集水区不同土地利用类型的土壤水分养分特性[J].植物生态学报,33(3):53-57.
    [12]黄雪夏,倪九派,高明,等.2005.重庆市土壤有机碳库的估算及其空间分布特征[J].水土保持学报,19(1):54-58.
    [13]黄昌勇.2000.土壤学[M].北京:中国农业出版社.
    [14]黄耀,孙文娟.2006.近20年来中国大陆农田表土有机碳含量的变化趋势[J].科技通报,51(7):750-763.
    [15]黄耀.2001.关于中国陆地生态系统碳循环研究的几点思考[J].世界科技研究与发展,23(1):66-68.
    [16]黄斌,王敬国,金红岩,等.2006.长期施肥对我国北方潮土碳储量的影响[J].农业环境科学学报,25(1):161-164.
    [17]黄中良.2000.运用Century模型模拟管理对鼎湖山森林生产力的影响[J].植物生态学报,24(2):175-179.
    [18]韩冰,王效科,欧阳志云,等.2003.中国东北地区农田生态系统中碳库的分布格局及其变化[J].土壤通报,35(4):401-407.
    [19]蒋延玲,周广胜.2001.兴安落叶松林碳平衡及管理活动影响研究[J].应用生态学报,12(4):481-484.
    [20]李长生,肖向明,Frolking S,等.2003.中国农田的温室气体排放[J].第四纪研究,23(5):495-502.
    [21]李德文,孟凡祥,史弈,等.2005.农业管理措施对土壤有机碳固存潜力影响的研究进展.农业系统科学与综合研究,22(4):260-263.
    [22]李克让,王绍强,曹明奎.2003.中国植被和土壤碳贮量[J].中国科学,33(1):72-78.
    [23]李克让.2002.土地利用变化和温室气体排放与陆地生态系统碳循环[J].北京:气象出版社,151-305.
    [24]李凌浩,刘先华,陈佐忠.1998.内蒙古锡林河流域羊草草原生态系统碳素循环研究[J].植物学报,40(10):955-961.
    [25]李绍良,贾树海,陈有君,等.1997.内蒙古草原退化进程及其评价指标的研究[J].土壤通报,8(6):241-243.
    [26]李忠佩,吴大付.2006.红壤水稻土有机碳库的平衡值确定及固碳潜力分析[J].土壤学报,43(1):46-52.
    [27]李忠,孙波,赵其国.2001.我国东部土壤有机碳的密度和储量[J].农业环境保护,20(6):385-389.
    [28]李世朋,汪景宽.2003.温室气体排放与土壤理化性质的关系研究进展[J].沈阳农业大学学报,34(2):155-159.
    [29]李新宇,唐海萍.2006.陆地植被的固碳功能与适用于碳贸易的生物固碳方式[J].植物生态学报,30(2):200·209.
    [30]李正才,傅愚毅,杨校生.2005.经营干扰对森林土壤有机碳的影响研究概述[J].浙江林学院学报,22(4):469-474.
    [31]刘纪远,王绍强,陈镜明,刘明亮,庄大方.2004.1990-2000年中国土壤碳氮蓄积量与土地利用变化[J].地理学报,59(4):483-496.
    [32]刘慧屿.2011.辽宁省农田土壤有机碳动态变化及固碳潜力估算[D].沈阳.沈阳农业大学博士论文.
    [33]刘守龙,童成立,张文菊,等.2006.湖南省稻田表层土壤固碳潜力模拟研究[J].自然资源学报,21(1):118-125.
    [34]逯非,王效科,韩冰,等.2010.稻田秸秆还田:土壤固碳与甲烷增排[J].应用生态学报,21(1):99-108.
    [35]林而达,李玉娥,郭李萍,等.2005.中国农业土壤固碳潜力与气候变化[M].北京:科学出版社.
    [36]林心雄,文启孝,程励励,等.1995.土壤中有机物质分解的控制因子研究[J].土壤学报,32(I):38-45.
    [37]孟磊,丁维新,蔡祖聪,等.2005.长期定量施肥对土壤有机碳储量和土壤呼吸影响[J].地球科学进展,20(6):687-692.
    [38]倪健,李宜垠,张新时.1999.从生态地理特征论中国东北样带(NECT)在全球变化研究中的科学意义[J].生态学报,19(5):622-629.
    [39]潘根兴,李恋卿,张旭辉,等.2003.中国土壤有机碳库量与农业土壤碳固定动态的若干问题[J].地球科学进展,18(4):609-618.
    [40]潘根兴,赵其国.2005.我国农田土壤碳库演变研究:全球变化和国家粮食安全[J].地球科学进展,20(4):384-393.
    [41]潘根兴.1999.中国土壤有机碳和无机碳库量的研究[J].科技通报,15(5):330-32.
    [42]潘根兴.2008.中国土壤有机碳库及其演变与应对气候变化[J].气候变化研究进展,4(5):282289.
    [43]潘根兴,李恋卿,郑聚锋,等.2008.土壤碳循环研究及中国稻田土壤固碳研究的进展与问题[J].土壤学报,45(5):901-914.
    [44]彭文英,张科利,陈瑶.2005.黄上坡耕地退耕还林后土壤性质变化研究[J].自然资源学报,20(2):272-278.
    [45]彭少麟,唐小众.2002.Meta分析及其在生态学上应用[J].生态学杂志,17(5):74-79.
    [46]邱建军,唐华俊.2003.北方农牧交错带耕地土壤有机碳储量变化模拟研究-以内蒙古自治区为例[J].中国生态农业学报,11(4):86-88.
    [47]邱建军,王立刚,唐华俊.2004.东北三省耕地土壤有机碳储量变化的模拟研究[J].中国农业科学,37(8):1166-1171.
    [48]秦明周.1999.红壤丘陵区农业土地利用对土壤肥力的影响及评价[J].山地学报,18(1):7175.
    [49]秦小光,李长生,蔡炳贵.2001.气候变化对黄土碳库效应影响的敏感性研究[J].第四季研究,21(2):153-161.
    [50]覃章才,黄耀.2010.基于模型的农田土壤固碳潜力估算[J].中国科学:生命科学,40(7):658-676.
    [51]全国农业技术推广中心.2002.全国耕地土壤监测论文集[c].北京:中国农业出版社.
    [52]芮雯奕.2009.长三角农田土壤固碳技术的固碳潜力及激励机制研究[D].南京:南京农业大学博士论文.
    [53]沈雨,黄耀,宗良纲,等.2003.基于模型和GIS的江苏省耕地土壤有机碳变化研究[J].中国农业科学,36(11):1312-1317.
    [54]申卫军,彭少麟,邬建国,等.2003.南亚热带鹤山主要人工林生态系统C、N累积及分配格局的模拟研究[J].植物生态学报,27(5):690-691.
    [55]史舟,王人潮.1997.土壤信息系统技术的发展及其思考[J].计算机与农业.4:5-7.
    [56]史学正,于东升.2004.全国土壤有机碳储量及其动态变化专题进展报告.
    [57]孙文娟,黄耀,张稳,等.2008.农田土壤固碳潜力研究的关键科学问题[J].地球科学进展,23(9):996-1004.
    [58]孙占祥.2008.辽宁省农作制度演变规律及发展策略[J].中国农作制度研究进展,148-154.
    [59]苏永中,赵哈林.2002.土壤有机碳储量!影响因素及其环境效应的研究进展[J].中国沙漠,22(3):220-228.
    [60]汪业勖,赵士洞,牛栋.1999,陆地土壤碳循环的研究动态[J].生态学杂志,18(5):29-3.
    [61]王立刚,邱建军,马永良.2004.应用DNDC模型分析施肥与翻耕方式对土壤有机碳含量的长期影响[J].中国农业大学学报,9(6):15-19.
    [62]王立刚,邱建军.2003.高产粮区农业生态系统土壤碳氮循环的模拟研究-以河北省曲周县为例[J].中国农业大学学报,8(增刊):31-35.
    [63]王绍强,陈育峰.1998.陆地表层碳循环模型研究及其趋势[J].地理科学进展,17(4):67-66.
    [64]王绍强,刘纪远,于贵瑞.2003.中国陆地土壤有机碳蓄积量估算误差分析[J].应用生态学报,14(5):797-802.
    [65]王绍强,刘纪远.2002.土壤碳蓄积量变化的影响因素研究现状[J].地球科学进展,17(4):528-534,
    [66]王绍强,许裙,周成虎.2001.土地覆被变化对陆地碳循环的影响[J].遥感学报,5(2):142148.
    [67]王绍强,周成虎,李克让等.2000.中国土壤有机碳库及空间分布特征分析[J].地理学报,55(5):533-44.
    [68]王绍强,周成虎.1999.中国陆地土壤有机碳库的估算[J].地理研究,18(4):349-55.
    [69]王艳芬,陈佐忠,Larry T.1998.人类活动对锡林郭勒地区主要草原土壤有机碳分布的影响[J].植物生态学报,22(6):545-551.
    [70]王毅勇,杨青,王瑞山.1999.三江平原大豆田氮循环模拟研究[J].地理科学,19(6):555-558.
    [71]王政权.1999.地统计学及其在生态学中的应用[M].北京:科学出版社,35-149.
    [72]王建革,陆建飞.1998.华北平原土壤肥力的变化与影响因素分析[J].农村生态环境,14(3):12-16.
    [73]王茹,张凤荣,王军艳,等.2001.潮土区不同质地土壤的养分动态变化研究[J].土壤通报,32(6):255-257.
    [74]王效科,自艳莹,欧阳志云,等.2002.全球碳循环中的失汇及其形成原因[J].生态学报,22(1):94-103.
    [75]吴建国,张小全,徐德应.2004.六盘山林区集中土地利用方式下土壤活性有机碳的比较[J].植物生态学报,28(5):657-664.
    [76]吴建国,张小全,徐德应.2004.土地利用变化对土壤有机碳贮量的影响[J].应用生态学报,15(4):593-599.
    [77]吴金水,刘守龙,等.2003.土壤有机质周转计算机模拟原理[J].土壤学报,40(5):768-774.
    [78]吴彦军,汪景宽,李双异,等.2007.黑土土壤质量演变初探V.东北主要黑土区表层土壤有机碳密度分布及碳库估算[J].沈阳农业大学学报,38(4):535-539.
    [79]吴乐知,蔡祖聪.2007.基于长期试验资料对中国农田表土有机碳含量变化的估算[J].生态环境,16(6):1768-1774.
    [80]文海燕,赵哈林,傅华.2005.开垦和封育年限对退化沙质草地土壤性状的影响[J].草业学报,14(1):31-37.
    [81]肖向明,王义凤,陈佐忠.1996.内蒙古锡林河流域草原初级生产力和土壤有机质的动态及其对气候变化的反映[J].植物学报,38(1):45-52.
    [82]谢云.1999.中国粮食生产对气候资源波动响应的敏感性分析[J].资源科学,21(6): 13-18.
    [83]谢军飞,李玉娥.2002.农田土壤温室气体排放机理与影响因素研究进展.中国农业气象,23(14):47-52.
    [84]徐炳成,梁银丽.2000.黄土高原旱塬农田生态系统碳氮循环特征[J].生态农业研究,8(2):42-46.
    [85]徐文彬,刘广深,洪业汤.2002.DNDC模型对我国旱地N20释放的拟合对比分析[J].矿物学报,22(3):222-228.
    [86]俞海,黄季焜,Scott R,等.2003.中国东部地区耕地土壤肥力变化趋势研究[J].地理研究,22(3):380-388.
    [87]杨景成,韩兴国,黄建辉,等.土壤有机质对农田管理措施的动态响应[J].生态学报,2003,23(4):787-796.
    [88]杨学明,张晓平,方华军.2003.农业土壤固碳对缓解全球变暖的意义[J].地理科学,23(1):101-106.
    [89]郑立臣,解宏图,张威,等.2006.秸秆不同还田方式对土壤中溶解性有机碳的影响[J].生态环境,15(1):80-83.
    [90]张定祥,于东升,史学正.2001.苏南SOTER数据库的建立及其在水稻土生产力评价的应用[J].安徽农业大学学报,28(2):119-124.
    [91]张金波,宋长春.2003.土地利用方式对土壤碳库影响的敏感性评价指标[J].生态环境,12(4):500-504.
    [92]张稳.2004.基于模型和GIS技术的中国稻田甲烷排放估计[D].博士研究生毕业论文.南京:南京农业大学.
    [93]张旭辉,李恋卿,潘根兴.2001.不同轮作制度对淮北白浆土团聚体及其有机碳的积累与分布的影响[J].生态学杂志,20(2):16-19.
    [94]张国盛,黄高宝,Yinc.2005.农田土壤有机碳固定潜力研究进展[J].生态学报,25(2):351-357.
    [95]张小全,武曙红,何英,等.2005.森林、林业活动与温室气体的减排增汇.林业科学,41(6):150-156.
    [96]张蕴薇,韩建国,韩永伟,等.2003.不同放牧强度下人工草地土壤微生物量碳!氮的含量[J].草 地学报,11(4):343-345.
    [97]钟华平,樊江文,于贵瑞,等.2005.草地生态系统碳循环研究进展[J].草地学报,13(增刊):67-73.
    [98]周广胜,张新时,郑元润.1997.中国陆地生态系统对全球变化的反应模式研究进展[J].地理科学进展,12(3):270-275.
    [99]周慧珍.1994.海南岛土壤与土地数字化数据库及其制图[M].北京:科学出版社.
    [100]周光明,黄农.2006.湘潭市能源的生态足迹及森林固碳减排效应的分析.湖南林业科技,33(1):4-6.
    [101]周涛,史培军,王绍强.2003.气候变化及人类活动对中国土壤有机碳储量的影响[J].地理学报,58(5):727-734.
    [102]周玉荣,于振良,赵士洞.2000.我国主要森林生态系统碳贮量和碳平衡[J].植物生态学报,24(5):518-522.
    [103]Alvarez R.2005. A review of nitrogen fertilizer and conservative tillage effects on soil organic storage [J]. Soil Use and Management,21:38-52.
    [104]Alvarez R.2005. A review of nitrogen fertilizer and conservation tillage effects on soil organic carbon storage [J]. Soil Use and Management,21:38-52.
    [105]Arton W J, Schimel D S, Cole C V, et al.1987. Analysis of factors controlling soil organic matter levels in great plains grasslands [J]. Soil Science Society of America Journal, (51):1173-1179.
    [106]Arrouys D, Balesdent J.2002. Increasing carbon stocks in French agrieultural soils [EB/OL]. Scientific Assessment Unit for Expertise, INRA, http://www.inra.frw.inra.fr/actualites/rapport-carbone.html.
    [107]Batjes N H.1996. Total carbon and nitrogen in the soils of the world[J]. Eur. J. Soil Sci,47:151-163.
    [108]Bernoux M, Conceicao Santana Carvalho M, Volkoff B, et al.2002. Brazil's soil carbon stock [J]. Soil Sci. Am. J., (66):888-896.
    [109]Bohn L E.1982. Estimate of organic carbon in the world soils [J]. Soil Sci. Am.J.,46:1118-1119.
    [110]Bosatta E, Agren G L.1985. Theoretical analysis of decomposition of heterogeneors substrates [J]. Soil Boil&Biochem, (16):63-67.
    [111]Bordovsky D G, Choudhary M, Gerard C J.1999. Effect of tillage, cropping, and residue management on soil properties in the Texas rolling Plains [J]. Soil Science,164:331-340.
    [112]Bowman R A, Anderson R L.2002. Conservation Reserve Program:Effects on soil organic carbon and preservation when converting back to cropland in northeastern Colorado [J]. J. SoilWater Conserv, 57:121-126.
    [113]Burke I C, Yonkr C M, Parton W J, et al.1989.Texture, climate, and cultivation effects on soil organic matter content in U.S.grassland soils [J]. Soil Science Society of America Journal, (53):800-805.
    [114]Cambardella C A, Moorman TB,1994. Novak J M. Field-scale variability of soil Properties in central Iowa soils[J]. Soil Science Society of America Journal,68:1501-1511.
    [115]Campbell J B.1978. Spatial variation of sand content and pH within single contiguous delineations of two soil mapping units[J]. Soil Sci. Soc. Am.J.,22:460-464.
    [116]Cao M K, Prince S D, Li K R, et al.2003.Response of terrestrial carbon uptake to climate inter annual variability in China [J]. Global Change Biol,9:536-546.
    [117]Cao M K, Woodward F I.1998. Net primary and ecosystem production and carbon stocks of terrestrial ecosystems and their responses to climate change [J]. Global Change Biol,4:185-198.
    [118]Chapin F S, Matson P A, Mooney H A.2002. Principles of terrestrial ecosystem ecology [J]. Springer, 6.
    [119]Chertov O G..1990. SPECOM-A single tree model of pines and/raw humus soil ecosystem [J]. Ecological modeling, (50):107-132,29.
    [120]Clien, Y. J. Lee, D. Y. Guo, H. Y. et al.1997. Geostatistical analysis of soil properties of mid-west Taiwan soils[J]. Soil Science.62:291-298.
    [121]Coleman K, Jenkinson D S, Crocker G J, et al.1998. Simulating trends in soil organic carbon in long-term experiments using RothC-26.3[J]. Geoderma,81:29-44.
    [122]Davidson EA, Aekermanl L.1993. Changes of soil carbon inventories following eultivation of previously untilled soils [J]. Biogeochemistry,20:161-193
    [123]Eswaran H, Van Den Berg E, Reich P.1993. Organic carbon in soil in the world [J]. Soil Sci. Am.J., 57:192-194.
    [124]Eve M D, Sperow M, Paustian K, et al.2002. National-scale estimation of changes in soil carbon stocks on agricultural lands [J].Environmental Pollution,116:431-438.
    [125]Franko U, Oelschlagel B, SCHENK S.1995. Simulation of temperature, water, and nitrogen-dynamics using the model CANDY [J]. Ecological modeling, (81):213-222.
    [126]Frolking S E,Mosier A R,Ojima D S et al.1998. Comparision of N2O emissions from soils at three temperate agricultural sites:Simulations of year-round measurements by four models [J]. Nutrient Cycling in Agroecosystems, (52):77-105.
    [127]Falloon P D, Smith P, Smith J U, et al.1998. Regional estimates of carbon sequestration Potential: linking the Rothamsted carbon model to GIS databases. Biology and Fertility of Soils [J],27(3):236-241.
    [128]Freibauer A, Rounsevell M D A, Smith P, et al.2004. Carbon sequestration in the agricultural soils of Europe [J]. Geoderma,122:1-23.
    [129]Gajem Y M, Warrick A W, Myers D E.1981. Spatial dependence of physical properties of a typic torrifluvent soil[J]. Soil Sci. Soc. Am.J.,45:729-751.
    [130]Gijslnan AJ, Aoberson, H Tiessell, et al.1996. Limited applicability of the CENTURY model to highly weathered tropical soils [J]. Agron, (88):894-903.
    [131]Giardina C P, Ryan M G, Hubbard R M, et al.2001. Tree species and soil textural controls on carbon and nitrogen mineralization rates [J]. Soil Science Society of America Journal,65:1272-1279.
    [132]Guo L B, Gifford R M.2002. Soil carbon stocks and land use change:a meta analysis[J]. Global Change Biology,8:345-360.
    [133]Guo L P, Lin E D.2001.Carbon sink in crop land soils and the emission of green house gases from paddy soils:a review of work in China [J]. Chemosphere-Global change Science,3:413-418.
    [134]Han B, Wang X K, Ouyang Z Y, et al.2006. Estimation of soil carbon saturation and carbon sequestration Potential of an agro-ecosystem in China [J]. Inernation Journal of Sustainable Development and World Ecology,13(6):459-468.
    [135]Hard J W, Sundquist E T, Stallard R F, et al.1992. Dynamics of soil carbon during deglaciation of the Laurentide Ice Sheet [J]. Science, (258):1921-1924.
    [136]Harsen S, Jensen H E, Nielsen N E, et al.1991. Simulation of nitrogen dynamics and biomass production in winter wheat using the Danish simulation model DAISY [J]. Fer Res, (27):245-259.
    [137]Haynes R J, Naidu R.1998. Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions:a review [J]. Nutr Cycl Agroecosys,51:123-137.
    [138]Houghton R A, Hackler J L, Lawrence K T,1999. The US carbon budget:contribution from land-use chang [J]. Science, (285):574-578.
    [139]Houghton R A, Hackler J L.2003. Sources and sinks of carbon from land-use change in China [J]. Global Biogeochemical Cycle,17 (2):1-19.
    [140]Izaurralde R C, Williams J R, Mcgill W B, et al.2006. Simulating soil C dynamics with EPIC:model description and testing against long-term data [J]. Ecol Model,192:362-384.
    [141]IPCC.2006. IPCC Guidelines for National Greenhouse Gas Inventories [M]. NGGIP Publications. VO14,2006.
    [142]IPCC.2007. Climate Change 2007:Mitigation of Climate Change of Working GroupsⅢ to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge, UK: CambridgeUniversityPress.
    [143]Jain A K, West T O, Yang X, et al.2005. Assessing the impact of changes in climate and CO2 on potential carbon sequestration in agricultural soils [J]. Geophysical Research Letters,32(19).
    [144]Jenkinson D S.1966. Studies on the decomposition of plant material in soil Ⅱ.Partial sterilization of soil and the soil biomass [J]. J.Soil.Sci, (17):280-302.
    [145]Jenny H.1941. Factors of Soil Formation [M]. New York:McGraw-Hill,22-75.
    [146]Johnson M G, Levine E R, Kern J S.1995. Soil organic matter:distribution, genesis, and management to reduce greenhouse gas emissions [J]. Water, Air Soil Poll,82:593-615.
    [147]Jonas A, Lennart O.2003. Assessment of soil organic carbon in semi-arid Sudan using GIS and the CENTURY model [J]. Journal of Arid Environments,54:633-651.
    [148]Kaonga ML, Coleman K.2008. Modelling soil organic carbon turnover in improved fallows in eastern Zambia using the RothC-26.3 model [J]. Forest Ecology and Management, (256):1160-1166.
    [149]Karlen D L, Rosek M J, Gardner J C.1999. Conservation reserve program effects on soil quality indicators [J]. Journal of Soil and Water Conservation,54(1):439-444.
    [150]Kelly R H, Parton W J, Crocker G J, et al.1997. Simulating trends in soil organic carbon in long-term experiments using the CENTURY model [J]. Geoderma,81:75-90.
    [151]Kelly R H, WJ Parton, GJ Crocker, et al.1997. Simulating trends in soil organic carbon in Long-term experiments using the CENTURY model [J]. Geoderma, (81):75-901.
    [152]Kem J S, Johnson M G.1993. Conservation tillage impacts on national soil and atmospheric carbon levels [J]. Soil Science Society of America Journal,57:200-210.
    [153]Lacelle B.1998. Canada's soil organic carbon batebase. Lal R, et al. Soil Processes and Carban syscle. Boca Raton [J]. CRC Press,93-107.
    [154]Lai R.1999. World soils and the greenhouse effect [J]. Global Change Newsletter,37:4-5.
    [155]Lal R.2002. Soil carbon sequestration in China through agricultural intensification, and restoration of degraded and desertified ecosystems [J]. Land Degrad Dev,13:469-478.
    [156]Lal R.1997. Residue management, conservation Tillage and soil restoration for mitigating for mitigationg greenhouse effect by CO2 enrichment [J]. Soil Tillage Research,54:382-389.
    [157]Lal R, Kimble J M, Follett R F, et al.1998. The Potential of USA Croplands to Sequester Carbon and Mitigate the Greenhouse Effect. Chelsea, Michigan, USA:Ann Arbor Press.
    [158]Lal R.1999. Global carbon Pools and fluxes and the impact of agricultural intensifieation and judicious land use. Prevention of Land Degradation, Enhancement of Carbon Sequestration of Biodiversity through Land Use Change and Sustainable Land Management and Conservation with a Focus on Latin America and the Caribbean [M]. World soil Resources Report 86.FAO, Rome,45-52.
    [159]Lal R.2004b. Soil Carbon sequestration Impacts on global climate change and food security [J].Science,304:1623-1627.
    [160]Leemans R.1999. Land-use change and terrestrial carbon cycle[J]. IGBP Newsletter, (37):24-26.
    [161]Li C S, Frolking S, Crocker G J, et al.1997. Simulating trends in soil organic carbon in long-term experiments using the DNDC model [J]. Geoderma,81:45-60.
    [162]Li C, Folkring S, Folkring T A.1992. A model of nitrous oxide evolution from soil driven by rainfall events-1:Model structure and sensitivity [J]. J of Geophysical Res, (97):9759-9776.
    [163]Liao Q L, Zhang X H, Li Z P, et al.2008. Increase in soil organic carbon stock over the last two decades in China's Jiangsu province [J]. Global change biology,15(4):861-875.
    [164]Liu Q M, Wang S J, Pu H C, et al.2003. The Dynamics of organic matter in soil size and density fractions traced by stable carbon isotopes [J]. Chinese Journal of Geochemistry,22(2):179-184.
    [165]Lu F, Wang X K, Han B, et al.2009. Soil carbon sequestrations by nitrogen fertilizer application, straw return and no-tillage in China's cropland [J]. Global Change Biol,15:281-305.
    [166]Loague K, Green R E.1991. Statistical and graphical methods for evaluating solute transport models: overview and application [J]. J Contam Hydrol.7:51-73.
    [167]Lu F, Wang X K, Han B, et al.2008. Soil carbon sequestrations by nitrogen fertilizer application, straw-return and no-tillage in China's cropland [J].Global Change Biology,15(2):281-305.
    [168]Mcdaniel P A, Munn L C.1985. Effect of temperature on the relationship between organic carbon and texture in Mollisols and Aridisols [J]. Soil Scinece Society of America Journal, (49):1486-1489.
    [169]Mcgill W B.1996. Review and classification of ten soil organic matter (SOM) models [A]. In:Powlson D S, Smith P, Smith J U, eds.Evaluation of Soil Organic Matter Models [C]. Berlin, Heidelberg:Springer-Verlag,111-132.
    [170]Melillo J M, Ftuci J R, Houghton R A et al.1988. Land-use change in the Soviet Union between 1850 and 1980:causes of a net release of CO2 to the atmosphere. Tellus, (40B):116-128.
    [171]Mikhailova E A, Bryant R B, Degloria S D, et al.2000. Modelling soil organic matter dynamics after conversion of native grassland to long 2 term continuous fallow using the Century model [J]. Ecol. Modelling,132 (3):247-257.
    [172]Miler P C, Kendall R,Oechel W C.1983. Simulation carbon accumulation in northern ecosys tems [J]. Simulation, (40):119-131.
    [173]Milne E, Adamat R A, Batjes N H, et al.2007. National and sub-national assessments of soil organic carbon stocks and changes:The GEFSOC modelling system [J]. Agriculture, Ecosystems and Environment, (122):3-12.
    [174]Mohan KW, Fatih E, Tristram O, et al.1999. Assessing terrestrial ecosystem sustainability: Usefulness of regional carbon and nitrogen models [J]. Nature and Resources,35 (4):21-33.
    [175]Molina J A E, Clapp C E, Shaffer M J, et al.1983. NCSOIL, a model of nitrogen and carbon transformations in soil:Description, calibration,and behavior [J]. Soil Science Society of America Journal, (47):85-91.
    [176]Nilsson S, Schopfhauser W.1995. The carbon sequestration potential of a global afforestation program [J]. Climatic Change,30:267-293.
    [177]Nrel.2001. CENTURY Soil Organic Matter Model Environment. Fort Collins, Natural Resource Ecology Laboratorym Colorado State University.
    [178]Ogle S M, Breidt F J,Paustian K.2005. Agricultural management impacts on soil organic carbon storage under moist and dry climatic conditions of temperate and tropical regions [J]. Biogeochemistry,72:87-121.
    [179]Parton W J, B Mckeow, V Kirchner, et al. CENTURY Users Manual 1 Colorado State University [M]. NREL Publication, Fort Collins, Colorado, USA.
    [180]Parton W.J., Sehimel D.S., Cole C.V.et al.1987. Analysis of Factors Controlling Soil Organic Matter Levels in Great Plains Grasslands [J]. Soil Science Soeiety of America Journal,51(5):1173-1179.
    [181]Parton W J, OjimaD.1994. Environmental Change in Grasslands:Assessment Using Model [J]. Climate Change,28:111-141.
    [182]Parton W J, Schimel D S, Ojima D.et al.1993. Observation and Modeling of Biomass and Soil Oganic Matter Dynamics for the Grassland Biome Worldwind [J]. GlobalBiogeochemical Cycles, 7(4):785-809.
    [183]Parton W J, Schimel D S, Cole C V.1988. Dynamic of C,N,P and S in Grassland soils:a model[J]. Biogeochemistry,5:109-131.
    [184]Panstian K, Six J, Elliott E T, et al.2000. Management Potions for reducing CO2 emissions from agricultural soil [J]. Biogeochemistry,48:147-163.
    [185]Paustian K.2001. Modelling soil organic matter dynamics-global challenges [M]. In:Rees RM, Ball BC, Campbell CD, Watson CA eds. Sustainable Management of Soil Organic Matter. Wallingford, Oxon, UK:CAB International.43-53.
    [186]Post W M, Kwon K C.2000. Soil carbon sequestration and land-use change:processes and potential [J]. Global Change Biol,6:317-327.
    [187]Post W M.1982. Emanuel W R, Zinke P, et al. Soil carbon pool and world life zones.
    [188]Pan Genxing, Lianqing Li, Laosheng Wu, et al.2003. Storage and sequestration potential of topsoil organic carbon in China's paddy soils [J]. Global Change Biology,10:79-92.
    [189]Pan G X, Li L Q, Wang X K, et al.2005. Organic Carbon stock in top soil of Jiangsu province, China, and the recent trend of carbon sequestration [J]. Journal of Environmental Sciences,2:1-7.
    [190]Qin Z C, Huang Y.2010. Quantification of soil organic carbon sequestration potential in cropland:a model approach [J]. Sci China Life Sci.53:868-884.
    [191]Raich J W, Potter C S.2002. Global patterns of carbon dioxide Emissions from soil [J]. Global Biogeochemical Cycles,9(1):23-36.
    [192]Robertson G P.1997. Soil resources, microbial activity, and primary production across an agricultural ecosystem [J]. Ecological Application,7:158-170.
    [193]Sahrawat K L.2004. Organic matter accumulation in submerged soils [J]. Advances in Agromogy, 81:169-201.
    [194]Sampson R N, Apps M, Brown S, et al.1993. Terrestrialbios phere carbon fluxes quantification of sink sand sources of CO2 [J]. Water, Airand Soil Pollution,70:3-15.
    [195]Schlesinger W H.1990. Evidence from chrono seauence studies for a low carbon storage potential of soil [J]. Nature,348(15):232-234.
    [196]Scholes B.1999. Will the terrestrial carbon sink saturate soon [J]. IGBP Nesletter,37:2-3.
    [197]Sims Z R, Nielsen G A.1986. Organic carbon in Montata soils as related to clay content and climate [J]. Soil Scinece Society of America Journal, (50):1269-1271.
    [198]Smith P, Smith J U, Powlson D S, et al.1997. A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments [J]. Geoderma,81:153-225.
    [199]Smith P, Powlson D S, Glendining M J, et al.1998. Preliminary estimates of the potential for carbon mitigation in European soils through no-till farming [J]. Global Change Biology,4:679-685.
    [200]Smith P, Powlson D S, Glendining M J, et al.1997. Potential for carbon sequestration in European soils-preliminary estimates for five scenarios using results from long-term experiments [J]. Global Change Biology,3:67-79.
    [201]Smith P.2004. Carbon sequestration in croplands:The Potential in Europe and the global context. Europe Agronomy,20:229-236.
    [202]Smith P, Martino D, Cai Z C, et al.2008. Greenhouse gas mitigation in agriculture [J]. Philosophical Transactions of the Royal Society,363:789-813.
    [203]Somebroek W G, Nachtergaele F O, Hebel A.1993. Amounts, dynamics and sequestration of carbon in tropic and subtropical soil [J]. Ambio,22:417-426.
    [204]Song C, Woodeoek C E.2003. A regional forest ecosystem carbon budget model:impacts of forest age stmcture and landuse history [J]. Ecological Modelling,164:33-47.
    [205]Spackman L K, Munn L C.1984. Genesis and morphology of soils associated with formation of Larance Basis(Mima-Like)Mounds in Wyoming[J]. Soil Science Society of America Journal,48: 1382-1384.
    [206]Stewart C E, Paustian K, Conant R T, et al.2007. Soil carbon saturation:concept, evidence and evaluation [J]. Biogeochemistry,86:19-31.
    [207]Stephen M, Ogle F, Jay B, et al.2005. Agricultural management impacts on soil organic carbon storage under moist and dry climatic conditions of temperate and tropical regions [J].Biogeoehemistry, 72:87-121.
    [208]Tan Z X, Lal R.2005. Carbon sequestration Potential estimates with changes in land use and tillage Practice in Ohio, USA [J]. Agriculture, Ecosystems and Environment,111:140-152.
    [209]Thornley J H M, Verberne E L J.1989. A model of nitrogen flows in grass land [J]. Plant Cell and Environment, (12):863-886.
    [210]Thornton P E, Running S W, White M A.1997. Generating surfaces of daily meteorological variables over large regions of complex terrain [J]. J Hydrol,190:214-251.
    [211]Tiessen H, Stewart J W B.1983. Particle size fractions and their use in soil organic matter: II.Cultivation effects on organic matter composition in size fractions [J]. Soil Science Society of America journal,47:509-514.
    [212]Tiltyanova A, Bulavko G I, Kudryashova S, et al.1998. The reserves and losses of organic carbon in the soil of Siberia [J]. Pochrovedenie,7(1):51-59.
    [213]Trexler M C, Haugen C.1995. Keeping it Green:Evaluating Tropical Forestry Strategies to Mitigate Global Warming [M]. Washington, DC, USA:World Resource Institute.
    [214]Trumbore S E, Chadwick O A, Amundson R.1996. Rapid exchange between soil carbon and atmospheric carbon dioxide driven by temperature change [J]. Science,272:393-396.
    [215]Vauclin M.1983. The use of cokriging with limited field soil obserbations [J]. Soil Sci. Soc. Am.J., 47:175-184.
    [216]Vleeshouwers L M, Vethagen A.2002. Carbon emission and sequestration by agrieultural land use:a model study for Europe [J]. Global Change Biology,8:519-530.
    [217]Watson R T, Noble I R, Bolin B, et al.2000. Land Use, Land Use Change, and Forestry [M]. Cambridge, UK:Cambridge Univ.Press.
    [218]West T O, Six J.2007. Considering the influence of sequestration duration and carbon saturation on estimates of soil carbon capacity [J]. Climatic Change,80:25-41.
    [219]Wu J, O Donnell AG, Syers JK, et al.1998. Modeling soil organic matter changes in leyarabe rotations in sandy soils of Northeast Thailand [J]. Eur J Soil Sci., (49):463-470.
    [220]Webster R, BurgessT M.1980. Optimal interpolation and isarithmic mapping of soil properties.III. Changing drift and universal kriging. J [J]. Soil Sci.,31:505-524.
    [221]West T O, Post W M.2002. Soil organic carbon sequestration rates by tillage and crop rotation:a global data analysis [J]. Soil Sci Soc Am J,66:1930-1946.
    [222]Witt C, Cassman K G, Olk D C, et al.2000. Crop rotation and residue management effects on carbon sequestration, nitrogen cycling and productively of irrigated rice systems [J]. Plant Soil,225:263-278
    [223]Yan H M, Cao M K, Liu J Y, et al.2007. Potential and sustainability for carbon sequestration with improved soil management in agricultural soils of China [J]. Agr Ecosyst Environ,121:325-335.
    [224]Yost R S, Uchara G, Fox R L.1982b. Geostatistical analysis of soil chemical properties of large land areas:Ⅱ. Kriging [J]. Soil Sci. Soc. Am.J.,46:1033-1037.
    [225]Yost R S, Uehara G, Fox R L.1982a. Geostatistical analysis of soil chemical properties of large land areas:Ⅰ. Semivariogram [J]. Soil Sci.Soc.Am.J.46:1028-1032.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700