InGaN/GaN发光二极管的数学物理模型和特性及最优驱动电流研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铟镓氮/氮化镓(InGaN/GaN)发光二极管(Light-emitting diode:LED)照明节能技术是世界各国缓解能源危机的一个重要途径。InGaN/GaN LED电光热特性研究对LED固态照明的可行性、可靠性和经济性起着重要作用,对LED上中下游产业链的发展有重要意义。
     InGaN/GaN LED是一种电能转换为光能的半导体光电子器件,表现出复杂的电、光、热特性。针对典型的InGaN/GaN LED照明系统,借助试验研究和建模分析等手段,开展在脉宽调制(PWM)驱动电流下,电热等物理量对InGaN/GaN LED特性影响的研究,深化对LED特性及其微观机理的认识,并为多芯LED封装及其电流驱动的优化设计提供重要的理论和试验指导,主要工作包括以下几个方面。
     在一般商用LED测试系统的基础上,完善了InGaN/GaN LED电光热特性的研究测试平台:研制了满足电光热耦合特性研究的数控电源、温度测控装置,以及满足老化试验要求的PWM电流驱动单元等;采用虚拟仪器软件开发了测试软件系统,对商用LED综合测试平台进行了优化;讨论了特性试验研究的基本原理和方法;为InGaN/GaN LED特性的试验研究提供了必要的硬件支持及方法指导。
     利用搭建的测试平台开展了大量的InGaN/GaN LED试验研究,深入考察InGaN/GaN LED应用中存在的各种电光热耦合效应,并对LED特性进行了数学物理建模分析:重点研究了数学物理模型参数的提取算法,考察了算法的精度、速度、收敛性和鲁棒性,提出了满足建模需求的改进算法;在数学物理模型的基础上获得了特征量的基本特性,为InGaN/GaN LED特性的微观机理解释提供了更为准确、可靠的参考依据。
     针对单芯InGaN/GaN LED进行了大量老化试验研究,从InGaN/GaN LED材料属性、封装结构、载流子输运等角度,展开特性的微观机理研究,获得其特征量的演变规律,并进行了寿命预测研究,对InGaN/GaN LED的光衰现象提出了更合理的微观机理解释,为InGaN/GaN LED上游芯片生产企业的产品最优设计提供了参考。
     在单芯InGaN/GaN LED电光热特性的基础上,针对大功率照明的应用需求,研究多芯InGaN/GaN LED特性:对多芯InGaN/GaN LED电光热特性进行数学物理建模,并分析了多芯InGaN/GaN LED模型的参数优化及其过程;在此基础上,提出了一种新的多芯直嵌式封装技术,并给出了9芯InGaN/GaN LED模块(9芯片模块:9个单芯片LED组合使用的模块)的试验原型及其电光热性能,为大功率InGaN/GaN LED照明的光源设计和研制提供理论和实践指导。
     针对InGaN/GaN LED电流驱动的参数设置问题,根据单芯InGaN/GaN LED电光热特性的试验研究和建模分析结果,推导出了电光热耦合作用下单芯InGaN/GaN LED电流—光通量的近似简化模型,获得了定量光通量输出和最大光通量输出时的驱动电流方程;结合寿命预测的约束,提出驱动电流的最优化控制原理,为InGaN/GaN LED驱动设计提供了重要的理论指导。
     根据多芯InGaN/GaN LED电热特性的试验研究和建模分析结果,推导出了叠加热阻等效电路网络的电流—结温近似模型,提出了温度传感器的结温估计方法,降低多芯InGaN/GaN LED最优化驱动中结温测量的复杂性;给出了结温最小化的功率重分配电流控制策略,为多芯InGaN/GaN LED最优化驱动的低成本化提供了重要的实施途径。
     最后,利用9芯片模块和最优化驱动原理,结合大功率InGaN/GaN LED路灯应用实例,讨论了多芯InGaN/GaN LED的自适应最优电流驱动原理和方法,给出了基于9芯片模块的自适应电流驱动实例,实现了无温度传感器的InGaN/GaNLED自适应电流驱动控制,为InGaN/GaN LED路灯照明的进一步节能应用有着重要意义,同时为大功率LED路灯照明系统的研制提供了范例。
Indium gallium nitride (InGaN) and gallium nitride (GaN) based white lightemitting diode (LED) luminaire system presents a pathway to alleviate the energy crisisfacing the whole world. Research and exploration of the electrical, optical and thermalcharacteristics of the LED play a critical role to enhance feasibility, reliability andefficacy for LED lighting, therefore it is significant to the development of the solid statelighting industry.
     InGaN/GaN LED is an optoelectronic device converting the electrical energy tolight and exhibits complex characteristics. After analyzing the typical LED lightingsystem, the characteristics are extraordinarily complicated, especially by pulse-widthmodulation (PWM) waveform to drive the LED. With the experimental study andmodeling analysis, an understanding of LED characteristics and its mechanism can beenhanced, which provides an important experimental and theoretical guidance to theoptimal design of LED package and its current drive.
     To solve the weakness of commercial LED test system in measuring the electro-optical and thermal coupling characteristics, the key units including the digital currentsource, temperature controller, and PWM current-driver are developed, and they havebeen integrated into the commercial system by virtual instrument software to improvethe performances of the test platform. Moreover, the basic principles and methods ofexperiments are discussed. All these efforts provide the hardware support and methodguidance for the experimental study of the characteristics of InGaN/GaN LED.
     For an in-depth study of the electro-opto-thermal coupling effect in InGaN/GaNLED applications, numerous experimental, modeling and analysis studies of InGaN/GaN LEDs have been carried out according to the built platform, and the parameterextraction algorithms for the mathematical physics model and their accuracy have beenaddressed, furthermore, the improved algorithms are reported. Additionally, thecharacteristics and laws of the quantities for the InGaN/GaN LED are obtained, whichprovides a reference to understand microscopic mechanism and optimize the design.
     In order to obtain the microscopic understandings on the InGaN/GaN LEDcharacteristics, the collected data and their features of the single-chip LED have beeninvestigated according to the LED material properties, the package structures and thecarrier transports. The results can benefit the microscopic interpretations on InGaN/GaN LED light output decay and improvements of InGaN/GaN LED studies in the wholefabrication chain.
     For meeting the demand for multi-chips InGaN/GaN LED characteristics inhigh-power lighting applications, the mathematical and physical modeling on electro-opto-thermal characteristics of multi-chips LEDs has been conducted based on that ofthe single-chip LED, and the model parameters optimization process is given.Furthermore, a novel multi-chips on board (COB) package method is proposed, and an9-chips module prototype and its characteristics are demonstrated, which provides thetheoretical and practical guidance for the design and development of high powerInGaN/GaN LED.
     Focusing on parameters of drive current on InGaN/GaN LED, a simplifiedcurrent-light output model involving the electro-opto-thermal coupling characteristics ofsingle-chip LED has been derived from the experimental study and modeling of thecharacteristics. Furthermore, the drive currents at a quantitative and the maximum lightoutput have been obtained from the model, additionally; an optimization controlprinciple of the driving current is suggested combining the constraint of the estimatedlifetime. The results provide an important theoretical guidance for the InGaN/GaN LEDdriver design.
     To reduce junction temperature measurement complexity in the optimum currentdrive for multi-chips InGaN/GaN LEDs, the the superimposed thermal resistanceequivalent circuit network is derived from the characteristics of multi-chips InGaN/GaN LEDs, and a sensorless method to estimate the junction temperature is suggested,moreover, a current redistribution control strategy with the minimal junctiontemperature is given. The advantage casts a light on low-cost realization of the optimaldrive for multi-chips InGaN/GaN LEDs.
     Finally, based on the suggested9-chips module and optimal driving principle, ahigh-power street lighting lamp is illustrated to realize the adaptive current drive formulti-chips InGaN/GaN LEDs, in which the temperature sensor is not required, andmeanwhile, the further energy saving can be reached.
引文
[1]. E. F. Schubert. Light-Emitting Diodes [M]. Cambridge: Cambridge University Press,2006
    [2].中国国家863计划“高效半导体照明关键材料技术研发”.访问时间:2010年,www.most.gov.cn/tztg/201010/P020101026597535890973.pdf
    [3].美国能源部(U.S. Department of Energy).Solid State Lighting LED Manufacturing RoundtableSummary,2010.www1.eere.energy.gov/buildings/ssl/techroadmaps.html
    [4].美国桑迪亚国家实验室,访问时间2011年, http://ssls.sandia.gov/index.html
    [5].郭起宏,高京泉,贺孝田.LED道路照明若干技术瓶颈问题探讨[J].照明工程学报,2010,21(1):64-68.
    [6].王宏志.功率型白光LED荧光粉的研究进展[J].材料导报.2010,24(7):1-5
    [7]. Mary H. Crawford, Arthur J. Fischer, Daniel D. Koleske, Stephen R. Lee, Nancy A.Missert, E.Fred Schubert. Final LDRD Report: Nanoengineering for Solid-State Lighting Sandia NationalLaboratories [R].September,2009.
    [8]. Komine,T,Nakagawa,M. Fundamental analysis for visible light communication system usingLED lights [J]. IEEE Trans. on Consumer Electronic,2004,50(1):100-107.
    [9]. Hiroshi Fujiyasu,Takemitsu Ishigaki and etc.LED and semiconductor photo-effects on Livingthings[J]. J.Light&Vis. Env.,2008,32(2):222-225.
    [10].卫修明.植物工厂LED照明控制系统设计与研究[J].安徽农业大学学报.2010,37(4):806-810.
    [11].刘晓英,徐志刚,常涛涛等.不同光质LED弱光对樱桃番茄植株形态和光合性能的影响[J].西北植物学报.2010,30(4):725-732.
    [12]. Noriharu Miyaho, Noriko Konno and etc. Study on healing enivronment using Green,Blue andRed LED and Arom[J]. J.Light&Vis. Env.,2008,32(2):97-102.
    [13]. Nishivama,E. Kuwanami,K.Development of monitoring equipment of currents and voltages ofpower transmission lines[C].1st International Conference and Exhibition on Transmission andDistribution in the Asia Pacific Region, Yokohama, Japan,2002.
    [14]. Roderick L. Shepherd, William S. Yerazunis. Low-cost surface-mount LED gas sensor[J]. IEEESensors Journal,2006,6(4):861-866.
    [15]. Mary H. Crawford. LEDs for solid-state lighting: performance challenges and recentadvances[J]. IEEE Journal of Sel. top. in quantum electronics,2009,15(4):1028-1040.
    [16]. Zongyuan Liu, Sheng Liu, KaiWang and XiaobingLuo. Status and prospects forphosphor-based white LED packaging[J]. Frontiers of Optoelectronics in China,2009,2(2):119-140.
    [17].艾伟伟,郭霞,刘斌,宋颖娉,刘莹,沈光地.GaN基发光二极管的可靠性研究进展[J].半导体技术,2006,31(3):161-165.
    [18].龙兴明,周静.基于加性混光的色彩可调LED照明设计[J].半导体光电,2007,21(2):43-46.
    [19]. M. Arik, R. Sharma, J. Jackson, S. Prabhakaran, C. Seeley, Y., S. Weaver, G. Kuenzler, and B.Han. Development of a high-lumen solid state down light application[J]. IEEE Trans. Comp.and Pack Tech.,2010,33(4):668-679.
    [20]. N.Narendran,L.Deng and etc. Performance characteristics of high-power light-emittingdiodes[C].3rd International Conference on Solid State Lighting, San Diego, CA,2003.
    [21]. X. A. Cao, S. F. LeBoeuf, and T. E. Stecher. Temperature-dependent electroluminescence ofAlGaN-Based UV LEDs[J]. IEEE Electron Device Letters,2006,27(5):329-331.
    [22]. Qi Dai, Qifeng Shan, Jing Wang, Sameer Chhajed, Jaehee Cho, E. Fred Schubert and etc.Carrier recombination mechanisms and efficiency droop in GaInN/GaN light-emittingdiodes[J]. Applied Physics Letters,2010,97(13):133507-133509.
    [23].张福林,林旭,廖欣,何志毅.InGaN蓝光LED量子效率与注入电流的关系研究[J].光电子.激光2009,20(11):1442-1445.
    [24]. Hwang, T. C. Hsu, M. H. Hsieh, M. J. Jou and etc. GaN-Based LEDs with Al-DepositedV-Shaped sapphire facet mirror[J]. IEEE Photonics Technology Letters,2006,18(5):724-726.
    [25]. C. Wang, W.S. Lee, F. Zhang and N.Y. Kim. Si-based packaging platform for LED moduleusing electroplating method[J]. Electronics Letters,2010,46(17):1220-U78.
    [26].肖宗湖,张萌,熊传兵,江风益,王光绪等.裂纹对Si衬底GaN基LED薄膜应力状态的影响[J].人工晶体学报,2010,39(4):895-899.
    [27].刘军林,邱冲,江风益.Si衬底GaN基蓝光LED钝化增透膜研究[J].光学学报,2010,30(10):2978-2981.
    [28]. X.Long,R.Liao and J.Zhou. Development of street lighting system-based novel high-brightnessLED modules[J]. IET optoelectronics,2009,3(1):40-46.
    [29].霍彦明,吴淑梅.基于照明的LED阵列研究与仿真(英文)[J].发光学报,2009,30(4):436-440.
    [30]. V. K. Malyutenko,a_S. S. Bolgov, and A. D. Podoltsev. Current crowding effect on the idealityfactor and efficiency droop in blue lateral InGaN/GaN/GaN light emitting diodes[J]. AppliedPhysics Letters,2010,97(25):251110-251112.
    [31].田大垒,关荣锋,王杏.大功率LED封装有限元热分析[J].半导体技术,2008,22(3):248-251.
    [32].沈光地,张剑铭,邹德恕等.大功率GaN基发光二极管的电流扩展效应及电极结构优化研究[J].物理学报,2008,57(1):472-475.
    [33].郝丽敏,赵耀华,刁彦华等.基于平板热管的大功率LED照明散热研究[J].工程热物理学报,2010,31(9):1575-1577.
    [34].李华平,柴广跃,彭文达,牛憨笨.大功率LED的封装及其散热基板研究[J].半导体光电,2007,21(1):51-54.
    [35].冯先龙,恩云飞,宋芳芳.大功率LED照明灯有限元热设计与高效系统开发[J].半导体技术,2010,35(5):431-435.
    [36]. Shun-Cheng Hsu, Chong-Yi Lee, Jung-Min Hwang.Enhanced light output in roughenedGaN-Based light-emitting diodes using electrodeless photoelectrochemical etching[J]. IEEEPhotonics Technology Letters,2006,18(23):2472-2474.
    [37].周龙早,刘辉,安兵,吴丰顺等.荧光层形状对大功率白光LED光学性能的影响[J].光电子.激光,2010,21(2):175-177.
    [38]. Blom, P.W.M.; Martens, H.C.F.; Huiberts, J.N. Charge transport in polymer light-emittingdiodes[J]. Synthetic Metals,2001,121(s1):1621-1624.
    [39]. Soo-Kun Jeon, Jae-Gab Lee, Eun-Hyun Park. The effect of the internal capacitance ofInGaN/GaN-light emitting diode on the electrostatic discharge properties[J]. Applied PhysicsLetters,2009,94(13):131106-131107.
    [40]. C.T. Yang, W.C. Liu and C.Y. Liu. Measurement of thermal resistance of first-level Cusubstrate used in high-power multi-chips LED package[J].Microelectronics Reliability (2011),to be published.
    [41].张楼英,崔一平,罗宗南等.大功率LED整个寿命中的颜色漂移[J].液晶与显示,2010,25(2):210-214.
    [42].金豫浙,胡益培,曾祥华等.GaN基多量子阱蓝光LED的γ辐照效应[J].物理学报,2010,59(2):1258-1262.
    [43].李炳乾,郑同场,夏正浩.GaN基蓝光发光二极管正向电压温度特性研究[J].物理学报,2009,58(10):7189-7193.
    [44].李炳乾,刘玉华,冯玉春.功率GaN基发光二极管等效串联电阻的功率耗散及其对发光效率的影响[J].物理学报,2008,57(1):477-481.
    [45].陆海泉,李抒智,杨卫桥.LED受ESD冲击前后性能的变化分析[J].半导体技术,2010,35(10):.957-960.
    [46]. Frank Reifegerste and Jens Liening. Modelling of the tmerpature and current dependence ofLED spectra[J]. J.Light&Vis.Env.,2008,32(3):288-294.
    [47].沈海平.大功率LED可靠性预测机制研究[D].浙江大学博士学位论文,2008.
    [48]. G. F. Karlova, L. P. Umbras, and A. V. Khanin. Mechanism of charge transfer in GalliumArsenide light-emitting structures[J]. Russian Physics Journal,2003,46(3):254-256.
    [49]. X. A. Cao and S. D. Arthur. High-power and reliable operation of vertical light-emitting diodeson bulk GaN[J]. Applied Physics Letters,2004,85(18):3971-3973.
    [50]. P.Vitta,P.Pobedinskas.Phosphor thermometry in white light emitting diodes[J]. Photonics tech.Letters,IEEE,2007,19(6):399-401.
    [51].罗毅,郭文平,邵嘉平等.GaN基蓝光发光二极管的波长稳定性研究[J].物理学报,2004,53(8):2720-2723.
    [52].田传军,张希艳,邹军等.温度对大功率LED照明系统光电参数的影响[J].发光学报,2010,31(1):96-100.
    [53]. Georg Sauerl nder, Dirk Hente, Harald Radermacher. Driver electronics for LEDs[C].41stAnnual Meeting of the IEEE Industry-Applications-Society (IAS), Tampa, FL,2006.
    [54].裴倩,王正仕,陈辉明.大功率LED驱动电源对光效的影响研究[J].电力电子技术,2010,44(3):55-56.
    [55]. M. Meneghini,Lorenzo-Roberto Trevisanello,Gaudenzio Meneghesso. A Review on theReliability of GaN-Based LEDs[J]. IEEE Tran. On Device and Materials Reliability, JUNE2008,8(2):323-331.
    [56]. M. B¨urmen, F. Pernu and B. Likar.LED light sources: a survey of quality-affecting factorsand methods for their assessment[J]. Meas. Sci. Technol,2008,19(12):1-15.
    [57]. Levada S, Meneghini M, Meneghesso G and Zanoni E.Analysis of DC current accelerated lifetests of GaN LEDs using a Weibull-based statistical model[J]. IEEE Trans. Device Mater.Reliab.2005,5(4):688-693.
    [58]. M. Meneghini. Analysis of the physical processes that limit the reliability of GaN-basedoptoelectronic devices[D]. Ph.D. dissertation, University of Padova,2008.
    [59].杨少华,吴福根,张春华.白光LED的失效机理分析[J].半导体光电,2009,29(6):857-859.
    [60].薛正群,黄生荣,张保平等.GaN基白光发光二极管失效机理分析[J].物理学报,2010,59(7):5002-5008.
    [61]. N. C. Greenham,P. A. Bobbert. Two-dimensional electron-hole capture in a disordered hoppingsystem[J]. Physical Review B,2003,68(24):245301-1/7.
    [62]. Hisashi Masui, Tommy Ive1, Mathew C. Schmidt and etc.. Equivalent-circuit analysis for theelectroluminescence-efficiency problem of InGaN/GaN/GaN light-emitting diodes[J]. Jpn. J.Appl. Phys.2008,47(4):2112-2118.
    [63]. Gu Y.,Narendran N.,Dong T..Spectral and luminous efficacy change of high-power LEDs underdifferent dimming methods[C].6th International Conference on Solid State Lighting, SanDiego, CA,2006.
    [64].龙兴明,周静.基于SA7527的LED驱动电源的研制[J].电子器件,2007,30(3):904-907.
    [65].张占松,蔡宣三.开关电源原理与设计(修订版)[M].北京:电子工业出版社,2004.
    [66]. Xingming Long,Jing Zhou. An intelligent driver for light emitting diode street lighting [C].WAC2008,Hawaii, HI,2008.
    [67]. W.-H. Chi, T.-L. Chou, C.-N. Han, S.-Y. Yang, and K.-N. Chiang. Analysis of thermal andluminous performance of MR-16LED lighting module[J]. IEEE Trans. Comp. and Pack Tech.,2010,33(4):713-721.
    [68]. F.E. Bisogno, S. Nittayarumphong, M. Radecker. A line power-supply for LED lighting usingpiezoelectric transformers in class-E topology[C]. Conference Proceedings-IPEMC2006:CES/IEEE5th International Power Electronics and Motion Control Conference, Shanghai,China,2006.
    [69]. Buso, S.;Spiazzi, G. Meneghini, M.,etc..Performance degradation of high-brightness lightemitting diodes under DC and pulsed bias[J]. IEEE Transactions on.Device and MaterialsReliability,2008,8(2):312-322.
    [70]. Shih-Jen Cheng. Study and implementation of high efficiency dimmable LED drivers forgeneral lighting applications[D].国立台湾科技大学博士学位论文,2010.
    [71].杨媛,宋征华,高勇.全集成的可调光白光LED驱动芯片的设计[J].西安理工大学学报,2010,26(1):43-47.
    [72].杨晓光,汪友华,丁宁等.太阳能LED路灯照明系统的研制[J].电工技术学报,2010,25(6):130-136.
    [73].陈英,冯全源,滞流控制实现LED恒流驱动[J].微电子学与计算机,2010,27(6):193-196.
    [74].曲振江,周贵德.照明用无桥LED驱动电路及其输入电流谐波分析[J].电工技术学报,2010,25(6):137-143.
    [75].王廷宇,郭维,朱大中.大功率白光LED驱动电路的双环检测方法[J].传感技术学报,2010,23(4):485-489
    [76].孙明坤,周雒维,罗全明.串联谐振恒流LED驱动电源的分析及设计[J].电力电子技术,2010,44(8):93-94.
    [77]. Joachim Piprek. Efficiency droop in nitride-based light-emitting diodes[J]. Phys. Status SolidiA,2010,207(10):2217-2225.
    [78]. Y. Xi and E. F. Schuberta.Junction–temperature measurement in GaN ultraviolet light-emittingdiodes using diode forward voltage method[J]. Applied Physics Letters,2004,85(12):2163-2165.
    [79]. CREE公司主页:http://www.cree.com.
    [80]. OSRAM公司主页:http://www.osram-os.com.
    [81]. Anping Zhang. Gallim Nitride based electronic devices[D]. Ph.D. dissertation, University ofFlorida,USA,2001.
    [82].赵毅强,姚素英,解晓东等译.半导体物理与器件[M].北京:电子工业出版社,2010.
    [83]. P. Nowakowski, V. d'Alessandro, F. M. De Paola, M. Spirito, and N. Rinaldi. Advances inelectrothermal simulation of solid-state devices and circuits using commercial CAD tools[C].7th International Seminar on MICRO technology and THERMal problems in electronics(MICROTHERM), Lodz, Poland,2007.
    [84]. S.M. Olaizola, W.Fan, J-P. Wells, D. Mowbray, M. Skolnick, P. Parbrook, M. Fox.Time-resolved photoluminescence studies of carrier diffusion in GaN [J]. Applied PhysicsLetters,2006,89(7):072107-1/4.
    [85]. Ivan Moreno. Dirty LED: effect of dust, fat, fingerprints, water, oil and coal on light output[C].Conference on Light-Emitting Diodes-Materials, Devices, and Applications for Solid StateLighting XIV,San Francisco, CA,2010.
    [86]. V.Sz′ekely.Enhancing reliability with thermal transient testing[J]. Microelectron Reliability,2002,42(4-5):629-640.
    [87].张海兵,吕毅军,陈焕庭等.利用结构函数分析功率型LED的热特性[J].光电子·激光.2009,20(4):454-457.
    [88]. A. Getty, E. Matioli, M. Iza, C. Weisbuch, and J. S. Speck. Electroluminescent measurement ofthe internal quantum efficiency of light emitting diodes[J]. Applied Physics Letters,2009,94(18):181102.
    [89]. Chanseok Park and William J. Padgett. Stochastic degradation models with several acceleratingvariables[J]. IEEE Tran. on Reliability,2006,55(2):379-390.
    [90]. L. Trevisanello, M. Meneghini, G. Mua, M. Vanzi, M. Pavesi, G. Meneghesso, and E. Zanoni.Accelerated life test of high brightness light emitting diodes[J]. IEEE Trans. Device andMaterials Reliability,2008,8(2):304-311.
    [91]. Joachim Piprek.Introduction to the issue on optoelectronic device simulation[J].IEEE Journalof Sele. Topi. in Quan. Elec.,2003,9(3):685-687.
    [92].中仿科技: http://www.cntech.com.cn/product/COMSOL.html.
    [93].龙兴明,周静.基于MAX1647的LED参数测试仪驱动电路设计[J].电子器件2007,30(5):1754-1757.
    [94].龙兴明,周静.多功能LED参数测试系统的研制[J].半导体光电,2007,21(3):179-182.
    [95]. COMSOL Multiphysics Model Library. Stockholm: COMSOL[R],2006.
    [96]. Turin V.O..A modified transferred-electron high-field mobility model for GaN devicessimulation[J]. Solid-State Electronics,2005,49(10):1678-1682.
    [97]. X. M. Long, R. J. Liao, J. Zhou, and Z. Zeng. Multiple-chip package embedded on compoundboard for light emitting diode [J]. Electronics Letters, IET,2011,47(19):1142-1144.
    [98].龙兴明,周静.基于单片机控制的LED路灯节能驱动系统设计[J].电源技术.(录用,稿号:4298).
    [99].发明人:龙兴明.大功率LED驱动电路.实用新型,专利号: CN200720118233.7.
    [100]. Huang B. J.,Wu M. S.,Tang C. W..Reliability test of LED driven by PWM technique[C].Conference on Reliability of Photovoltaic Cells Modules, Components, and Systems, SanDiego, CA,2008.
    [101]. Cher Ming Tan, Boon Khai Eric Chen, and etc.Analysis of humidity effects on the degradationof high-power white LEDs[J].Microelectronics Reliability.2009,49(9-11):1226-1230.
    [102]. Xing-Ming Long, Rui-Jin Liao, and Jing Zhou. Numerical simulation on electronic-thermalproperties of gallium nitride based light emitting diodes embedded in board [J]. Advances inOptoElectronics,2012(2012),495981, pages6

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700