铬渣堆场铬污染特征及其铬污染土壤微生物修复研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是世界铬盐生产大国,年产量已超过16万吨,然而在其生产过程中产生大量含铬废渣。全国每年新排放铬渣约60万吨,历年累积堆存铬渣近400万吨。铬渣中含有0.3~1.5%可溶性Cr(VI),经降雨和地表水的冲刷,Cr(VI)进入周围土壤和地下水,对环境造成严重污染,目前我国受Cr(VI)严重污染的土壤达1250多万吨。铬渣堆场已经列为我国土壤污染重点治理对象。我们国家目前急需修复铬渣污染土壤的关键技术。因此,本文以湖南某工厂铬渣堆场所引起铬污染特点为基础,以修复铬污染土壤为目标,进行系统的研究,获得如下结果:
     湖南某厂铬渣堆场、渣堆周围以及厂外农业用地三个区域表层土壤总铬平均含量分别是我国土壤环境质量二级标准的5.6、7.6和5.O倍;这三个区域剖面土壤中总铬分别在土壤剖面40-60cm、20-40cm、O-20cm深度累积;铬渣淋溶出的铬可迁移至底土层;铬渣堆场土壤总铬以铁锰结合态为主,而铬渣堆场周围土壤总铬以残渣态为主;铬渣堆场和其周围表层土壤水溶性六价铬平均含量分别是对照区的137.5和30.1倍;厂外农作物芹菜、白菜及莴笋分别有50%、100%及75%的样品中可食部分铬含量超过我国食品铬限量卫生标准;工厂附近居民饮用水(井水)50%的样品中六价铬含量超过我国饮用水卫生标准。
     铬污染已严重抑制铬渣堆场土壤三大微生物区系(细菌、真菌和放线菌)的活性。与对照区相比,铬渣堆场土壤细菌、真菌和放线菌数量分别下降89.9%、99.8%和99.9%。污染土壤中细菌、真菌和放线菌数量均与土壤总铬和水溶性六价铬含量呈负相关关系;室内培养试验也表明,六价铬均不同程度地抑制了土壤可培养细菌、真菌和放线菌的生长和降低其多样性,其中放线菌对铬污染最敏感。铬污染对土壤多酚氧化酶和过氧化氢酶活性没有明显抑制,对土壤碱性磷酸酶的活性有轻度抑制,而土壤脱氢酶的活性严重受到抑制,可见土壤脱氢酶活性对铬污染较敏感,可用于土壤铬污染生物学预警指标。
     基于微生物在极端环境下生存的胁迫机制,从铬渣堆场铬污染土壤中分离出4株六价铬耐受菌,均为嗜碱性细菌;4株Cr(VI)耐受菌中只有一株具有较强的还原Cr(VI)的能力,24h内基本还原500mg/LCr(VI)。该细菌生长曲线表明其生长与其对Cr(VI)的还原并非同步进行,细菌的铬耐受力与其铬还原能力无直接关联;用扫描电镜对该铬还原菌还原Cr(VI)前后进行形貌观察,结果显示该细菌呈杆状,尾部生有鞭毛,表面附有少量丝状物质,还原Cr(VI)后,部分菌体末端黏附着一团不定形物质,细菌介质中也有大量的不定形物质聚积;采用EDAX和XPS对该菌还原Cr(VI)后的产物成分进行鉴定,结果表明Cr是产物中主要元素,Cr(VI)还原为Cr(III),且以Cr(OH)_3形式存在;细菌生理生化特性的测试以及16S rDNA的测序及比对均显示该铬还原菌属Pannonibacter phragmitetus。
     通过对培养基的优化,提出并研究了直接添加培养基激活Pannonibacter phragmitetus的活性来进行铬污染土壤的原位微生物修复新方法。在温度为30℃、土液比为1:1、碳源葡萄糖投加量为5g/kg、氮源化合物A投加量为5g/kg的情况下,该细菌能在4d内去除土壤总六价铬的效率达到92%,其中水溶性六价铬可基本上去除;5d后土壤中交换态六价铬去除率达到89%;10d后土壤碳酸盐结合态六价铬去除率达到84%。
     铬渣堆场土壤的修复是由Pannonibacter phragmitetus对Cr(VI)还原作用的结果,有机质、铁氧化物和锰氧化物等土壤固相组分并未参与Cr(VI)的还原;同时细菌代谢产物及其胞外酶也未表现出对Cr(VI)的还原作用。细菌对Cr(VI)还原机理是其胞内酶的直接还原作用,且胞内酶在NADH的参与下完成对Cr(VI)的还原。铬还原酶是菌体本身的组成酶而不是诱导酶,即组成酶具有还原Cr(VI)的能力。
China is one of major countries to produce chromate and the annual output of chromate was more than 160 thousand tons. However, a large amount of chromium-containing slag was discharged from chromate industries. The accumulated amount of chromium-containing slag was more than 4 million tons and 600 thousand tons are being discharged annually. Dissolvable hexavalent chromium (Cr(VI)) accounting for 0.3~1.5% of slag can be leached into soils and groundwater by rainfall and runoff, which incurs a significant risk to the environment and human health. At present, the accumulated soils polluted by chromium-containing slag reached up to 12.5 million tons. Chromium-containing slag heap sites are concerned as an important treatment object and the key technologies for remediating the polluted soils are urgently required in our country. Therefore, the characteristics of chromium (Cr) pollution at one chromium-containing slag site and Cr(VI) bioremediation in the contaminated soils were investigated in this dissertation.
     Mean concentrations of total Cr in the soils under the chromium-containing slag heap at one factory in Hunan province, in the vicinity of the slag heap and the agricultural land outside of the factory were 5.6, 7.6 and 5.0 times of the critical level of Secondary Environmental Quality Standard for Soil in China, respectively. The highest amount of total chromium in soil of these three areas was found at 40-60cm, 20-40cm and 0-20cm of soil depth respectively. Chromium was transported into the deep layer in soil profile. Fe and Mn oxides-bound chromium was the predominant fraction in the contaminated soils under the slag heap, while residual chromium was the main fraction in the soils in the vicinity of the slag heap. Mean contents of water soluble Cr(VI) in top soils under and in the vicinity of the slag heap were 137.5and 30.1 times of that in the unpolluted soils, respectively. According to the Tolerance Limit of Chromium in Foods, the occurance rates of exceeding over the critical level for the above-ground part of the celery, cabbage and lettuce on the farmland outside of the factory were 50%, 100% and 75%, respectively. Drinking water was heavily polluted and 50% of the samples exceeded the Cr(VI) Standard for Drinking Water Quality.
     The populations of three soil microflora were severely affected by chromium contamination. The populations of bacteria, fungi and actinomycetes decreased by 89.9%、99.8% and 99.9% as compared with that of the control site. The populations of bacteria, fungi and actinomycetes were all negatively correlated with the contents of total Cr and water soluble Cr(VI). Incubation experiment also indicated that hexavalent chromium inhibited the growth and decreased the diversities of soil culturable bacteria, fungi and actinomycetes. Actinomycetes was the most sensitive to Cr pollution. The activities of catalase and polyphenol oxidase in soils were not obviously depressed by chromium pollution and alkaline phosphatases activity was slightly suppressed by chromium pollution. However, Cr(VI) significant inhibited dehydrogenase activity, revealing that dehydrogenase activity could be used as a biological indicator for the chromium pollution.
     Four chromium-resistance strains were isolated from the contaminated soil under the chromium-containing slag heap. Only one strain exhibited a strong Cr(VI) reduction ability, which can completly reduce 500mg/L Cr (VI) within 24 h. Asynchrony of Cr(VI) reduction and cell growth was observed in this study. Moreover, Cr(VI) reduction ability of cells was independent on their resistance to Cr(VI). Scanning electron microscopy (SEM) was used to observe the morphologies of bacteria before and after Cr(VI) reduction. The results showed that the cells were rod with a flagellum at the terminal of bacteria. The discernible cluster of amorphous substances were bound to the terminal of the cells after reducing Cr(VI). Elemental composition and oxidation state of the chromium in the final product were verified by energy dispersive X-ray (EDAX) and X-ray photoelectron spectroscope (XPS) analysis, revealing that Cr was the major element that existed in trivalent state of chromium hydroxides under alkaline condition. Biochemical charasteristics and 16S rDNA sequencing showed that the chromate-reducing strain BB was a species of Pannonibacter phragmitetu.
     Based on the optimization of culture medium composition and growth conditions and ability of Cr(VI) reduction, the bioremediation of Cr-contaminated soil can be achieved by adding culture medium in soils to stimulate the activity of Pannonibacter phragmitetu. The optimal condition for the Cr(VI) reduction by Pannonibacter phragmitetu was 5g glucose and 5g yeast extract per kg soil at 30℃and the ratio of soil and water was 1:1. Under the optimal condition, 92% of total Cr(VI) in soil contaminated by chromium-containing slag heap was removed and water soluble Cr(VI) was completely removed at 4 days. Meanwhile, the removal of exchangeable Cr(VI) and carbonate-bound Cr(VI) reached up to 89% at 5 days and 84% at 10 days, respectively.
     The remediation of Cr-polluted soil was contributed to Cr(VI) reduction by Pannonibacter phragmitetu. Soil organic matter, iron oxides and magnesium oxides did not involve in Cr(VI) reduction in soils. The microbial metabolites and extracellular enzyme have no capability of reducing Cr(VI). The reduction of Cr(VI) by Pannonibacter phragmitetu was a direct reduction catalyzed by its intracellular enzyme. Furthermore, this intracellular enzyme was an NADH-dependent reductase. Cr(VI)-reducing enzyme was not induced by Cr(VI) but constitutively expressed in Pannonibacter phragmitetu.
引文
[1]仲维科,樊耀波,王敏健.我国农作物的重金属污染及其防止对策.农业环境保护,2001,20(4):270-272
    [2]武正华,张宇峰,王晓蓉.土壤重金属污染植物修复及基因技术的应用.农业环境保护,2002,21(1):84-86
    [3]曲日.土壤污染该如何处理.民防范,2007,29-30
    [4]陈怀满,郑春荣.中国土壤重金属污染现状与防治对策.人类环境杂志,1999,28(2):130-134
    [5]张书海,沈跃文.污灌区重金属污染对土壤的危害.环境监测管理与技术,2000,12(2):22-24
    [6]任爱玲.含铬污液在土壤中迁移规律的研究.城市环境与城市生态,2000,2(13):154-157
    [7]古昌红,单振秀,王瑞琪.铬渣对土壤污染的研究.矿业安全与环保,2005,32(6):18-20
    [8]胡望均.常见有毒化学品环境事故应急处理技术与监测方法.北京:中国环境科学出版社,1993.75-77
    [9]Petrilli FL,Flora SD.Toxicity and mutagenicity of hexavalent chromium on Salmonella typhimurium.Applied and Environmental Microbiology,1977,33(4):805-809
    [10]Gibb HJ,Lees PSJ,Pinsky PF.Lung cancer among workers in chromium chemical production.American Journal of Industrial Medicine,2000,38:115-126
    [11]董春莲,吕林萍.太原电镀厂铬鼻病10年动态观察.卫生与职业病,1994,4:49
    [12]纪柱.铬渣的危害及无害化处理综述.铬盐工业,2003,35(3):1-4
    [13]韩英魁.环保治理,刻不容缓.铬盐工业,2002,2:22-30
    [14]史黎蔽.铬化合物的健康效应.中国环境卫生,2003,6(1-3):125-129
    [15]刘逸浓,杨居荣,马太和.农业与环境.北京:化学工业出版社,1988
    [16]黄昌勇.土壤学.北京:中国农业出版社,2004.272
    [17]石磊,赵由才,牛冬杰.铬渣的无害化处理和综合利用.中国资源综合利用,2004.10:5-8
    [18]喻志科,言娟,长沙铬盐厂急需关停,红网 http://xwgl.rednet.com.cn/show.asp?id=324924.
    [19]兰嗣国,殷惠民,狄一安.浅谈铬渣解毒技术.环境科学研究,1998,11(3):53-56
    [20]王威,刘东华,蒋悟生.铬污染地区环境对植物生长的影响.农业环境保护,2002,21(3):257-259
    [21]陈传红.21世纪初期中国环境保护与生态环境建设科技发展战略研究.北京:中国环境科学出版社,2001
    [22]裴廷权.典型铬渣简易掩埋场铬渣及土壤铬污染特征和处置分析.环境工程学报,2008,2(7):994-999
    [23]罗建峰,曲东.青海海北化工厂铬渣堆积场土壤铬污染状况研究.西北农业学报,2006,15(6):244-247
    [24]李惠英,曾江海.土壤铬污染及其改良措施.环境导报,1990,2:5-7
    [25]陈英旭.铬的土壤化学.土壤学进展,1992,20(5):8-13
    [26]中国大百科全书.环境科学卷.北京:中国大百科全书出版社,1998.
    [27]曹仁林.铬渣的治理与利用.农业环境保护,1988,7(3):10-14
    [28]Avudainayagam S,Megharaj M,Owens G.Chemistry of chromium in soils with emphasis on Tannery Waste sites.Reviews of Environmental Contamination and Toxicology,2003,178:53-91
    [29]Kota(?) J,Stasicka Z.Chromium occurrence in the environment and methods of its speciation.Environmental Pollution,2000,107(3):263-283
    [30]Calder LM.Chromium contamination of groundwater.Advances in environmental science and technology,1988,20:215-229
    [31]李晶晶,彭恩泽.综述铬在土壤和植物中的赋存形式及迁移规律.工业安全与环保,2005,31(3):31-33
    [32]夏家淇.土壤环境质量标准详解.北京:中国环境科学出版社,1996.45-48
    [33]任爱玲,郭斌,刘三学,等.含铬污液在土壤中迁移规律的研究.城市环境与城市生态,2000,13(2):54-56
    [34]李桂菊.铬在植物及土壤中的迁移与转化.中国皮革,2004,33(5):30-34
    [35]黄瑞农.环境土壤学.北京:高等教育出版社,1997.
    [36]陈英旭,骆永明,朱永官.土壤中铬的化学行为研究.土壤学报,1994,31(1):77-85
    [37]陈英旭,朱祖祥,何增耀.环境中氧化锰对Cr(Ⅲ)氧化机理的研究.环境科学学报,1993,13(1):45-50
    [38]Bartlett R,James B.Behavior of Chromium in Soils:Ⅲ.Oxidation.Journal of Environmental Quality,1979,8(1):31-35
    [39]Paul R,Wittbrodt.,Carl D,et al.Effect of temperature,ionic strength,background electrolytes,and Fe(Ⅲ) on the reduction of hexavalent chromium by soil humic substances.Environmental Science and Technology,1996,30:2470-2477
    [40]杜良,王金生.铬渣毒性对环境的影响与产出量分析.安全与环境学报,2004,4(2):34-37
    [41]陈英旭.铬的土壤化学.土壤学进展,1992,20(5):7-13
    [42]Eary LE,Rai D.Chromate Reduction by Subsurface Soils under Acidic Conditions.Soil Science Society of America Journal,1991,55(3):676-683
    [43]James BR.Remediation-by-reduction strategies for chromate-contaminated soils.Environmental Geochemistry and Health,2001,23(3):175-179
    [44]陈英旭,何增耀,吴建平.土壤中铬的形态及转化.环境科学,1994,15(3):53-56
    [45]Tessier A,Campbell PGC,Bisson M.Sequential extraction procedure for the speciation of particulate trace metals.Analytical Chemistry,1979,51(7):844-850
    [46]李字庆,陈玲,仇雁翎.上海化学工业区土壤重金属元素形态分析.生态环境,2004,13(2):154-155
    [47]隆茜,张经.陆架区沉积物中重金属研究的基本方法及其应用.海洋湖沼通报,2002,3(3):25-35
    [48]Singh AK,Hasnain SI,Banerjee DK.Grain size and geochemical parti-tioning of heavy metals in sediments of the Damodar River-Atributary of the lower Ganga,India.Environmental Geology,1999,39(1):91-98
    [49]陈英旭,何增耀,吴建军.外源铬在土壤中的形态转化.农业环境保护,1995,14(3):105-110
    [50]Koleli N.Speciation of chromium in 12 agricultural soils from Turkey.Chemosphere,2004,57(10):1473-1478
    [51]韩春梅,王林山,巩宗强,等.土壤中重金属形态分析及其环境学意义.生态学杂志,2005,24(12):1499-1502
    [52]周启星,黄国宏.环境生物地球化学及全球环境变化.北京:科学出版社,2001
    [53]陈怀满.土壤-植物系统中的重金属污染.北京:科学出版社,1996
    [54]孙波,赵其国,张桃林,等,土壤质量与持续环境Ⅲ.土壤质量评价的生物学 指标.土壤,1997,29:225-234
    [55]杨晔,陈英旭,孙振世.重金属胁迫下根际效应的研究进展.农业环境保护,2001,20(1):55-58
    [56]Hattori H.Decomposition of organic matter with previous cadmium adsorption in soils.Soil Science and Plant Nutrition,1996,42(4):745-752
    [57]Brookes PC,Mcgrathe SP.Effect of metal toxicity on the size of the soil microbial biomass.European Journal of Soil Science,1984,35(2):341-346
    [58]Hemida SK,Omar SA,Abdel-MAllek AY.Microbial populations and enzyme activity in soil treated with heavy metals.Water Air & Soil Pollution,1997,95(1-4):13-22
    [59]杨桂芳,李德波.我国南方某些铜矿附近水稻土铜污染的调查研究.农村生态环境,1990,(4):55-58
    [60]Yao HY,Liu YY,Xue D,et al Effect of copper on phospholipid fatty acid composition of microbial communities in two red soils.Journal of Environmental Science,2006,18(3):503-509
    [61]Giller KE,Witter E,McGrath SP.Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils:a review.Soil Biology and Biochemistry,1998,30(10-11):1389-1414
    [62]Vig K,Megharaj M,Sethunathan N,et al.Bioavailability and toxicity of cadmium to microorganisms and their activities in soil:a review.Advances in Environmental Research,2003,8(1):121-135
    [63]Kelly JJ,Tate RL.Effects of heavy metal contamination and remediation on soil microbial communities in the vicinity of a zinc smelter.Journal of Environmental Quality,1998,27(3):609-617
    [64]Pennanen T,Frostegard A,Fritze H,et al.Phospholipid fatty acid composition and heavy metal tolerance of soil microbial communities along two heavy metal-polluted gradients in coniferousforests.Applied and Environmental Microbiology,1996,62(2):420-428
    [65]Smit E,Leeflang P,Wernars K.Detection of shifts in microbial community structure and diversity in soil caused by copper contamination using amplified ribosomal DNA restriction analysis.FEMS Microbiology Ecology,1997,23(3):249-261
    [66]Muller AK,Westergaard K,Christensen S.The effect of long-term mercury pollution on the soil microbial community.FEMS Microbiology Ecology,2001, 36(1):11-19
    [67]Frostegard A,Tunlid,A,Baath E.Changes in microbial community structure during long-term incubation in two soils experimentally contaminated with metals.Soil Biology and Biochemistry,1996.28(1):55-63
    [68]关松荫,张德生,张志明.土壤酶及研究方法.北京:中国农业出版社,1986.274-338
    [69]Wang Y,Shi J,Wang H,et al.The influence of soil heavy metals pollution on soil microbial biomass,enzyme activity,and community composition near a copper smelter.Ecotoxicology and Environmental Safety,2007,67(1):75-81
    [70]王广林,王立龙,沈章军等.冶炼厂附近水稻田土壤重金属污染与土壤酶活性的相关性研究.安徽师范大学学报,2004,27(3):310-313
    [71]李博文,杨志新,谢建治,等.土壤酶活性评价镉锌铅复合污染的可行性研究.中国生态农业学报,2006,14(3):132-134
    [72]李慧,陈冠雄,杨涛,等.沈抚灌区含油污水灌溉对稻田土壤微生物种群及土壤酶活性的影响.应用生态学报,2005,16(7):1355-1359
    [73]Nowak J,Kaklewski K,Ligocki M.Influence of selenium on oxidoreductive enzymes activity in soil and in plants.Soil Biology & Biochemistry,2004,36(10):1553-1558
    [74]周礼恺.土壤酶学.北京:科学出版社,1987
    [75]曾路生,廖敏,黄昌勇,等.镉污染对水稻土微生物量、酶活性及水稻生理指标的影响.应用生态学报,2005,16(11):2162-2167
    [76]Marzadori C,Ciavatta C,Montecchio D.Effects of lead pollution on different soil enzyme activities.Biology and Fertility of Soils,1996,22(1-2):53-58
    [77]邱莉萍,张兴昌.Cu Zn Cd和EDTA对土壤酶活性影响的研究.农业环境科学学报,2006,25(1):30-33
    [78]史长青.重金属污染对水稻土酶活性的影响.土壤通报,1995,26(1):34-35
    [79]沈佳琴,廖瑞章.重金属、非重金属、矿物油对土壤酶活性的影响.农业环境保护,1987,6(3):24-27
    [80]谭启玲,Mclaren RD.城市污泥中的重金属形态及其对潮土酶活性的影响.华中农业大学学报,2002,21(1):36-39
    [81]滕应,黄昌勇,龙健,等.铜尾矿污染区土壤酶活性研究.应用生态学报,2003,14(11):1976-1980
    [82]Yeates GW,Orchard VA,Speir TW.Impact of pasture contamination by copper chromium arsenic timber preservation on soil biologic activity.Biology and Fertility of Soils,1994,18:200-208
    [83]张彦,张惠文,苏振成,等.长期重金属胁迫对农田土壤微生物生物量、活性和种群的影响.应用生态学报,2007,18(7):1491-1497
    [84]Barajas-Aceves,M.Comparison of different microbial biomass and activity measurement methods in metal-contaminated soils.Bioresource Technology,2005,96(12):1405-1414
    [85]Schuller E.Enzyme activities and microbial biomass in old landfill soils with long term metal pollution.Verhandlungen Gesellschaft fur Okologie,1989,18:339-348
    [86]Kandeler F,Kampichler C,Horak O.Influence of heavy metals on the functional diversity of soil microbial communities.Biology and Fertility of Soils,1996,23(3):299-306
    [87]Yeates GW,Orchard VA,Speir TW.Impact of pasture contamination by copper chromium arsenic timber preservation on soil biologic activity.Biology and Fertility of Soils,1994,18:200-208
    [88]Aoyama M,Nagumo T.Factors affecting microbial biomass and dehydrogenase activity in apple orchard soils with heavy metal accumulation.Soil science and plant nutrition,1996,42(4):821-831
    [89]李永涛,吴启堂.土壤污染治理方法研究.农业环境保护,1997,16(3):118-122
    [90]夏星辉,陈静生.土壤重金属污染治理方法研究进展.环境科学,1997,18(3):72-76
    [91]Mulligan CN,Yong RN,Gibbs BF.Gibbs.Remediation technologies for metal-contaminated soils and groundwater:an evaluation.Engineering Geology,2001,60(1-4):193-207
    [92]Polettini A,Pomi R,Valente M.Remediation of a Heavy Metal-Contaminated Soil by Means of Agglomeration.Journal of Environmental Science and Health,Part A,2004,39(4):999-1010
    [93]Meegoda JN,Ezeldin AS,Fang HY,et al.Waste immobilization technologies.Practice Periodical of Hazardous,Toxic,and Radioactive Waste Management,2002,7(1):46-58
    [94]Blowes DW,Ptacek C J,Jambor JL.In-situ remediation of Cr(Ⅵ)-contaminated gruondwater using permeable reactive walls:laboratory studies.Environmental Science and Technology,1997,31(12):3348-3357
    [95]Seaman JC,Bertsch PM,Schwallie L.In situ Cr(Ⅵ) reduction within coarse-textured,xide-coated soil and aquifer systems using Fe(Ⅱ) solutions.Environmental Science and Technology,1999,33(6):938-944
    [96]Khan FA,Puts RW.In Situ Abiotic Detoxification and Immobilization of Hexavalent Chromium.Ground Water Monitoring & Remediation,2003,23(1):77-84
    [97]Xu XR,Li HB,L i XY,et al..Reduction of hexavalent chromium by ascorbic acid in aqueous solutions.Chemosphere,2004,57(7):609-613
    [98]Higgins TE,Halloran AR,Dobbins ME.In situ reduction of hexavalent chromium in alkaline soils enriched with chromite ore processing residue.Journal of the Air & Waste Management Association.1998.48:1100-1106
    [99]周加祥,刘铮.铬污染土壤修复技术研究进展.环境污染治理技术与设备,2000,1(4):52-56
    [100]Pichtel J,Pichtel TM.Comparison of solvents for ex situ removal of chromium and lead from contaminated soil.Environmental engineering science,1997,14(2):97-104
    [101]Li Z,Yu JW,Neretnieks I.A new approach to electrokinetic remediation of soils polluted by heavy metals.Journal of Contaminant Hydrology,1996,22(3-4):241-253
    [102]Acar YB,Alshawabkeh AN.Principles of electrokinetic remediation.1993,(13):2638-2647
    [103]Reddy KR,Chinthamreddy S.Effects of initial form of chromium on electrokinetic remediation in clays.Advances in environmental Research,2003,7(2):353-365
    [104]Reddy KR,Parupudi US,Devulapalli SN,et al.Srinivas N.Effects of soil compositon on the removal of chromium by electrokinetics.Journal of Hazardous Materials,1997,55(24):135-158
    [105]Reddy KR,Chinthamreddy S.Electrokinetic remediation of heavy metal contaminated soils under reducing environments.Waste Management,1999,19(4):269-282
    [106]Reddy KR,Xu CY,Chinthamreddy S.Assessment of electrokinetic removal of heavy metals from soils by sequential extraction analysis.Journal of Hazardous Materials,2001,84(2):279-296
    [107]Gent DB,Bricka RM,Alshawabkeh AN,et al.Bench and field scal evaluation of chromium and cadmium extraction by electrokinetics.Journal of Hazardous Materials,2004,110(1-3):53-62
    [108]Sanjay K,Arora A,Shekhar R.Electroremediation of Cr(Ⅵ)contaminated soils:kinetics and energy efficiency.Colloids and Surfaces A:Physicochemical and Engineering,2003,22(1):253-259
    [109]周东美,仓龙,邓昌芬.过氧化氢对铬在黄棕壤中电动过程的影响.土壤学报,2005,42(1):59-63
    [110]周东美,仓龙,邓昌芬.络合剂和酸度控制对土壤铬电动过程的影响.中国环境科学,2005,25(1):10-14
    [111]孟凡生,王业耀.铬(Ⅵ)污染土壤电动修复影响因素研究.农业环境科学学,2006,25(4):983-987
    [112]黄健,邱胜鹏,魏榕,等.动电技术在铬污染土壤修复中的应用及研究现状.工业安全与环保,2006,32(8):6-9
    [113]王文兴,童莉,海热提.土壤污染物来源及前沿问题.生态环境,2005,14(1):1-5
    [114]Baker AJM,Brooks RR.Terrestrial higher plants which hyperaccumulate metallic elements-a review of their distribution,ecology and phytochemistry.Biorecovery,1989,1(2):81-126
    [115]Reeves RD,Baker AJM.Metal-accumulating plants.In Phytoremediation of Toxic Metals:Using Plants to Clean up the Environment.Edited by Raskin I,Ensley BD:John Wiley & Sons,2000.193-229
    [116]张学洪,罗亚平,黄海涛,等.一种新发现的湿生铬超积累植物——李氏禾(Leersia hexandra Swartz).生态学报,2006,26(3):950-953
    [117]张学洪,罗亚平,黄海涛,等.某电镀厂土壤重金属污染及植物富集特征.桂林工学院学报,2005,25(3):289-292
    [118]张群芳.生物反应器填埋场中重金属固定和释放规律实验研究.清华大学学报,2007,47(9):1466-1472
    [119]关晓辉,秦玉春,秦玉华等.纳米Fe3O4负载的浮游球衣菌去除Cr(Ⅵ)的研究.环境科学,2007,28(9):2096-2100
    [120]李强,陈明,崔富昌.生物吸附剂ZL5-2对Cr(Ⅵ)的吸附机理.环境科学,2006,27(2):343~346
    [121]Vankar PS,Bajpai D.Phyto-remediation of chrome-Ⅵ of tannery effluent by Trichoderma species.Desalination,2008,222(1-3):255-262
    [122]Tunali S,Kiran I,Akar T.Chromium(Ⅵ) biosorption characteristics of Neurospora crassa fungal biomass. Minerals Engineering, 2005,18(7): 681-689
    [123]Nourbakhsh M, Sag Y, Ozer D. A comparative study of various biosorbents for removal of chromium(Ⅵ) ions from industrial waste waters. Process Biochemistry, 1994,29: 1-5
    [124]Bai RS, Abraham TE. Studies on chromium(Ⅵ) adsorption-desorption using immobilized fungal biomass. Bioresource Technology, 2003, 87: 17-26
    [125]Srivastava S, Thakur IS. Evaluation of bioremediation and detoxification potentiality of Aspergillus niger for removal of hexavalent chromium in soil microcosm. Soil Biology and Biochemistry, 2006,38(7): 1904-1911
    [126]Tokunaga TK, Wan J, Hazen TC, et al. Distribution of chromium contamination and microbial activity in soil aggregates. Journal of Environmental Quality, 2003, 32(2): 541-549
    [127]Salunkhe PB, Dhakephalkar PK, Paknikar KM. Bioremediation of hexavalent chromium in soil microcosms Biotechnology Letters, 1998, 20(6): 749-751
    [128]Reddy KR, Cutright TJ. Nutrient amendment for the bioremediation of a chromium-contaminated soil by electrokinetics. energy sources, Part A: Recovery, Utilization, and Environmental Effects, 2003,25(9): 931-943
    [129]Losi ME, Amrhein C, Frankenberger WT, et al. Bioremediation of Chromate-Contaminated Groundwater by Reduction and Precipitation in Surface Soils. Journal of Environmental Quality, 1994, 23(6): 1141-1150
    [130]Tseng JK, Bielefeldt AR. Low-temperature chromium(Ⅵ) biotransformation in soil with varyingelectron acceptors. Journal of Environmental Quality, 2002, 31(6): 1831-1841
    [131]Valerie D. Utilization of supernatants of pure cultures of Streptomyces thermocarboxydus NH50 to reduce chromium toxicity and mobility in contaminated soils. Water, Air, and Soil Pollution, 2003, 3: 156-160
    [132]Jeyasingh J, Philip L. Bioremediation of chromium contaminated soil: optimization of operating parameters under laboratory conditions. Journal of Hazardous Materials, 2005, 118(1-3): 113-120
    [133]Desjardin V, Bayard R, Huck N, et al. Effect of microbial activity on the mobility of chromium in soils. Waste Managem ent, 2002,22(2): 195-200
    [134]Cifuentes FR, Lindemann WC, Barton LL. Chromium sorption and reduction in soil with implications to bioremediation. Soil Science, 1996,161(4): 233-234
    [135]Losi ME, Amrhein C, Frankenberger WT. Factors affecting chemical and biological reduction of hexavalent chromium in soil. Environmental Toxicology and Chemistry, 1994, 13(11): 1727-1735
    [136]Turick CE, Apel WA. A bioprocessing strategy that allows for the selection of Cr(VI)-reducing bacteria from soils. Journal of Industrial Microbiology and Biotechnology, 1997,18(4): 247-250
    [137]Smith WL. Hexavalent chromium reduction and precipitation by sulphatereducing bacterial biofilms. Environmental Geochemistry and Health, 2001,23:297-300
    [138]Ganguli A. Bioremediation of toxic chromium from electroplating effluent by chromate-reducing Pseudomonas aeruginosa A2Chr in two bioreactors. Applied Microbiology and Biotechnology, 2002, 58: 416-420
    [139]Krishna KR, Philip L. Bioremediation of Cr(Ⅵ) in contaminated soils. Journal of Hazardous Materials, 2005, 121(1-3): 109-117
    [140]Konovalova VV, Dmytrenko GM, Nigmatullin RR, et al. Chromium(Ⅵ) reduction in a membrane bioreactor with immobilized Pseudomonas cells. Enzyme and Microbial Technology, 2003, 33(7): 899-907
    [141]Kamaludeen SPB, Megharaj M, Juhasz AL, et al. Chromium-Microorganism Interactions in Soils: Remediation Implications Reviews of Environmental Contamination and Toxicology, 2003, 178: 93-164
    [142]Sttephen. Bioremadiation of chromium (Ⅵ) contamination, solid residues: US, 5155042 [P], 1992, 10-13
    [143]Lebedeva EV, Lyalikova NN. Reduction of crocoite by Pseudomonas chromatophila sp. Mikrobiologiya, 1979, 48: 517-522
    [144]Romanenko, VI. Korenkov VN. A pure culture of bacteria utilising chromates and bichromates as hydrogen acceptors in growth under anaerobic conditions. Microbiology, 1977, 46: 329-332
    [145]Lovley DR, Coates JD. Bioremediation of metal contamination. Current Opinion in Biotechnology, 1997, 8(3): 285-289
    [146]Lovley DR. Dissimilatory Metal Reduction. Annual Review of Microbiology, 1993,47(1): 263-290
    [147]Ishibashi Y, Cervantes C, Silver S. Chromium reduction in Pseudomonas putida. Applied and Environmental Microbiology, 1990, 56(7): 2268-2270
    [148]Wang PC, Mori T, Komori K, et al. Isolation and Characterization of an enterobacter cloacae strain that reduces hexavalent chromium under anaerobic conditions.Applied and Environmental Microbiology,1989,55(7):1665-1669
    [149]McLean J,Beveridge TJ.Chromate reduction by a pseudomonad isolated from a site contaminated with chromated copper arsenate.Applied and Environmental Microbiology,2001,67(3):1076-1084
    [150]Pal A,Dutta S,Paul AK.Reduction of Hexavalent Chromium by Cell-Free Extract of Bacillus sphaericus AND 303 Isolated from Serpentine Soil.Current Microbiology,2005,51(5):327-330
    [151]Shen H,Wang YT.Characterization of enzymatic reduction of hexavalent chromium by Escherichia coli ATCC 33456.Applied and Environmental Microbiology,1993,59(11):3771-3777
    [152]Myers CR,Carstens BP,Antholine WE,et al.Chromium(Ⅵ) reductase activity is associated with the cytoplasmic membrane of anaerobically grown Shewanella putrefaciens MR-1.Journal of Applied Microbiology,2000,88(1):98-106
    [153]Park CH,Keyhan M,Wielinga B,et al.Purification to Homogeneity and Characterization of a Novel Pseudomonas putida Chromate Reductase.Applied and Environmental Microbiology,2000,66(5):1788-1795
    [154]Thacker U,Parikh R,Shouche Y,et al.Reduction of chromate by cell-free extract of Brucella sp.isolated from Cr(Ⅵ) contaminated sites.Bioresource Technology,2007,98(8):1541-1547
    [155]Bopp LH,Ehrlich HL.Chromium resistance plasmid in Pseudomonas fluorescens strain LB300.Archives of Microbiology,1988,150(4):422-430
    [156]Wang PC,Mori T,Toda K,et al.Membrane-associated chromate reductase activity from Enterobacter cloacae.Journal of Bacteriology,1990,172(3):1670-1672
    [157]Lovley DR,Phillips EJP.Reduction of Chromate by Desulfovibrio vulgaris and Its c3 Cytochrome.Applied and Environmental Microbiology,1994,60(2):726-728
    [158]V(?)zquez-Morillas A,Vaca-Mier M,Alvarez PJ.Biological activation of hydrous ferric oxide for reduction of hexavalent chromium in the presence of different anions.European Journal of Soil Biology,2006,42(2):99-106
    [159]Viera M,Curutchet G,Donati E.A combined bacterial process for the reduction and immobilization of chromium.International Biodeterioration &Biodegradation,2003,52(1):31-34
    [160]瞿建国,申如香,徐伯兴.硫酸盐还原菌还原Cr(Ⅵ)的初步研究.华东师范 大学学报,2005,1:105-110
    [161]Wielinga B,Mizuba MM,Hansel CM,et al.Iron promoted reduction of chromate by dissimilatory iron-reducing bacteria.Environmental Science and Technology,2001,35:522-527
    [162]Gonzalez CF,Ackerley DF,Park CH,et al.A Soluble Flavoprotein contributes to chromate reduction and tolerance by Pseudomonas putida.Acta Biotechnologica,2003,23(2-3):233-239
    [163]Fendorf SE,Zasoski RJ.Chromium(Ⅲ) oxidation by δiMnO_2.I:Characterization.Environmental science & technology,1992,26:79-85
    [164]Fendorf SE.Surface reactions of chromium in soils and waters.Geoderma,1995,67(1-2):55-71
    [165]Johnson CA,Xyla AG.The oxidation of chromium(Ⅲ) to chromium(Ⅵ) on the surface of manganite.Geochimica et Cosmochimica Acta,1991,55(10):2861-2866
    [166]Corker JM,Evans J,Rummey JM.EXAFS studies of pillared clay catalysts.Materials Chemistry.Physics,1991,29:201-209
    [167]Fendorf SE,Lamble GM,Stapleton MG.,et al.Mechanisms of chromium(Ⅲ)sorption on silica.1:An X-ray absorption fine structure spectroscopic analysis.Environmental Science and Technology,1994,28(2):284-289
    [168]Turner MA,Rust RH.Effects of chromium on growth and mineral nutrition of soybeans.Soil Science Society of America Journal,1971,35:755-758
    [169]莫争,王春霞,陈琴,等.重金属Cu,Pb,Zn,Cr,Cd在土壤中的形态分布和转化.农业环境保护,2002,21(1):9-12
    [170]丁成,王世和,严金龙,等.污灌湿地系统土壤一植物中铬的赋存形态研究.生态环境,2005,14(6):835-837
    [171]Yang F.Utilization of Chromium Dregs as Cement Mineralizer.Environmental Protection of Chemical Industry,2001,21(4):221-223
    [172]Al-Khashman OA,Shawabkeh RA.Metals distribution in soils around the cement factory in southern Jordan.Environmental Pollution,2006,140(3):387-394
    [173]Schulin R,Curchod F,Mondeshka M,et al.Heavy metal contamination along a soil transect in the vicinity of the iron smelter of Kremikovtzi(Bulgaria).Geoderma,2007,140(1-2):52-61
    [174]Nadal M,Schuhmacher M,Domingo JL.Metal pollution of soils and vegetation in an area with petrochemical industry.Science of the Total Environment,2004,321(1-3):59-69
    [175]Bini C,Maleci L,Romanin A.The chromium issue in soils of the leather tannery district in Italy.Journal of Geochemical Exploration,2008,96(2-3):194-202
    [176]Kashem MDA,Singh BR.Heavy metal contamination of soil and vegetation in the vicinity of industries in Bangladesh.Water Air and Soil Pollution,1999,115(1-4):347-361
    [177]http://news.qq.com/a/20051014/001078.htm,危险废物须重视湖南某厂20万吨铬渣亟待解毒,红网,2005
    [178]鲁如坤.土壤农业化学分析方法.北京:中国农业科技出版社,1999
    [179]Chen JM,Hao OJ.Microbial Chromium(Ⅵ) Reduction.Critical Reviews in Environmental Science and Technology,1998,28(3):219-251
    [180]Shanker AK,Cervantes C,Loza-Tavera H,et al.Chromium toxicity in plants.Environment International,2005,31(5):739-753
    [181]Loyaux-Lawniczak S,Lecomte P,Ehrhardt JJ.Ehrhardt.Behavior of hexavalent chromium in a polluted groundwater:Redox processes and immobilization in soils.Environmental Science & Technology,2001,35(7):1350-1357
    [182]Morgado P,Pereira V,Pinto MS.Chromium in Portuguese soils surrounding electroplating facilities.Environmental Geochemistry and Health,2001,23(3):225-228
    [183]Lebow S,Foster D,Evans J.Long-term soil accumulation of chromium,copper,and arsenic adjacent to preservative-treated wood.Bulletin of Environmental Contamination and Toxicology,2004,72(2):225-232
    [184]Tzou YM,Loeppert RH,Wang MK.Light-catalyzed chromium(Ⅵ) reduction by organic compounds and soil minerals.Journal of Environmental Quality,2003,32(6):2076-2084
    [185]Ljung K,Otabbong E,Selinus O.Natural and anthropogenic metal inputs to soils in urban Uppsala,Sweden.Environmental Geochemistry and Health,2006,28(4):353-364
    [186]Bhattacharya P,Mukherjee AB,Jacks G,et al.Metal contamination at a wood preservation site:characterisation and experimental studies on remediation.Science of the Total Environment,2002,290(1-3):165-180
    [187]Rai D,Eary LE,Zachara JM.Environmental chemistry of chromium.Science of the Total Environment,1989,86(1-2):15-23
    [188]Shtiza A,Swennen R,Tashko A.Chromium and nickel distribution in soils,active river,overbank sediments and dust around the Burrel chromium smelter (Albania).Journal of Geochemical Exploration,2005,87(3):92-108
    [189]Garnier J,Quantin C,Martins ES,et al.Solid speciation and availability of chromium in ultramafic soils from Niquelandia,Brazil.Journal of Geochemical Exploration,2006,88(1-3):206-209
    [190]杨锋,汤辛农,肖泽宏,等.湖南土壤.北京:中国农业出版社,1989
    [191]Balasoiu CF,ZaguryL G.J.Partitioning and speciation of chromium,copper,and arsenic in CCA-contaminated soils:influence of soil composition.Science of the Total Environment,2001,280(1-3):239-255
    [192]Elliott HA,Liberati MR,Huang CP.Competitive adsorption of heavy metals by soils.Journal of Environmental Quality,1986,15(3):214-219
    [193]Agbenin JO.The distribution and dynamics of chromium and nickel in cultivated and uncultivated semi-arid soils from Nigeria.Science of the Total Environment,2002,300(1-3):189-199
    [194]Hopp L,Peiffer S,Durner W.Spatial variability of arsenic and chromium in the soil water at a former wood preserving site.Journal of Contaminant Hydrology,2006,85(3-4):159-178
    [195]Carey PL,Bidwell VJ,McLaren RG.Chromium(Ⅳ) leaching from large undisturbed soil lysimeters following application of a simulated copper-chromium-arsenic(CCA) timber preservative.Australian Journal of Soil Research,2002,40(4):715-715
    [196]Lerner DN,Tellam JH.The Protection of Urban Groundwater from Pollution.Water and Environment Journal,1992,6(3):28-36
    [197]McBride MB.Environmental Chemistry of Soils.USA:Oxiford University Press,1994
    [198]Wittbrodt PR,Palmer CD.Reduction of Cr(Ⅵ) in the presence of excess soil fulvic acid.Environmental Science and Technology,1995,29:255-263
    [199]Ma ZM,Zhu WW,Long HZ,et al.Chromate reduction by resting cells of Achromobacter sp.Ch-1 under aerobic conditions.Process Biochemistry,2007,42(6):1028-1032
    [200]陈怀满.土壤环境学.北京:科学出版社,2005
    [201]成思危.铬盐生产工艺.北京:化学工业出版社,1988
    [202]柴立元,赵堃,舒余德,等.铬渣NaCl浸出动力学.中南大学学报(自然科学 版),2007,38(3):445-449
    [203]柴立元,龙腾发,唐宁,等.微生物治理碱性含铬废水的试验研究.中南大学学报(自然科学版),2005,36(5):816-820
    [204]Viti C,Mini A,Ranalli G.,et al.Response of microbial communities to different doses of chromate in soil microcosms.Applied Soil Ecology,2006,34(2-3):125-139
    [205]Shi W,Bischoff M,Turco R,et al.Long-term effects of chromium and lead upon the activity of soil microbial communities.Applied Soil Ecology,2002,21(2):169-177
    [206]Viti C,Giovannetti L.The impact of chromium contamination on soil heterotrophic and photosynthetic microorganisms.Annals of Microbiology,2001,51(2):201-213
    [207]Muller AK,Westergaard K,Christensen S,et al.The diversity and function of soil microbial communities exposed to different disturbances.Microbial Ecology,2002,44(1):49-58
    [208]Avidano L,Gamalero E,Cossa G.P,et al.Characterization of soil health in an Italian polluted site by using microorganisms as bioindicators.Applied Soil Ecology,2005,30(1):21-33
    [209]Shukurov N,Pen-Mouratov S,Steinberger Y.The influence of soil pollution on soil microbial biomass and nematode community structure in Navoiy Industrial Park,Uzbekistan.Environment International,2006,32(1):1-11
    [210]Gong P,Siciliano SD,Srivastava S,et al.Assessment of pollution-induced microbial community tolerance to heavy metals in soil using ammonia-oxidizing bacteria and biolog assay.Human and Ecological Risk Assessment,2002,8(5):1067-1081
    [211]Casucci C,Okeke BC,Frankenberger WT.Effects of mercury on microbial biomass and enzyme activities in soil.Biological Trace Element Research,2003,94(2):179-191
    [212]Madejon E,Burgos P,Murillo JM,et al.Phytotoxicity of organic amendments on activities of select soil enzymes.Communications in Soil Science and Plant Analysis,2001,32(13-14):2227-2239
    [213]Gianfreda L,Sannino F,Ortega N,et al.Activity of free and immobilized urease in soil:Effects of pesticides.Soil Biology and Biochemistry,1994,26(6):777-784
    [214]Deng SP, Tabatabai MA. Cellulase activity of soils:Effect of trace elements. Soil Biology and Biochemistry, 1994,26(10): 1347-1354
    [215]Hinojosa MB, Carreira JA, Garcia-Ruiz R, et al. Soil moisture pre-treatment effects on enzyme activities as indicators of heavy metal-contaminated and reclaimed soils. Soil Biology and Biochemistry, 2004, 36(10): 1559-1568
    [216]Renella G., Ortigoza ALR, Landi L, et al. Additive effects of copper and zinc on cadmium toxicity on phosphatase activities and ATP content of soil as estimated by the ecological dose (ED50). Soil Biology and Biochemistry, 2003, 35(9): 1203-1210
    [217]Trasar-Cepeda C, Leiros MC, Seoane S, et al. Limitations of soil enzymes as indicators of soil pollution. Soil Biology & Biochemistry, 2000, 32(13): 1867-1875
    [218]Margesin R, Zimmerbauer A, Schinner F. Monitoring of bioremediation by soil biological activities. Chemosphere, 2000, 40(4): 339-346
    [219]许光辉,郑洪元.土壤微生物分析方法手册.北京:中国农业出版社,1986. 226-228
    [220]Gillan DC. The effect of an acute copper exposure on the diversity of a microbial community in North Sea sediments as revealed by DGGE analysis - the importance of the protocol. Marine Pollution Bulletin, 2004, 49(5-6): 504-513
    [221]Rajapaksha R, Tobor-Kaplon MA, Baath E. Metal toxicity affects fungal and bacterial activities in soil differently. Applied and Environmental Microbiology, 2004, 70(5): 2966-2973
    [222]Maliszewska-Kordybach B, Smreczak B. Habitat function of agricultural soils as affected by heavy metals and polycyclic aromatic hydrocarbons contamination. Environment International, 2003, 28(8): 719-728
    [223]Muhammad A, Xu J, Li Z, et al. Effects of lead and cadmium nitrate on biomass and substrate utilization pattern of soil microbial communities. Chemosphere, 2005, 60(4): 508-514
    [224]Holtze MS, Nielsen P, Ekelund F, et al. Mercury affects the distribution of culturable species of Pseudomonas in soil. Applied Soil Ecology, 2006, 31(3): 228-238
    [225]Johnsen K,. Ekelund F, Binnerup SJ, et al. Mercury decreases culturability of Pseudomonas frederiksbergensis JAJ 28 in soil microcosms. Current Microbiology,2003,47(2):125-128
    [226]Korthals GW,Ende A,Megen H,et al.Short-term effects of cadmium,copper,nickel and zinc on soil nematodes from different feeding and life-history strategy groups.Applied Soil Ecology,1996,4(2):107-117
    [227]Maliszewska W,Dec S,Wierzbicka H,et al.The influence of various heavy metal compounds on the development and activity of soil micro-organisms.Environmental Pollution Series A,Ecological and Biological,1985,37(3):195-215
    [228]Cervantes C,ji G.,Ramirez J,et al.Resistance to arsenic compounds in microorganisms.FEMS Microbiology Reviews,1994,15(4):355-367
    [229]Ranjard L,Nazaret S,Gourbiere F,et al.A soil microscale study to reveal the heterogeneity of Hg(Ⅱ) impact on indigenous bacteria by quantification of adapted phenotypes and analysis of community DNA fingerprints.FEMS Microbiology Ecology,2000,31(2):107-115
    [230]滕应,黄昌勇,龙健,等.铅锌银尾矿污染区土壤微生物区系及主要生理类群研究.农业环境科学学报,2003,22(4):408-411
    [231]Acosta V Lodeiros C.Heavy metals in the clam Tivela mactroides Born,1778(Bivalvia:Veneridae) from coastal localities with different degrees of contamination in Venezuela.Ciencias Marinas,2004,30(2):323-333
    [232]史艇.重金属和矿物油对土壤微生物生态活性的影响.农业环境保护,1993,12(3):105
    [233]Khan S,Cao Q,Hesham AEL,et al.Soil enzymatic activities and microbial community structure with different application rates of Cd and Pb.Journal of Environmental Sciences,2007,19(7):834-840
    [234]周礼恺.土壤的重金属污染与土壤酶活性.环境科学学报,1985,5(2):176-184
    [235]Majer B J,Tscherko D,Paschke A,et al.Effects of heavy metal contamination of soils on micronucleus induction in Tradescantia and on microbial enzyme activities:a comparative investigation.Mutation Research/Genetic Toxicology and Environmental Mutagenesis,2002,515(1-2):111-124
    [236]Dungan RS,Kukier U,Lee B.Blending foundry sands with soil:Effect on dehydrogenase activity.Science of the Total Environment,2006,357(1-3):221-230
    [237]Hu Q,Qi H,Zeng JH,et al.Bacterial diversity in soils around a lead and zinc mine.Journal of Environmental Sciences,2007,19(1):74-79
    [238]Lee IS,Kim OK,Chang YY,et al.Heavy metal concentrations and enzyme activities in soil from a contaminated Korean shooting range.Journal of Bioscience and Bioengineering,2002,94(5):406-411
    [239]Baath E.Effects of heavy metals in soil microbial processes and populations(a review).Water,Air and Soil Pollution,1989,47(3-4):335-379
    [240]Wang JH,Lu YT,Shen G.Q.Combined effects of cadmium and butachlor on soil enzyme activities and microbial community structure.Environmental Geology,2007,51(7):1221-1228
    [241]Lan YQ,Yang JX,Deng B.Catalysis of dissolved and adsorbed iron in soil suspension for chromium(Ⅵ) reduction by sulfide.Pedosphere,2006,16(5):572-578
    [242]Nowak J,Kaklewski K,Klodka D..Influence of various concentrations of selenic acid(Ⅳ) on the activity of soil enzymes.Science of the Total Environment,2002,291(1-3):105-110
    [243]Nakas JP,Gould WD,Klein DA.Origin and expression of phosphatase activity in a semi-arid grassland soil.Soil Biology and Biochemistry,1987,19(1):13-18
    [244]Sreeram KJ,Ramasami T.Speciation and recovery of chromium from chromite ore processing residues.Journal of Environmental Monitoring,2001,3:526-530
    [245]东秀珠,蔡妙英.常见细菌系统鉴定手册.北京:科学出版社,2001
    [246]Basu M,Bhattacharya S,Paul AK.Isolation and characterization of chromium-resistant bacteria from tannery effluents.Bulletin of Environmental Contamination and Toxicology,1997,58(4):535-542
    [247]Pattanapipitpaisal P,Brown NL,Macaskie LE.Chromate reduction and 16S rRNA identification of bacteria isolated from a Cr(Ⅵ)-contaminated site.Applied Microbiology and Biotechnology,2001,57(1-2):257-261
    [248]Campos J,Martinez-Pacheco M,Cervantes C.Hexavalent-chromium reduction by a chromate-resistant Bacillus sp.strain Antonie van Leeuwenhoek,1995,68(3):203-208
    [249]Ganguli A,A.T.Bioremediation of toxic chromium from electroplating effluent by chromate-reducing Pseudomonas aeruginosa A2Chr in two bioreactors Applied Microbiology and Biotechnology,2002,58:416-420
    [250]Francisco R,Alpoim MC,Morais PV.Diversity of chromium-resistant and -reducing bacteria in a chromium-contaminated activated sludge.Journal of Applied Microbiology,2002,92(5):837-843
    [251]Losi ME,Frankenberger WT.Chromium-resistant microorganisms isolated from evaporation ponds of a metal processing plant Water,Air,and Soil Pollution,1994,74:405-413
    [252]Pal A,Paul AK.Aerobic chromate reduction by chromium-resistant bacteria isolated from serpentine soil.Microbiological Research,2004,159(4):347-354
    [253]Elangovan R,Abhipsa S,Rohit B,et al.Reduction of Cr(Ⅵ) by a Bacillus sp.Biotechnology Letters,2006,28(4):247-252
    [254]Megharaj M,Avudainayagam S,Naidu R.Toxicity of hexavalent chromium and its reduction by bacteria isolated from soil contaminated with tannery waste.Current Microbiology,2003,47(1):51-54
    [255]Wani R,Kodam KM,Gawai KR,et al.Chromate reduction by Burkholderia cepacia MCMB-821,isolated from the pristine habitat of alkaline crater lake.Applied Microbiology and Biotechnology,2007,75(3):627-632
    [256]Thacker U,Parikh R,Shouche Y,et al.Hexavalent chromium reduction by Providencia sp.Process Biochemistry,2006,41(6):1332-1337
    [257]Sultan S,Hasnain S.Reduction of toxic hexavalent chromium by Ochrobactrum intermedium strain SDCr-5 stimulated by heavy metals.Bioresource Technology,2007,98(2):340-344
    [258]Garbisu C,Alkorta I,Llama MJ,et al.Aerobic chromate reduction by Bacillus subtilis.Biodegradation,1998,9(2):133-141
    [259]Badar U,Ahmed N,Beswick AJ,et al.Reduction of chromate by microorganisms isolated from metal contaminated sites of Karachi,Pakistan.Biotechnology Letters,2000,22(10):829-836
    [260]Klonowska A,Clark ME,Thieman SB,et al.Hexavalent chromium reduction in Desulfovibrio vulgaris Hildenborough causes transitory inhibition of sulfate reduction and cell growth.Applied Microbiology and Biotechnology,2008,78(6):1007-1016
    [261]Li YR,Low GKC,Scott JA,et al.Microbial reduction of hexavalent chromium by landfill leachate.Journal of Hazardous Materials,2007,142(1-2):153-159
    [262]Lin Z,Zhu Y,Kalabegishvili TL,et al.Effect of chromate action on morphology of basalt-inhabiting bacteria.Materials Science & Engineering C-Biomimetic and Supramolecular Systems,2006,26(4):610-612
    [263]叶锦绍,尹华,彭辉.微生物抗重金属毒性研究进展.环境污染治理技术与 设备,2002,3(4):1-4
    [264]徐卫华.微生物还原Cr(Ⅵ)的特性与机理研究:[博士学位论文].长沙:湖南大学,2007
    [265]Cervantes C,Ohtake H,Chu L,et al.Cloning,nucleotide sequence,and expression of the chromate resistance determinant of Pseudomonas aeruginosa plasmid pUM505.Journal of Bacteriology,1990,72(1):287-291
    [266]Nies A,Nies DH,Silver S.Nucleotide sequence and expression of a plasmid-encoded chromate resistance determinant from Alcaligenes eutrophus.Journal of Biological Chemistry,1990,265(1):5648-5653
    [267]Zhu WJ,.Yang ZH,Ma ZM,et al.Reduction of high concentrations of chromate by Leucobacter sp CRB1 isolated from Changsha,China.World Journal of Microbiology & Biotechnology,2008,24(7):991-996
    [268]Zakaria ZA,Zakaria Z,Surif S,et al.Hexavalent chromium reduction by Acinetobacter haemolyticus isolated from heavy-metal contaminated wastewater.Journal of Hazardous Materials,2007,146(1-2):30-38
    [269]Middleton SS,Latmani RB,Mackey MR et al.Cometabolism of Cr(Ⅵ) by Shewanella oneidensis MR-1 produces cell-associated reduced chromium and inhibits growth.Biotechnology and Bioengineering,2003,83(6):627-637
    [270]郭沁林.X射线光电子能谱.物理,2007,36(5):405-410
    [27l]刘世宏.X射线光电子能谱分析.北京:科学出版社,1988
    [272]McCafferty E,Bernett MK,Murday JS.An XPS study of passive film formation on iron in chromate solutions.Corrosion Science,1988,28:559-576
    [273]Ikemoto I,Ishii K,Kinoshita S,et al.X-ray photoelectron spectroscopic studies of CrO_2 and some related chromium compounds.Journal of Solid State Chemistry,1976,17(4):425-430
    [274]Asami K,Hashimoto K.X-ray photoelectron-spectra of several oxides of iron and chromium.Corrosion Science,1977,17:559-570
    [275]Moffat TP,Latanision RM,Ruf RR.An X-ray photoelectron spectroscopy study of chromium-metalloid alloys--Ⅲ.Electrochimica Acta,1995,40(11):1723-1734
    [276]Jung Y,Choi J,Lee W.Spectroscopic investigation of magnetite surface for the reduction of hexavalent chromium.Chemosphere,2007,68(10):1968-1975
    [277]Allen GC,Curtis MT,Hooper AJ,et al.X-Ray photoelectron spectroscopy of chromium-oxygen systems.Journal of the Chemical Society,Dalton Transactions, 1973,16:1675-1683
    [278]Goulhen F,Gloter A,Guyot F,et al.Cr(Ⅵ) detoxification by Desulfovibrio vulgaris strain Hildenborough:microbe-metal interactions studies.Applied Microbiology and Biotechnology,2006,71:892-897
    [279]Neal AL,Lowe K,Daulton TL,et al.Oxidation state of chromium associated with cell surfaces of Shewanella oneidensis during chromate reduction.Applied Surface Science,2002,202(3-4):150-159
    [280]Borsodi AK,Micsinai A,Kovacs G.Pannonibacter phragmitetus gen.nov.,sp.nov.,a novel alkalitolerant bacterium isolated from decomposing reed rhizomes in a Hungarian soda lake.International Journal of Systematic and Evolutionary Microbiology,2003,53:555-561
    [281]Holmes B,Segers P,Coenye T.Pannonibacter phragmitetus,described from a Hungarian soda lake in 2003,had been recognized several decades earlier from human blood cultures as Achromobacter groups B and E.International Journal of Systematic and Evolutionary Microbiology,2006,56:2945-2948
    [282]Rajkumar M,Kui RN,Lee J,et al.Characterization of a Novel Cr~(6+) Reducing Pseudomonas sp.with Plant Growth-Promoting Potential.Current Microbiology,2005,50:266-271
    [283]Sultan S,Hasnain S.Characterization of an Ochrobactrum intermedium strain STCr-5 manifesting high level Cr(Ⅵ)resistance and reductionpotential.Enzyme and Microbial Technology,2006,39:883-888
    [284]Goulhen E Gloter A,Guyot F.Cr(Ⅵ) detoxification by Desulfovibrio vulgaris strain Hildenborough:microbe-metal interactions studies.Applied Microbiology and Biotechnology,2006,71(6):892-897
    [285]Cheung KH,Gu JD.Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential:A review.International Biodeterioration & Biodegradation,2007,59(1):8-15
    [286]Messer J,Reynolds M,Stoddard L,et al.Causes of DNA single-strand breaks during reduction of chromate by glutathione in vitro and in cells.Free Radical Biology and Medicine,2006,40(11):1981-1992
    [287]解晓东.沈阳抚灌区生态恢复途径初步研究.环境保护科学,2002,28(2):33-35
    [288]吴赛玉.简明生物化学.合肥:中国科学技术大学出版社,1999.168-172
    [289]Bader JL,Gonzalez G.L,Goodell PC et al.Aerobic Reduction of Hexavalent Chromium in Soil by Indigenous Microorganisms. Bioremediation Journal, 1999, 3(3): 201-211
    [290]Suzuki T, Miyata N, Horitsu H, et al. NAD(P)H-dependent chromium (Ⅵ) reductase of Pseudomonas ambigua G-1: a Cr(Ⅴ) intermediate is formed during the reduction of Cr(Ⅵ) to Cr(Ⅲ). The Journal of Bacteriology, 1992, 174(16): 5340-5345
    [291]Das S, Chandra AL. Chromate reduction in Streptomyces. Experientia, 1990,46: 731-733
    [292]Bae W, Lee H, Choe Y, et al. Purification and Characterization of NADPH-Dependent Cr(Ⅵ) Reductase from Escherichia coli ATCC 33456. The Journal of Microbiology, 2005,43(1): 21-27

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700