麦长管蚜对吡虫啉的抗性及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
麦长管蚜Sitobion avenae(Fabricius)是小麦的重要害虫之一,由于麦长管蚜对许多常规杀虫剂都产生了抗药性,而吡虫啉则因其对麦蚜的良好防效而成为目前防治麦蚜的当家农药品种。为了了解田间麦长管蚜对吡虫啉抗性的发生动态、延缓麦蚜对吡虫啉抗性的发展,延长吡虫啉在麦田的使用寿命,本文通过田间抗药性调查、室内抗性筛选以及适合度的研究、抗性品系的交互抗性研究,系统分析了麦长管蚜对吡虫啉产生抗性的风险;利用室内筛选的抗性品系和敏感品系试虫为材料,分析了抗性产生的生化机制;利用分子生物学技术克隆了麦长管蚜的烟碱型乙酰胆碱受体基因,取得了多项具有重要理论和实际意义的成果。
     一、麦长管蚜对吡虫啉的抗药性调查
     为了了解我国各麦区麦长管蚜对吡虫啉抗性的发生发展情况,连续两年调查了江苏南京、建湖、泗洪、山东德州、河南周口、甘肃兰州、天水等地麦长管蚜对吡虫啉和另一种常用于防治麦蚜的杀虫剂抗蚜威的敏感性。结果发现,不同地区麦长管蚜对吡虫啉的敏感性差异较大,江苏建湖和南京地区已经产生了一定的抗性(6.29-11.31倍),但其他地区仅表现为敏感性降低,尚没有产生明显的抗性。不同地区麦长管蚜对抗蚜威的敏感性差异较小,但抗蚜威的毒力显著小于吡虫啉,与早期报道的敏感基线相比发现,不同地区的麦长管蚜对抗蚜威已经产生了大约20-40倍的抗性。另外通过不同地区麦长管蚜年度间的敏感性比较发现,麦长管蚜对两种药剂的敏感性存在逐渐下降的趋势。综合分析认为,各麦区的麦长管蚜对抗蚜威已经产生了中等水平抗性,对吡虫啉虽然还处于敏感阶段,但在局部地区已经开始产生抗性,目前尚处于抗性发展的初期阶段。由于吡虫啉已成为防治麦蚜危害的当家农药品种,且目前没有更好的替代药剂,为了掌握麦长管蚜对吡虫啉的抗性发生发展动态、延缓抗性的发展、保证麦长管蚜的持续有效的治理,研究其抗性发生规律,制定有效的抗性治理策略是十分必要的。
     二、抗吡虫啉麦长管蚜品系的选育及适合度的研究
     采用点滴法在室内用吡虫啉对麦长管蚜进行连续32代的抗性筛选,获得了抗性倍数为25.22倍的室内品系。筛选早期抗性的增长速率相对缓慢,筛选到第18代后抗性快速上升,最终呈现“S”型增长的总体趋势。通过构建种群生命表,观察比较了吡虫啉抗性品系和敏感品系麦长管蚜的生长发育和繁殖特征,就抗性对种群适合度的影响进行了研究。结果表明,抗性品系表现出相对适合度下降。用种群数量趋势指数和内禀增长率来确定抗性品系的相对适合度发现,抗性品系的相对适合度为敏感品系的0.623和0.846。由此认为,麦长管蚜具有对吡虫啉产生抗性的风险,而抗性品系适合度较低是田间麦长管蚜对吡虫啉抗性发展缓慢的重要原因之一。
     三、麦长管蚜抗吡虫啉品系的交互抗性
     本研究测定了吡虫啉抗性筛选前后,麦长管蚜对不同杀虫剂的敏感性变化,以了解抗吡虫啉麦长管蚜对其他药剂的交互抗性。结果发现,筛选品系对吡虫啉的抗性上升了9.10倍,同时对啶虫脒的抗性也上升了4.11倍,表明啶虫脒和吡虫啉之间存在较明显得交互抗性,而筛选品系对抗蚜威、灭多威、氧化乐果、久效磷、溴氰菊酯等常用药剂的抗性没有明显的上升,说明这5种药剂与吡虫啉之间没有明显的交互抗性。
     四、麦长管蚜对吡虫啉的抗性生化机制分析
     本文通过室内筛选获得了麦长管蚜对吡虫啉的抗性品系(25.22倍),并利用增效试验和解毒酶活力测定,对其抗性机理进行了研究。增效试验结果表明:顺丁烯二酸二乙酯在抗、感品系中对吡虫啉都没有明显的增效作用,但氧化胡椒基丁醚和磷酸三苯酯在两个品系均有增效作用,而且在抗性品系中的增效比(3.49和2.62)显著大于敏感品系(1.59和1.29)。解毒酶活力测定发现,抗、感品系的谷胱甘肽S-转移酶比活力没有显著差异,但抗性品系中羧酸酯酶的比活力明显高于敏感品系(1.47倍)。综合分析认为多功能氧化酶和羧酸酯酶活力增强在麦长管蚜对吡虫啉的抗性中起重要作用。
     五、麦长管蚜烟碱型乙酰胆碱受体基因的克隆
     昆虫烟碱型乙酰胆碱受体(nAChR)是以吡虫啉为代表的新烟碱类杀虫剂的作用靶标。本研究采用RT-PCR技术,利用简并引物从麦长管蚜Sitobion avenae(Fabricius)中克隆出6个烟碱型乙酰胆碱受体基因的cDNA片段,其中5个为α型,1个为β型。同源性分析表明,6个麦长管蚜nAChR基因片段与其他昆虫相应基因序列相同区域具有较高的相似性,特别是与其他同翅目昆虫的相似性更高,达到95%以上,个别片段的相似性甚至达到100%。
     根据已克隆出的5个nAChRα型cDNA片段设计特异引物,结合快速扩增cDNA末端(RACE)技术,成功克隆了亚基的全长,分别命名为Saα1、Saα2、Saα3、Saα4和Saα5(GenBank登录号分别为:EF363700、EF363701、EF211977、EF363702、EF363703)。Saα1基因长1674bp,编码496个氨基酸(5'端不完整);Saα2全长2516bp,编码595个氨基酸;Saα3全长1763bp,编码537个氨基酸;Saα4全长1763bp;编码532个氨基酸;Saα5长度为1974bp,编码549个氨基酸。在Saα3中存在少见的Poly(A)序列;Saα5在5'端配基结合区有三种选择性剪接形式,分别造成碱基的缺失、插入和替换。序列分析发现,这些基因均具有nAChR基因家族的典型特征,并与昆虫烟碱型乙酰胆碱受体的相应亚基具有很高的同源性。该研究为进一步利用基因表达技术研究昆虫nAChR的天然亚基组成,以及分析麦长管蚜对新烟碱类杀虫剂的靶标抗性奠定了基础。
     本研究通过抗性调查,明确了我国麦长管蚜对吡虫啉的抗性现状。通过室内抗性筛选,成功获得了麦长管蚜抗吡虫啉品系,并证明麦长管蚜对吡虫啉具有产生抗性的风险,通过生物适合度的研究发现了田间麦长管蚜对吡虫啉抗性发展缓慢地原因。通过抗性机制分析明确了麦长管蚜对吡虫啉地重要抗性机理。这些研究成果对制定科学的抗性治理策略,有效地进行抗性治理,延长吡虫啉地田间使用寿命,保证麦蚜的持续有效治理,均具有重要的实践意义。
     利用分子生物学技术成功克隆了5个麦长管蚜烟碱型乙酰胆碱受体的α亚基基因,并发现了基因中的Poly(A)序列和选择性剪接现象,为进一步利用基因表达技术研究昆虫nAChR的天然亚基组成,以及分析麦长管蚜对新烟碱类杀虫剂的靶标抗性奠定了基础。
Sitobion avenae(Fabricius) is one of the most important pests on wheat.Because of the resistance of S.avenae to conventionally used insecticide in the field,imidacloprid has become the key insecticide used for control of this pest.So,study on imidacloprid risistance is very important for sustainable control of S.avenae.In this paper,the resistance survey,resistance selection,relative fitness analysis,and cross-resistance test were all carded out to evaluate the risk for S.avenae to develop resistance to imidacloprid.With selected resistant strain and susceptible strain,the biochemical mechanisms for imidacloprid resistance were analyzed,and some genes for nicotinic acetylcholine receptors (nAChR) were cloned.Valuable breakthroughs have been achieved.
     1.Field survey for imidacloprid resistance in S.avenae
     The toxicity of imidacloprid and pirimicarb(another effective insecticide usually used to control wheat aphid) to field populations of S.avenae had been tested with the insects collected from Nanjing,Jianhu,Sihong,Dezhou,Zhoukou,Lanzhou and Tianshui in 2005 and 2006.Results showed that the sensitivity of S.avenae to imidacloprid varied obviously with the geographic populations.The aphids collected from Jianhu and Nanjiang had developed low level of resistance(RR was 11.31 and 6.29,respectively).But the aphids from other areas were still susceptible to imidacloprid(RR ranged 1.99-3.85).However, pirimicarb resistance varied not so much among different populations.The survey results showed that pirimicarb was much less toxic to S.avenae than imidacloprid.Comparing with the baseline data reported previously,S.avenae in different areas were found to be moderate resistant(RR:20-40).Furthermore,the data of different years showed that the resistance of S.avenae to imidacloprid and pirimicarb were increasing slowly.In conclusion,imidacloprid resistance was still in its early stage of development.Most field populations of S.avenae were still susceptible to imidacloprid,but a few populations had really developed resistance to this insecticides.Thus,it is necessary to study the development of imidecloprid resistance and complement reasonable resistance management.
     2.Imidacloprid resistance selected in S.avenae and the fitness
     An imidacloprid-resistant stain(25.22-fold) of S.avenae was developed by continuous selection for 32 generations with imidaclopfid in laboratory.During the selection, imidaclopfid resistance was found with a phased increase.From the 1~(st) to 18~(th) generation, the resistance developed very slowly.The rapid increase occurred from 18~(th) to 24~(th) generation,and leaving 24~(th) to 32~(nd) as a resistance developing plate.There should be a risk of resistance in S.avenae after long-time extensive use of imidaclopfid in the field.
     The effects of resistance on the fitness of S.avenae were evaluated in term of developmental and reproductive characteristics by constructing and comparing the life tables of imidaclopfid-resistant and susceptible strains.The results revealed that imidacloprid-resistant stain had no developmental disadvantage but obvious reproductive disadvantage.The fitness of irnidacloprid-resistant strain was determining by population number tendency index(I) and intrinsic rate of increase(r_m) with susceptible strain as standard.The relative fitness value for the imidalopfid-resistant strain was calculated to be 0.623 and 0.846 respectively.So,it was concluded that imidacloprid resistance in S.avenae costs lots of fitness,which could be one of the main factors for the slow development of imidacloprid resistance in the field population of S.avenae.
     3.Cross-resistance of the imidacloprid-resistant strain of S.avenae
     The cross-resistance of the imidacloprid-resistant strain of S.avenae to six conventionally used insecticides in the field was measure.It was found that selection with imidaclopfid could make a obvious increase in the resistance of S.avenae to imidaclopfid and acetamiprid(9.10 and 4.11 times,respectively),which means positive cross-resistance between imidacloprid and acetamiprid.However,no distinct cross-resistance to carbamate (pirimicarb and methomyl),organphosphates(omethoate and monocrotophos) and pyrethroid (deltaraethrin) was found.
     4.Mechanism for imidacloprid resistance in Sitobion avenae
     A strain(about 25.22 fold) of Sitobion avenae resistant to irnidacloprid was developed in the laboratory.Synergism experiments and detoxification enzyme analysis were carried out to reveal the resistance mechanisms.The results showed that piperonyl butoxide and triphenyl phosphite had significant synergism on imidaeloprid in both the resistant and susceptible strains,but diethyl maleate had not.The synergism ratio of piperonyl butoxide and triphenyl phosphite in the resistant strain were much higher(3.49-fold and 2.62-fold, respectively) than in the susceptible strain(1.59-fold and 1.29-fold,respectively).The resistant strain showed higher activity of carboxylesterases(about 1.53-fold) than the susceptible strain,but the activity of gluathione S-transferases was similar.These results indicated that the enhancement of the activity of carboxylesterase and Mixed function oxidase should contribute to the imidaeloprid-resistance in this S.avenae strain.
     5.Cloning of nAChR genes from S.avenae
     Nicotinic aeetylcholine receptor(nAChR) is one of the most important insecticide targets.With general primers designed for nAChR genes,RT-PCR was carded out and 6 cDNA fragment of nAChR genes were cloned from S.avenae.Of which,five had the typical characteristics of nAChR alpha subunits and one belonged to beta subunits.Further analysis demonstrated that this six fragments had high amino acid sequence identity with other insect nAChR subunits previously reported,especially those of Homoptera.
     Based on the five fragments of nAChRαsubunits,general primers were designed and five different genes were successfully cloned to their full-length by using the RACE strategy.They were named Saα1,Saα2,Saaα,Saα4 and Saα5,and their GenBank access number were EF363700,EF363701,EF211977,EF363702 and EF363703,respectively. These five genes had all the characteristics of nAChR gene family and were high homology with other nAChR genes from insects.This work facilitates the further studies on natural subunit composition of nAChR and the molecular mechanisms for target resistance to new nicotinic insecticides in this pest.
     Additionally,an unusual adenosine rich region were found in Saα3 and alternative splicing in Saα5.There were three forms of alternative splicing in N-coding regain in Saα5, causing absence,insert and change in the amino acid sequence.The role of these alternative splicing need further research.
     In conclusion,studies had demonstrated the imidaeloprid-resistance statue in S.avenae, the risk to develop resistance to imidacloprid,the reasons of the slow development of imidacloprid resistance in the field,and the main mechanisms for imieacloprid resistance. This work is significant in the management of S.avenae resistance.On the other hand,five nAChR subunits genes cloned from S.avenae facilitates the further studies on natural subunit composition of nAChR and the molecular mechanisms for target resistance to new nicotinic insecticides in this pest.
引文
1.陈亮,吴兴富,陈若霞等.桃蚜抗吡虫啉品系和敏感品系某些生物学特性比较.昆虫知识.2006,43(4):504-508.
    2.陈立,徐汉虹.新型烟碱型杀虫剂吡虫啉作用机制研究进展.湖北农学院学报.1998,18(1):85-88.
    3.陈立,徐汉虹,赵善欢.家蝇对爱比菌素的吸收和吸收抗性研究.农药译丛.1998,21(1):46-49(1)
    4.陈茂华.两种麦蚜乙酰胆碱酯酶的分子生物学研究.南京农业大学博士论文,2005.
    5.成惠珍,郑淑英,郭玉荣等.麦蚜对几种药剂的抗性.河南农业科学.2004(6):50-51.
    6.程罗根,李凤良.小菜蛾对杀螟丹抗药性的生化遗传研究.南京农业大学学报.1998,21(3):36-40.
    7.成卫宁,李修炼,李建军等.杀虫剂对麦蚜、天敌及后茬玉米田主要害虫与天敌的影响.西北农林科技大学学报(自然科学版).2003,31(5):87-95.
    8.邓业成,王荫长,李洁荣等.啶虫脒的杀虫活性研究.西南农业学报.2002,15(1):50-53.
    9.方继朝,朴永范,孙建中等.吡虫啉防治稻飞虱等害虫的毒理和技术研究.西南农业大学学报.1998,20(5):478-488.
    10.冯英,薛庆中.作物抗虫基因工程及其安全性.遗传.2001,23(6):571-576.
    11.高希武,王政国,郑炳宗等.六种常用杀虫剂对八种蚜虫的选择性毒性.昆虫学报.1990,33(3):274-279.
    12.龚坤元.害虫的抗药性:Ⅵ昆虫抗性生化机理.昆虫知识.1982,6:39-41.
    13.龚瑞忠,陈锐,陈良燕.吡虫啉对环境生物的毒性与安全性评价.农药科学与管理.1999,20(3):12-16.
    14.郭晨云,李卓玉,袁静明.乙酰胆碱受体结构和功能的研究进展.中国生物工程杂志.2002,22(4):40-43.
    15.韩巨才,刘慧平,赵治萍等.麦长管蚜对有机磷杀虫剂的敏感性.山西农业科学.1996,24(2):29-31.
    16.韩招久,韩召军,姜志宽等.沙蚕毒素类杀虫剂的毒理学研究新进展.现代农药.2004,3(6):5-8.
    17.韩召军,王荫长,Graham Moores等.中国昆虫学会第六次全国代表大会暨学术讨论会论文摘要集,1997,10.
    18.洪波,关晓庆,迟永伟等.宁夏地区麦蚜对几种杀虫剂的敏感性测定.宁夏大学学报(农业科学版).2004,9:17-20.
    19.贾海民,高占林,张克锦等.高渗吡虫啉和高渗氧乐果防治麦蚜药效试验.农药.1998,37 (9):35-36.
    20.姜双林,刘建平,兰志先.三种生物碱防治小麦蚜虫的药效研究.甘肃农业大学学报.1999,4:361-364.
    21.姜卫华,韩召军,郝鸣丽.二化螟对氟虫腈抗性初探.中国水稻科学.2005,19(6):577-579.
    22.姜卫华,马式廉,陆自强等.啶虫脒、吡虫啉对麦蚜的毒力及药效比较.农药.1999,38(9):20-21.
    23.冷欣夫,邱星辉.细胞色素P450酶系的结构、功能与应用前景.北京:科学出版社.2001.
    24.冷欣夫,唐振华,王荫长主编.杀虫剂分子毒理学及昆虫抗药性.北京:农业出版社.1996.
    25.李飞.棉蚜的杀虫剂神经靶标分子生物学研究.南京农业大学博士论文,2003.
    26.李飞,黄水金,韩召军.害虫抗药性分子检测技术.生命的化学.2003,23(5):392-395.
    27.李建军,李修炼,成卫宁等.几种不同类型药剂防治麦蚜的效果及对天敌的影响.西北农业学报.2004,13(3):52-55.
    28.李士根,王凤刚.酯酶与蚊虫抗药性关系的研究.济宁医学院学报.2001,24(3):91-92.
    29.李素娟,刘爱芝,茹桃勤等.小麦与不同作物间作模式对麦蚜及主要捕食性天敌群落的影响.华北农学报.2007,22(1):141-144.
    30.李显春,王荫长.农业病虫抗药性问答.北京:农业出版社.1997.
    31.李显春,王荫长.昆虫抗药性靶标不敏感机制的研究进展.昆虫学报.1998,41(4):417-425.
    32.梁军,沈建华,林国芳等.淡色库蚊中抗性相关羧酸酯酶的纯化及其生化性质.昆虫学报.2001,44(2):161-168.
    33.梁沛,高希武,郑炳宗等.小菜蛾对阿维菌素的抗性机制及交互抗性研究.农药学学报.2001,3(1):41-45.
    34.刘爱芝,李世功.四种农药对麦蚜的防治效果及对天敌的影响.农药.1999,5:29-30.
    35.刘爱芝,茹桃勤,王晓军等.两种麦蚜对杀虫剂的敏感性测定.植物保护.2001,27(5):20-21.
    36.刘爱芝,王晓军,武予清等.吡虫啉对小麦产量的影响及其防治麦蚜有效剂量的评价.河南农业科学.2003,1:27-29.
    37.刘国新,吴俊静,吴广利.10%抗·吡乳油防治麦蚜田间药效试验.河北化工.1999,4:32-34.
    38.刘永杰,沈晋良.甜菜夜蛾对氯氟氰菊酯抗性的表皮穿透机理.昆虫学报.2003,46(3):288-291.
    39.刘永杰,沈晋良,赵旭东等.多功能氧化酶系与甜菜夜蛾对氯氟氰菊酯抗药性的关系.农药学学报.2005,7(1):19-23.
    40.刘云虹,张玉坤,赵勤.10%吡虫啉防治麦蚜效果及对天敌的影响.农药科学与管理.1999,20(1):25-27.
    41.刘泽文,韩召军,王荫长.褐飞虱抗有机磷品系的交互抗性及适合度研究.南京农业大学学报.2001,24(4):37-40.
    42.刘泽文,韩召军,张玲春.褐飞虱抗甲胺磷品系的交互抗性和抗性生化机制.昆虫学报.2002,45(4):447-452.
    43.刘泽文,韩召军,张玲春.吡虫啉防治同翅目害虫的应用综述.植保技术与推广.2003,23(3):30-32.
    44.刘泽文,刘成君,张洪伟等.褐飞虱抗吡虫啉品系生物适合度研究.昆虫知识.2003,40(5):419-422.
    45.楼黎静,杨永健,施顺根等.家蚕吡虫啉中毒症状与防止.中国蚕业.1999,2:24-25.
    46.鲁兴萌,吴勇军.吡虫啉对家蚕的毒性.蚕业科学.2000,26(2):81-86.
    47.孟繁霞,苗龙,张蜀秋等.Ca2+参与蚕豆保卫细胞中毒蕈碱型受体介导的乙酰胆碱信号转导.科学通报.2004,49(4):358-362.
    48.莫建初,程家安.新烟碱杀虫剂抗药性研究进展.植物保护学报.2003,30:91-96.
    49.潘文亮,党志红,高占林等.几种蚜虫对吡虫啉抗药性研究.农药学学报.2000,2(4):85-87.
    50.潘文亮,党志红,高占林.棉蚜抗毗虫啉品系和敏感品系主要解毒酶活性比较.昆虫学报.2003,46(6):793-796.
    51.彭丽年,张小平,叶建生等.四川省麦长管蚜的抗药性研究.农药学学报.2000,2(3):13-18.
    52.任晓霞.棉铃虫对有机磷杀虫剂靶标抗性机制的研究.南京农业大学博士论文,2002.
    53.任晓霞,韩召军,王荫长.棉铃虫对久效磷抗性品系的选育及其乙酰胆碱酯酶的研究.南京农业大学学报.2001,24(1):47-50.
    54.任晓霞,韩召军,王荫长.棉铃虫对久效磷抗性和敏感性品系的生物适合度.南京农业大学学报.2001,24(2):41-44.
    55.任月萍,刘生祥,李志英等.几种农药防治麦长管蚜的药效试验.宁夏农林科技.2001,1:24-26.
    56.沈晋良.关于中晚稻褐飞虱对吡虫啉抗药性情况的报道.中国农技推广网(www.natesc.gov.cn).2005.
    57.孙建中,方继朝,杜正文等.吡虫啉——一种超高效多用途的内吸杀虫剂.植物保护.1995,21(2):44-45.
    58.孙建中,方继朝,夏礼如等.灭虫精的杀虫活性及田间防治褐飞虱的应用研究.昆 虫学报.1996,39(1):37-45.
    59.谭荫初.吡虫啉对农作物害虫的防治效果综述.植物医生.1998,11(3):18-19.
    60.唐建军,陈欣,张传进等.超高效杀虫剂吡虫啉的特性及其应用.中国农学通报.1999,15(1):38-40。
    61.唐振华.昆虫抗药性及其治理.北京:农业出版社.1993.
    62.唐振华.我国昆虫抗药性研究的现状及展望.昆虫知识.2000,37(2):97-103.
    63.唐振华,韩罗珍,张朝远.抗马拉硫磷淡色库蚊不同基因型的自然内禀增长率及其对抗性演化的影响.昆虫学报.1990,33(4):385-392.
    64.唐振华,陶黎明,李忠.害虫对新烟碱类杀虫剂的抗药性及其治理策略.农药学学报.2006,8(3):195-202.
    65.唐振华,陶黎明,李忠.新烟碱类杀虫剂选择作用的分子机理.农药学学报.2006,8(4):291-298.
    66.唐振华,吴士雄.昆虫抗药性的遗传与进化.上海:上海科学技术文献出版社.2000.
    67.王爱玲,侯生英,张贵等.10%吡虫啉可湿性粉剂防治麦蚜药效试验.青海农林科技.2004,2:12-13.
    68.王冬兰,刘贤进,张存政等.江苏地区麦蚜对吡虫啉敏感性监测.江苏农业科学.2003,6:64-65.
    69.王恒彬,王学臣,张蜀秋等.乙酰胆碱酯酶在蚕豆保卫细胞中集中分布.植物学报.1999,41(4):364-368.
    70.王开运,姜兴印,仪美芹等.山东省主要菜区瓜(棉)蚜(Aphis gossypii Glover)抗药性.农药学学报.2000,2(3):19-24.
    71.王建军.小菜蛾杀虫剂靶标抗性的分子生物学研究,南京农业大学博士论文,2000.
    72.王建军,韩召军,王荫长.击倒抗性和钠离子通道.昆虫学报.2002,45(3):391-396.
    73.王建军,韩召军,王荫长.新烟碱类杀虫剂毒理学研究进展.植物保护学报.2001,28(2):178-182
    74.王捷,梁震,刘瑛.急性毒性LD_(50)实验研究的进展.农药.2000,39(5):45-46.
    75.王利华,吴益东.与拟除虫菊酯抗性相关的烟粉虱钠通道基因突变及其检测.昆虫学报.2004,47(4):449-453.
    76.王沫,谭福杰,尤子平等.棉铃虫对氰戊菊酯的抗性机理研究.华中农业大学学报.1996,15(4):344-349.
    77.王强,韩丽娟,黄祥麟等.吡虫啉对几种同翅目害虫的触杀毒力测定.江苏农业学报.1996,12(3):29-31.
    78.王桂荣,徐广,谭维嘉等.菊酯类杀虫剂抗性棉铃虫para型钠离子通道基因的部分序列测定与突变.应用与环境生物学报.2004,1012(3):332-336.
    79.王晓军,陶岭梅,张青文.麦长管蚜和禾谷缢管蚜对吡虫啉敏感性的比较研究.昆虫知识.2004,41(2):155-157.
    80.王荫长,韩召军.我国农业害虫抗药性发生概况.昆虫知识.1991,28(2):120-121.
    81.魏岑,苑贤林,孙小平等.张掖麦蚜对菊酯类杀虫剂的抗药性.昆虫学报.1990,33(1):117-120.
    82.魏岑,黄绍宁,范贤林.麦长管蚜的抗药性研究.昆虫学报.1988,31(2):148-156.
    83.吴孔明,刘芹轩.棉蚜抗杀灭菊酯品系的某些生物学特性Ⅴ昆虫学报 1994,37(2):137-143.
    84.吴笛,封少龙,陈源高等.吡虫啉的生物效应研究.重庆环境科学.2002,24(1):24-25.
    85.吴青君,张文吉,张友军等.表皮穿透和GABA_A受体不敏感性在小菜蛾对阿维菌素抗性中的作用.昆虫学报.2002,45(3):336-340.
    86.吴世雄,王晓军.吡虫啉在我国的生产与应用.农药科学与管理.1999,20(1):37-38.
    87.吴益东,沈晋良,谭福杰等.棉铃虫对氰戊菊酯抗药性品系和敏感品系的相对适合度.昆虫学报.1996,39(3):233-236.
    88.吴益东,沈晋良,尤子平.棉铃虫对氰戊菊酯的抗性机理研究.南京农业大学学报.1995,18(2):63-68.
    89.武予清,李素娟,刘爱芝等.小麦抗蚜育种研究进展.河南农业科学.2002:19-20.
    90.许雄山,韩召军,王荫长.羧酸酯酶与棉铃虫对有机磷杀虫剂抗性的关系.南京农业大学学报,1999,22(4):41-44.
    91.姚洪渭,叶恭银,程家安.同翅目害虫抗药性研究进展.浙江农业学报.2002,14(2):63-70.
    92.于彩虹,林荣华,王开运等.棉蚜对吡虫啉等杀虫剂的抗药性品系的室内选育及抗药性风险评价.植物保护学报.2004,31:401-405.
    93.翟启慧.昆虫分子生物学的一些进展:杀虫剂抗性的分子基础.昆虫学报.1995,38(4):493.
    94.翟永健.麦长管蚜发生规律的初步研究.昆虫知识.1965,9:263-267.
    95.张彦英,张弘.吡虫啉抗性产生的可能与治理.农药,1999,38(4):22-23.
    96.张翼翱,唐振华.节肢动物抗药性发展的现状.世界农药.2005,27(4):1-6.
    97.章玉苹,黄炳球.吡虫啉的研究现状与进展.世界农药.2000,22(6):23-28.
    98.张志勇,王兴运,李素娟等.防治麦蚜新型杀虫剂药效研究.河南农业科学.2000,2:21-22.
    99.张宗炳.杀虫药剂的分子毒理学.北京:农业出版社.1987.
    100.赵建周.害虫对吡虫啉抗性的研究进展.植物保护.1998,6:40-41.
    101.赵善欢.昆虫毒理学.北京:农业出版社.1993.
    102.Adams AD,Celniker SE,Holt RA.The genome sequence of Drosophila melanogaster.Science.2000,287:2185-2197.
    103.Argemtine JA,James AA.Characterization of a salivary gland-specific esterase in the vector mosquito,Aedes aegypti.Insect Biochem.Molec.Biol.,1995,25(5):621-630.
    104.Ahmad M,Gladwell RT,McCaffery AR.Decreased nerve sensitivity is a mechanism of resistance in a pyrethroid resistant strain of Heliothis armigera from Thailand.Pestic.Biochem.Physiol,1989,35:165-171.
    105.Ahmad M,McCaffery AR.Elucidation of detoxication mechanisms involved in resistance to insecticides in the third instar larvae of a field-selected strain of Helicoverpa armigera with the use of synergists.Pestic Biochem Physiol,1991,41:41-52.
    106.Aldridge WN.Serum esterase:two types of esterase(A and B)hydrolyzing p-nitrophenyl acetate.propionate butyrate,and a method for their determination.Biochemical J.1953(53):110-117
    107.Amichot M,Tares S,Brun-Barale A.Point mutations associated with insecticide resistance in the Drosophila cytochrome P450 Cyp6a2 enable DDT metabolism.Eur.J.Biochem.2004,271:1250-1257.
    108.Andrews MC,Callaghaghant A,Field LM,et al.Identification of mutations conferring insecticide-insensitive AChE in the cotton-melon aphid,Aphis gossypii Glover.Insect Molecular Biology 2004,13:555-561.
    109.Arias HR.Topology of ligand binding sites on the nicotinic acetylcboline receptor.Brain Res.Rev.1997,25:133-191.
    110.Bai D,Lummis T,Leicht W,et al.Actions of imidacloprid and a related nitromethylene on cholinergic recptors of an identified insect motor neurone.Pestic.Sci.1991,33:197-204.
    111.Banks CJ,Needham PH.Comparison of the biology of Myzus persicae Sulz.resistant and susceptible to dimethoate.Ann.Appl.Biol.,1970,66:465-468.
    112.Bass C,Lansdell SJ,Millar NS et al..Molecular characterisation of nicotinic acetylcboline receptor subunits from the cat flea,Ctenocephalides felis(Siphonaptera:Pulicidae).Insect Biochem.Mol.Biol.2006,36(1):86-96.
    113.Baumann A, Jonas P, Gundelfinger E D. Sequence of Da2, a novel alpha-like subunit of Drosophila nicotinic acetylcholine receptors. Nucleic Acids Research, 1990,18: 36-40.
    114. Berge JB, Feyereisen R, Amichot M, Cytochrome P450 monooxygenases and insecticide resistance in insects. Phil. Trans. R. Soc. Lond. B. 1998,353: 1701-1705.
    115. Bertand D, Changeux JP. Nicotinic receptor: an allosteric protein specialised for intercellular communication. Seminars in Neuroscience. 1995, 7: 75-90.
    116. Bertrand D, Balliver M, Gomez M, et al. Physiological properties of neuronal nicotinic receptors reconstituted from the vertebrate β2 subunit and Drosophila alpha subunits. European Journal of neuroscience. 1994,6: 869-875.
    117. Bossy B, Ballivet M, Spierer P. Conservation of neuronal nicotinic acerylcholine receptors from Drosophila to vertebrate central nervous system. Embo Journal. 1988, 7: 611-618.
    118. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analyt. Biochem. 1976, 72: 248-254.
    119. Brattsten CB, Holyoke CW, Leeper JR, et al. Insecticide resistance: Challenge to pest management and basic rearch. Science. 1986, 231: 1255-1260.
    120. Breer H, Sattelle D B. Molecular properties and functions of insect acetylcholine receptors. Journal of Insect Physiology. 1987, 33: 771-790.
    121. Brejc K, van Dijk WJ, Klaassen RV, et al. Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature, 2001,411: 269-276
    122. Buckingham SD, Lapied B, Lecorronc H, et al. Imidacloprid actions on insect neuronal acetylcholine receptors. Journal of Experimental Biology. 1997, 200: 2685-2692.
    123. Bull DL, Whitten CJ. Factors influencing organophosphorus insecticide resistance in tabocco budworms. J. Agric. Food Chem. 1972,20:561
    124. Busvine JR. Mechanism of resistance to insecticides in houseflies. Nature. 1951, 168: 193-195.
    125. Byrne FJ, Castle S, Prabhaker N, et al. Biochemical study of resistance to imidacloprid in B biotype Bemisia tabaci from Guatemala. Pest Manag. Sci. 2003, 59: 347-352.
    126.Cahill M, Denholm I. Managing resistance in the chloronicotinyl insecticides-rhetoric or reality. Yamamoto I, Casdia JE. Nicotinoid Insecticides and the Nicotinic Acetylcholine Receptor. Tokyo: Springer. 1999, 253-270.
    127. Cahill M, Gorman K, Day S, et al. Baseline determination and detection of resistance to imidacloprid in Bemisia tabaci (Homoptera: Aleyrodidae). Bull. Entomol. Research, 1996, 86(4): 343-349.
    128. Campbell PM, Newcomb RD, Russell R, et al. Two different amino acid substitutions in the ali-esterase,E3,confer alternative types of organophosphorus insecticide resistance in the sheep blowfly,Lucilia cuprina.Insect Biochemistry and Molecular Biology.1998,28(3):139-150.
    129.Cao GC,Han ZJ.Tebufenozide resistance selected in Plutella xylostella and its cross resistance and fitness cost.Pest.Manag.Sci.2006,62,746-751.
    130.Catterall WA.From ionic currents to molecular mechanisms:the structure and function of voltage-gated sodium channels.Neuron.2000,26:13-25.
    131.Charpentier A,Fournier D.Levels of total acetylcholinesterase in Drosophila melanogaster in relation to insecticide resistance.Pestic.Biochem.Physiol.2001,70:100-107.
    132.Choi BR,Lee SW,Yoo JK.Resistant mechanism of green peach aphid,Myzus persicae (Homoptera;Aphididea),to imidacloprid.Kor.J.Appl.Entomol.2001,40(3):265-271.
    133.Claudianos C,Russell RJ.The same amino acid substitution in orthologons esterase confers organophosphate resistance on the house fly and a blowfly.Insect Biochem.Mol.Biol.1999,29:675-686.
    134.Corringer PJ,Le-Novere N,Changeux JP.Nicotinic receptors at the amino acid level.Annual Review of Pharmacology and Toxicology.2000,40:431-458.
    135.Cox D,Devonshire A,Denholm I,et al.Monitoring of insecticide resistance in Myzus persicae from Greece.Proceedings 6th International Synposium on Aphiids in New Millenium.Rennes,France,2001.
    136.Cox L,Koskinen WC,Celis R,et al.Sorption of imidacloprid on soil clay mineral and organic compontents.Soil Sci.Am.L.1998,62:911-915.
    137.Dabom P,Boundy S,Yen J,et al.DDT resistance in Drosophila correlates with Cyp6g1over-expression and coffers cross-resistance to the neonicotinoid imidacloprid.Genet Genom.2001,266:556-563.
    138.Danxia W,Michael E,Scharf J.Mechanisms of Fenvalerate Resistance in the German Cockroach,Blattella germanica(L.).Pesticide Biochemistry and Physiology.1998,61,53-62.
    139.Denholm I,Rowland MW.Tactics for managing pesticide in arthropods:theory and practice.Ann.Rev.Entomol.1992,37:91-112.
    140.Dennehy T,Denholm.Goals,achievements and future challenges of the Arizona whitefly resistance management program.Memphis T N.Proceedings 1998 Beltwide Cotton Production Conference.National Cotton Council,San Diego,CA,1998,68-72.
    141.Dennehy TJ,Roussell JS.Susceptibility of lygns bug populations in Arizona to acephate(Onthene)and bifenthrin(Capture) with related contrast of other insecticides.Nashville TN.Proceedings Beltwide Cotton Conferences.1996,2:771-776.
    142.Devine GJ,Harling ZK,Scarr AW,et al.Lethal and sublethal effects of imidacloprid on nicotine-tolerant Myzus nicotianae and Myzus persicae.Pestic.Sci.1996,48:57-62.
    143.Devonshire AL.The properties of a carboxylesterase from the peach-potato aphid,Myzus persicae (Sulz),and its role in conferring insecticide resistance.Biochem.J.1977,167:675-683.
    144.Devonshire AL,Field LM,Foster S P,et al.The evolution of insecticide resistance in the peach-potato aphid,Myzus persicae.Philos.Trans.R.Soc.Lond.B Biol.Sci.1998,353:1677-1684
    145.Devonshire AL,Moore GD.A carboxylesterase with broad substrate specificity causes organophosphorus,carbamate and pyrethrinoid resistance in peach-potato aphid,(Myzus persicae).Pestic.Biochem.Physiol.1982,18:235-246.
    146.Devonshire AL,Sawicki RM.Insecticide-resistant Myzus persicae as an example of evolution by gene duplication.Nature.1979,280:140-141.
    147.Dong K,Scott JG.Neuropharmacology and genetics of the kdr-type resistance in the German cockroach,Blatella germanica(L.) Pestic.Biochem.Physiol.1991,41:159-169.
    148.El-Abidin SAZ,Pinsker W.Effects of selection for resistance to organophosphorus insecticides on two esterase loci in Drosophila melanogaster.Genetica.1981,55:11-14.
    149.Elbert A,Beeker B,Hartwig J,et al.Imidacloprid,a new systemic insecticide.Pflanzenschutz-Nachrichten Bayer.1991,44:113-136.
    150.Elbert A,Nauen R.Resistance of Bemisia tabaci(Homoptera:Aleyrodidae) to insecticides in southern Spain with special reference to neonicotinoids.Pest Manag.Sci.2000,56(1):60-64.
    151.Elzen GW.Changes in resistance to insecticides in tobacco budworm populations in Mississippi,1993-1995.Southwest Entomol,1997,22:61-72.
    152.Field LM,Devonshire AL.Evidence that the E4 and FE4 esterase genes responsible for insecticide resistance in the aphid Myzus persicae(Sulzer.) are a part of a gene family.Biochem.J.1998,330:169-173.
    153.Field LM,Devonshire AL,,Forde BG.Molecular evidence that insecticide resistance in peach-potato aphids(Myxus persicae Sulz.) results from amplification of an esterase gene.Biochem.J.1988,251:309-312
    154.Field,LM,Blackman RL,Tyler-Smith C,et al.Relationship between amount of esterase and gene copy number in insecticide-resistant Myzuspersicae(Sulzer).Biochem.J.1999,339:737-742.
    155.Foster S,Denholm I,Thompson R.Variation in response to neonicotinoid insecticides in peachpotato aphids Myzus persicae(Hemiptera:Aphididae).Pest Manag.Sci.2003,59:166-173.
    156.Foumier D,Bride JM,Hoffmann F.Acetylcholinesterase,two types of modifications confer resistance to insecticide.J.Biol.Chem.1992,267:14270-14274.
    157.Furtong MJ,Wright DJ.Examination of stability of resistance and cross-resistance patterns to acylurea insect growth regulators in field populations of the diamondback moth,plutella xylostella,from Malaysia.Pestic.Sci.1994,42:325-326.
    158.Fuxa JR,Mitchell FL,Richter AR.Resistance of Spodoptera frugiperda(Lepidoptera:Noctuidae) to a nuclear polyhedrosis virus in the field and laboratory.Entomophaga.1988,33(1):56-63.
    159.Galzi JL,Changeux J P.Neuronal nicotinic receptors:molecular organisation and regulations.Neuropharmacology.1995,34:563-582.
    160.Galzi JL,Devillers-Thiery A,Hussy N,et al.Mutations in the channel domain of a neuronal nicotinic receptor convert ion selectivity from cationic to anionic.Nature,1992,359:500-505.
    161.Gao JR,Kambhampati S,Zhu KY.Molecular cloning and characterization of a greenbug (Schizaphis graminum) cDNA encoding acetylcholinesterase possibly evolved from a duplicate gene lineage.Insect Biochem.Mol.Bio.2002,32(7):765-775.
    162.Georghiou GP.The magnitude of the resistance problem.Georghiou GP.Pesticide resistance:Strategies and tactics for management.Washingon D.C.National Academy Press,1986,14-44.
    163.Gerschenfeld HM.Chemical transmission in invertebrate central nervous system and neuromuscular junctions.Physiol.Rev.1973,53:1-119.
    164.Gorman K,Hewitt F,Denholm I,et al.New developments in insecticide resistance in the glasshouse whitefly(Trialeurodes vaporariorum) and the two-spotted spider mite(Tetranychus urtucae) in the UKs.Pest Manag.Sci.2001,58:123-130.
    165.Grafius EJ,Bishop BA.Resistance to imidacloprid in Colorado potato beetles from Michigan.Resistant Pest Manage Newsletter.1996,8(2):21-25.
    166.Grauso M,Reenan RA,Culetto E,et al.Novel Putative Nicotinic Acetyleholine Receptor Subunit Genes,Dalpha5,Dalpha6 and Dalpha7,in Drosophila melanogaster identify a New and Highly Conservative Target of Adenosine Deaminase Acting on RNA-Mediated A-to-I Pre-mRNA Editing.Genetics.2002,160(4):1519-1533.
    167.Cuany A,Handani J,Berge J,et al.,Action of esterase Bl on chlorpyrifos in organophos-phate-resistance Culex mosquitoes.Pestic.Biochem.Physiol.1993,45:1-6.
    168.Guerrero FD.Cloning of a horn fly cDNA,HliaE7,encoding an esterase whose transcript concentration is elevated in diazinon-resistant flies.Insect Biochem.Mol.Biology.2000,30:1107-1115.
    169.Gunning RV,Easton CS,Balfe ME.Pyrethroid resistance mechanism in Australian Helicoverpa armigera.Pestic.Sci.1991,33:473-490.
    170.Gunning RV,Moores GD,Devonshire AL.sterase inhibitors synergise the toxicity of pyrethroids in Australian Helicoverpa armigea(Hubner) Lepidoptera:Noctuidae.Pestic.Biochem.Physiol.1999(63):50-62.
    171.Han ZJ,Han ZJ,Wang YC,et al.Biochemical features of a resistant population of the rice stem borer,Chilo suppressalis(Walker).Acta Entomologica Sinica.2003,46(2):161-170
    172.Han ZJ,Moores GD,Denholm I,et al.Association between biochemical markers and insecticides in the cotton aphid,Aphis gossypii Glover.Pest.Biochem.Physi.1998,62:164-171.
    173.Hermans-Borgmeyer I,Zopf D,Ryseck RP,et al.Primary structure of a developmentally regulated nicotinic acetylcholine receptor protein from Drosophila.Embo Journal,1986,5:1503-1508.
    174.Hernandez R,Guerrero FD,George JE,et al.Allele frequency and gene expression of a putative carboxylesterase-encoding gene in a pyrethroid resistant strain of the tick Boophilus microplus.Insect Biochem.Mol.Biol.2002,32:1009-1016.
    175.Hollingworth RM,Mota-Sancher D,Whalon ME,et al.Comparative pharmokinetics of imdacloprid in susceptible and resistant Colorado potato beetles.Proceedings 10th IUPAC International Congress on the Chemistry of Crop Production.Basel,2002,1:312.
    176.Huang Y,Williamson MS,Devonshire AL,et al.,Molecular characterization and imidacloprid selectivity of nicotinic acetylcholine receptor subunits from the peach-potato aphid Myzus persicae.J.Neurochem,1999,73:380-389.
    177.Huang Y,Williamson MS,Devonshire AL,et al.Cloning,heterologous expression and co-assembly of Mpβ1,a nicotinic acetylcholine receptor subunit from the aphid Myzus persicae.Neuroscience Letters.2000,284:116-120.
    178.Huang H S,Hu NT.Yao YE,et al.Molecular cloning and heterologous expression of a glutathion S-transferase involved in insecticide resistance from the diamondback moth,Plutella xylostella.Insect Biochem.Mol.Biol.1998,28(9):651-658.
    179.Hucho F,Tsetlin V,Machold J.The Emerging Three-Dimensional Structure of a Receptor:The Nicotinic Acetylcholine Receptor.FEBS Journal.1996,239(3):539-557.
    180.Jayawardena KG.Determination of the role of elevated B2 esterase in insecticide resistance in Culex quinquefasciatus(Diptera:Culicidae) from studies on the purified enzyme.Bull.Entomol.Res.1994,84:39-44.
    181.Jonas P,Baumann A,Merz B,Gundelfinger E D.Structure and developmental expression of the Dα2 gene encoding a novel nicotinic acetylcholine receptor protein of Drosophila melanogaster.Febs Letters.1990,269:264-268.
    182.Jones AK,Sattelle DB.Functional genomics of the nicotinic acetylcholine receptor gene family of the nematode,Caenorhabditis elegans.Bioessays.2004,26:39-49.
    183.Jones AK,Grauso M,Sattelle DB.The nicotinic acetylcholine receptor gene family of the malaria mosquito,Anopheles gambiae.Genomics.2005,85:176-185.
    184.Jones AK,Raymond-Delpech V,Thany SH,et al.The nicotinic acetylcholine receptor gene family of the honey bee,Apis mellifera.Genome Research.2006,16(11):1422-1430.
    185.Jurgen B,Nauen R.Rapid Report Biochemical evidence that an S431F mutation in acetylcholinesterase-1 of Aphis gossypi mediates resistamce to pirimicarb and omethoate.Pest.Manag.Sci.2004,60:1051-1055.
    186.Kagabu S.Chlornicotinyl insecticide-discovery,application and future perspective.Rev.Toxicol.1997,1:75-129.
    187.Karunaratne S,Jayawardena KG,Hemingway J,et al.Characterisation of a B-type esterase involved in insecticide resistance from the mosquito Culex quinquefascians.Biochem.J.1993,294:575-579.
    188.Kasai S,Weerashinghe IS,Shono T.P450 monooxygenases are an important mechanism of permethrin resistance in Culex quinquefasciatus Say larvae.Arch.Insect Biochem.Physiol.1998,37:47-56.
    189.Kazuhisa T,Takashi G.Evolution of Nicotinic Acetylcholine Receptor Subunits.Mol.Biol.Evol.1998,15(5):518-527.
    190.Kidd H,James D.Agrochemicals Handbook.Third Edition.Royal Society of Chemistry.Cambridge,England.1994.
    191.Knipple DC,Doyle KE,Marsella-Herrick PA,et al.Tight genetic linkage between the kdr insecticide resistance trait and a voltage-sensitive sodium channel gene in the house fly.PNAS.1994,91:2483-2487.
    192.Kostaropoulos I,Papadopoulos AI,Metaxalds A,et al.Glutathione-S-transferase in the defence against pyrethroids in insects.Insect Biochem.Mol.Biol.2001,31:313-319.
    193.Kozaki T,Shono T,Tomita T.Fenitroxon insensitive acetylcholinesterases of the housefly,Musca domestica associated with point mutations.Insect Biochem Mol Biol.2001,31(10):991-997.
    194.Ku CC,Chiang FM.Glutathion transferase isozymes involved in insecticide resistance of diamondback moth larvae.Pestic.Biochem.Phsiol.1994,50(3):91-197
    195.Kulkarni AP,Hodgson E.Metabolism of insecticides by mixed function oxidase systems.Pharmac.Ther.1980,8:379-475.
    196.Lansdell S J,Millar N S.The influence of nicotinic receptor subunit composition upon agonist, alpha-bungarotoxin and insecticide(imidacloprid) binding affinity.Neuropharmacology.2000,39:671-679.
    197.Lansdell SJ,Millar NS.Dβ3,an atypical nicotinic acetylcholine receptrs.sunbunit from Drosophila:molecular cloning,heterologous expression and coassembly.Journal of Neurochemistry.2002,80:1009-1018.
    198.Lee SH,Dunn JB,Clark JM,et al.Molecular analysis of kdr-like resistance in a permethrin resistant strain of Colorado potato beetle.Pestic.Biochem.Physiol.1999,63:63-75.
    199.Lee SH,Soderlund DM.The V410M mutation associated with pyrethroid resistance in Heliothis virescens reduces the pyrethroidsensitivity of house fly sodium channels expressed in Xenopus oocytes.Insect Biochem.Mol.Biol.2001,31:19-29.
    200.Leech CA,Jewess P,Marshall J,et al.Nitromethylene actions on in-situ and expressed insect nicotinic acetylcholine receptors.FEBS Lett.1991,290:90-94.
    201.Laufer J,Pelhate M,Sattelle DB.Actions of pyrethroid insecticides on insect axonal sodium channels.Pest Sci.1985,16:651-661.
    202.Leonard RJ,Labarca CG,Chamet P,et al.Evidence that the M2 membrane-a panning region lines the ion channel pore of the nicotinic receptor.Science.1988,242:1578-1581.
    203.Li F,Han ZJ.Alternative splicing,multiple transcription initiation sites of nicotinic acetylcholine receptor subunits from the cotton aphid Aphis gossypii.Acta Zoologica Sinica.2005,51(5):867-878.
    204.Li F,Han ZJ.Mutation in acetylcholinesterase associated with insecticide resistance in the cotton aphid,Aphis gossypii Glover.Insect Biochem.Mol.Biol.2004,34:397-405.
    205.Littleton JT,GANETZKY B.Ion Channels and Synaptic Organization:Analysis of the Drosophila Genome.Neuron.2000,26:35-43.
    206.Liu MY,Casida JE.High affinity binding of[~3H]imidcloprid in the insect acetylcholine receptor.Pestic.Bio.Physiol.1993,40:40-46.
    207.Liu N,Scott JG.Genetic analysis of factors controlling elevated cytochrome P450,CYP6D1,cytochrome b5,P450 reductase and monooxygenase activities in LPR house flies,Musca domestica.Biochem.Genet.1996,34:133-148.
    208.Liu N,Scott JG.Increased transcription of CYP6D1 causes cytochrome P450-mediated insecticide resistance in house fly.Insect Biochem.Mol.Biol.1998,28:531-535.
    209.Liu ZW,Han ZJ,Wang YC et al,.Selection for imidacloprid resistance in Nilaparvata lugens:cross-resistance patterns and possible mechanisms.Pest.Manag.Sci.2003,59:355-359
    210.Liu ZW,Williamson MS,Lansdell SJ,et al.A nicotinic acetylcholine receptor mutation conferring target-site resistance to imidacloprid in Nilaparvata lugens(brown planthopper).PNAS.2005.102(24):8420-8425.
    211.Machold J,Weise C,Utkin Y,et al.The handedness of the subunit arrangement of the nicotinic acetylcholine receptor from Torpedo californica.Eur.J.Biochem.1995,234(22):427-430.
    212.Martin T,Chandre F,et al.Pyrethroid resistance mechanism in the cotton bollworm helicoverpa armigera(Lepidoptera:Noctuida) from West Africa.Pest Manag.Sc.2000,56:549-554
    213.Martinez-Ramirez AC,Escriche B,Real MD,et al.Inheritance of resistance to a Bacillus thuringiensis toxin in a field population of diamondback moth(Plutella xylostella).Pestic.Sci.1993,43:115-120.
    214.Martinez-Torres D,Foster SP,Field LM,et al.A sodium channel point mutation is associated with resistance to DDT and pyrethroid insecticides in the peach-potato aphid,Myzus persicae(Sulzer)(Hemiptera:Aphididae).Insect Mol.Biol.1999,8:339-346.
    215.Misra S,Crosby MA,Mungall CJ,et al.Annotation of the Drosophila melanogaster euchromatic genome:a systematic review.Genome Biol.2002,3:1-22.
    216.Mizell RF,Sconyers MC.Toxicity of imidacloprid to selected arthropod predators in the laboratory.Florida Entomologist.1992,75(2):277-280.
    217.Mongan NP,Jones AK,Smith GR,et al.Novel alpha7-like nicotinic acetylcholine receptor subunits in the nematode Caenorhabditis elegans.Protein Sci 2002,11:1162-1171.
    218.Morin S,Williamson MS,Goodson SJ,et al.Mutations in the Bemisia tabaci para sodium channel gene associated with resistance to a pyrethroid plus organophosphate mixture.Insect Biochem.Mol.Biol.2002,32:1781-1791.
    219.Mullins JW.Imidacloprid:a new nitroguanidine insecticide,pp:183-198.In Pest Control with Enhanced Enviromental Safety ACS Sym.Series 524(Eds.Duke S O,Menn JJ,Plimmer J R).American Chemical Society,Washington DC.1993.
    220.Mutero A,Pralavorio M,Bride J M.Resistance-associated point mutation in insecticide-insensitive acetylcholinesterase.PNAS.1994,91:5922-5926
    221.Nauen R,Bretschneider T.New modes of action of insecticides.Pesticide Outlook,2002,12:241-245.
    222.Nabeshima T,Mori A,Kozaki T,et al.An amino acid substitution attributable to insecticide-insensititity of acetylcholinesterase in a Japanese encephalitis vector mosquito,Culex tritaeniorhynehus.Biochemical and Biophysical Research Communications.2004,313:794-801.
    223.Nauen R,Denholm I.Resistance of insect pests to neonicotinoid insecticides:current status and future prospects.Arch.Insect Biochem.Physiol.2005,58:200-215.
    224. Nauen R, Elbert A. Apparent tolerance of a field-collected strain of Myzus nicotianae to imidacloprid due to strong antifeeding response. Pestic. Sci. 1997,49: 252-258.
    225. Nauen R, Elbert A. European monitoring of resistance to common classes of insecticides in Myzus persicae and Aphis gossypii(Homoptera: Aphididae) with special reference to imidacloprid. Bull. Entomol. Res. 2003,93:47-52.
    226. Nauen R, Elbert A. Resistance of Bemisia spp. ( Homoptera: Aleyrodidae) to insecticides in southern Spain with special reference to neonicotinoids. Pest Mang Sci. 2000, 56: 60-64.
    227. Nauen R, Hungenberg H, Tollo B, et al. Antifeeding effect, biological efficacy and high affinity binding of imidacloprid to acetylcholine receptors in Myzus persicae and Myzua nicotianae. Pestic. Sci. 1998, 53(2): 133-140.
    228. Nauren R, Strobel J, Tietjen K, et al. Aphicideal activity of imidacloprid against a tobacco feeding strain of Myzus persicae from Japan closely related to Myzus nicotianae and highly resistant to carbamates and organophosphates. Bull. Entomol. Research. 1996, 86(2): 165-171.
    229. Nauen R, Stumpf N, Elbert A. Toxicological and mechanistic studies on neonicotinoid cross resistance in Q-type Bemisia (abaci (Hemiptera: Aleyrodidae). Pest. Manag. Sci. 2002,58: 868-874.
    230. Nelson DR, Koymans L, Kamataki T, et al. P450 Superfamily: Update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics. 1996,6:1-41.
    231. Newcomb RD, Campbell PM. A single amino acid substitution converts a carboxylesterase to an organophosphate hydrolase and confers insecticide resistance on a blowfly. PNAS. 1997b, 94: 7464-7468.
    232. Newcomb RD, Campbell PM. cDNA cloning baculovirus-expression and kinetic properties of the esterase, E3, involved in organophosphorus resistance in Lucilia cuprina. Insect Biochem. Mol. Biol. 1997a, 27:15-25.
    233. Ninsin KD, Tanaka T. Synergism and stability of acetamiprid resistance in a laboratory colony of Plutella xylostella. Pest Manag Sci. 2005, 61: 723-727.
    234. Novere NL, Corringer PJ, Changeux JP. The diversity of subunit composition in nAChRs: evolutionary origins, physiologic and pharmacologic consequences. J. Neurobiol. 2002, 53: 447-456.
    235. Oerke EC, Dehne HW, Schonbeck F, et al. Crop production and crop protection: estimated losses in major food and cash crops. Elsiver, Amsterdam, 1994.
    236. Olsen ER, Dively GP, Nelson JO. Baseline susceptibility to imidacloprid and cross resistance patterns in Colorado potato beetle (Coleoptera: Chrysomelidae) populations. J. Econ. Entomol. 2000, 93: 447-458.
    237.Ono M,Swanson JJ,Field LM,et al.Amplification and methylation of an esterase gene associated with insecticide-resistance in greenbugs,Schizaphis graminum(Rondani)(Homoptera:Aphididae).Insect Biochemistry and Molecular Biology.1999,29:1065-1073.
    238.Page RDM.TREEVIEW:An application to display phylogenetic trees on personal computers.Comput.Appl.Biosci.1996,12:357-358.
    239.Paton MG,Kanmaratne SH,Giakoumaki E,et al.Quantiative analysis of gene amplification in insecticide resistant Culex mosquitoes.Biochem.J.2000,346:17-24.
    240.Patrice D,Bernd G,Monique G.The insecticide imidacloprid is a partial agonist of the nicotinic receptor of honeybee Kenyon cells.Neuroscience Letters.2002,32:13-16.
    241.Pedersen SE,Sharp SD,Liu WS,et al.Structure of the Noncompetitive Antagonist-binding Site of the Torpedo Nicotinic Acetylcholine Receptor.J.Biol.Chem.1992,267(15):10489-10499.
    242.Pettersson J,Pickett JA,Pye BJ,et al.Winter host component reduces clolnization by bird-cherry-oat aphid,Rhopalosiphum padi(L.)(Homoptera:Aphididae),and other aphids in cereal fields.J.Chem.Ecol.1994,20(10):2565-2574.
    243.Portillo V,Jagannathan S,Wolstenholme AJ.Distribution of glutamate-gated chloride channel subunits in the parasitic nematode Haemonchus contortus.J Comp Neurobiol 2003,462:213-222.
    244.Prabhaker N,Toscano NC,Castle SJ,et al.Selection for imidacloprid resistance in silverleaf whiteflies from the Imperial Valley and development of a hydroponic bioassay for resistance monitoring.Pesticide Sciences.1997,51(4):419-428.
    245.Qu M,Han J,Xu X,et al.Triazophos resistance mechanisms in the rice stem borer(Chilo suppressalis Walker).Pestic.Biochem.Phsiol.2003,77:99-105.
    246.Ranch N,Nauen R.Biochemical markers linked to neonicotinoid cross-resistance in Bemisia tabaci (Hemiptera:Aleyrodidae).Arch.Insect Biochem.Ohysiol.2003,54:126-133.
    247.Ranson H,Chlaudianos C,Ortelli F,et al.Evolution of supergene families associated with insecticide resistance.Science.2002,298:179-181.
    248.Ranson H,Rossiter L,Ortelli F,et al.Identification of a novel class of insect glutathione S-transferases involved in resistance to DDT in the malaria vector Anopheles Gambiae.Biochem J.2001 359(2):295-304.
    249.Raymond M,Beysaat-Arnaouty V,Mouthes C,et al.Diversity of the amplification of various esterases B responsible for organophosphate resistance in Culex mosquitoes.Biochem Genet,1989,27:417-423,
    250.Rendic S,Di Carlo FJ.Human cytochrome P450 enzymes:a status report summarizing their reactions,substrates,inducers,and inhibitors.Drug Metab.Rev.1997,29:413-580.
    251. Sawruk E, Udri C, Betz H, Schmitt B. SBD, a novel structural subunit of the Drosophila nicotinic acetylcholine receptor, shares its genomic localisation with two alpha-subunits. Febs Letters, 1990, 273: 177-181.
    252. Sayed AR. Insecticide resistance in diamondback moth in Malaysia. pp: 437-422. In Diamondback Moth Management: proceedings of the first international workshop (Eds. Taleker N S, Griggs T D). Asian Vegetable Research and Development Center. Shanhua, Taiwan. 1997.
    253.Schuntner CA, Roulston WJ. A resistance mechanism in organophosphorus-resistant strains of sheep blowfly (Lucilia cuprina). Aust. J. Biol. Sci. 1968,21: 173-176.
    254. Schulz R, Sawruk E, Mulhardt C, Bertrand S, Baumann A, Phannavong B, Betz H, Bertrand D, Gundelfinger E D, Schmitt B. Dα3, a new functional alpha subunit of nicotinic acetylcholine receptors from Drosophila. Journal of Neurochemistry. 1998, 71: 853-862.
    255. Sgard F, Charpantier E, Bertrand S, et al. A novel human nicotinic receptor subunit, α 10, that confers functionality to the a 9-subunit Mol Pharmacol. 2002, 61:150-159.
    256. Sgard F, Fraser SP, Ketowska MJ, et al. Cloning and functional chatacterisation of two novel nicotinic acetylcholine receptor alpha subunits from the insect pest Myzus Persicae. Journal of Neurochemistry. 1998,71:903-912.
    257. Siqueira HA, Guedes RN, Fragoso DB, et al., Abamectin resistance and synergism in brazilian populations of Tula absoluta (Meyrick) (Lepidoptera: Gelechiidae). Int. J. Pest Manag., 2001, 47: 247-251.
    258. Simmons AM, Jackson DM. Evaluation of foliar-applied insecticides on abundance of parasitoids of Bemesia argentifolii (Homoptera: Aleyrodidaw) in vegetables. J. Entomol. Sci. 2000,35:1-8.
    259. Smissaert HR. Cholinesterase inhibition in spider mites susceptible and resistant to organophosphate. Science. 1964,143: 129-131.
    260. Smith TJ, Lee SH, Ingles PJ, et al. The L1014F point mutation in the house fly Vsscl sodium channel confers knockdown resistance to pyrethroids. Insect Biochem.Mol. Biol. 1997,27: 807-812.
    261. Soderlund D, Knipple D. The molecular biology of knockdown resistance to pyrethroid insecticides. Insect Biochem.Mol.Biol. 2003, 33: 563-577.
    262. Sone S, Hattori Y, Tsuboi S, et al. Difference in susceptibility to imidacloprid of the populations of the small brown planthopper, Laodellphax striatellus Fallen from various locations in Japan. J. Pestic. Sci. 1995, 20(4): 541-543.
    263. Sone S, Nagata K, Tsuboi S, et al. The toxic symptoms and neural effect of a new class of insecticide, imidacloprid, on the American cockroach, Periplaneta Americana ( L ). J. Pestic. Sci. 1994,19:69-72.
    264.Sonoda S,Tsumuki H.Studies on glutathione S-transferase gene involved in chlorfluazuron resistance of the diamondback moth,Plutella xylostella L(Lepidoptera:Yponomeutidae).Pestic.Biochem.Physiol.2005,82:94-101.
    265.Stoger E,Williams S,Christou P,et al.Expression of the insecticidal lectin from snowdrop(Galanthus nivalis agglutinin;GNA) in transgenic wheat plants:effect on predation by the grain aphid Sitobion avenae.Molecular Breeding.1999,5:65-73.
    266.Syvanen M,Zhou Z,Wharton J,et al.Heterogeneity of the glutathione transferase genes encoding enzymes responsible for insecticide degradation in the housefly.J.Mol.Evol.1996 43:236-240
    267.Tabashnik BE,Cushing NL,Finson N,et al.Field development of resistance to Basillus thruingiensis in diamondback moth(Lepidoptera:Pultellidea).J.Econ.Entomol.1990,83:1671-1676.
    268.Tang AH,Tu CP.Pentobarbital-induced changes in Drosophila glutathione S-transferase D21mRNA stability.J Biol Chem.1995 270(23):13819-13825.
    269.Tang F,YUE Y,Hua R.The relationships among MFO,Glutathion S-Transferases,and phoxim resistance in Helicoverpa armigera.Pestic.Biochem.Physiol.2000,68:96-101.
    270.Taylor MFJ,Heckel DG,Brown TM,et al.Linkage of pyrethroid insecticide resistance to a sodium channel locus in the tobacco budworm.Insect Biochem.Mol.Biol.1993,23:763-775.
    271.Tomita T,Scott JG,cDNA and deduced protein sequence of CYP6D1:the putative gene for a cytochrome P450 responsible for pyrethroid resistance in housefly.Insect Biochem.Molec.Biol.1995,25:275-283
    272.Tomizawa M,Casida JE.Selective toxicity of neonicotinoids attributable to specificity of insect and mammalian nicotinic receptors.Ann.Rev.Entomol.2003,48:339-364.
    273.Tomizawa M,Lee DL,Casida JE,et al.Neonicotinoids insecticides:molecular features conferring selectivity for insect versus mammalian nicotinic receptors.J.Agric.Food Chem.2000,48:6016-6024.
    274.Tomizawa M,Yamamoto I.Binding of nicotinoids and the related compounds to the insect nicotinic acetylcholine receptor.J.Pestic.Sci.1992,17(2):231-236.
    275.Unwin N.Acetylcholine receptor channel imaged in the open state.Nature.1995,373:37-43
    276.Utkin Y N,Tsetlin V I,Hucho F.Structural organization of nicotinic acetylcholine receptors.Membr Cell Biol,2000,13(2):143-164.
    277.Vulule JM,Beach RF,Atieli FK,et al.Elevated oxidase and esterase levels associated with permethrin tolerance in Anopheles gambiae from Kenyan villages using permethrin-impregnated nets.Med.Vet.Entomol.1999,13:239-244.
    278.Walsh S B,Dolden T A,Moores G D,Kristensen M,Lewis T,Devonshire A L,Williamson M S.Identification and characterization of mutation in the housefly(Musca domestica)acetylcholinesterase involved in insecticide resistance.Biochem.J.2001,359:175-181
    279.Wang KY,Liu TX,Yu CH,et al.Resistance of Aphis gossypii(Homoptera:Aphididae) to fenvalerate and imidacloprid and activities of detoxification enzymes on cotton and cucumber.J Econ.Entomol.2002,95:407-413.
    280.Wei SH,Clark AG,Syvanen M.Identification and cloning of a key insecticide-metabolizing glutathione S-transferase(MdGST-6A) from a hyper insecticide-resistant strain of the housefly Musca domestica.Insect Biochem Mol Biol.2001,31(12):1145-1153.
    281.Weichel L,Nauen R.Monitoring of insecticide resistance in damson hop aphids,Phorodon humuli Schrank(Hemiptera:Aphididae) from German hop gardens.Pest Manag.Sci.2003,59:991-998.
    282.Weill M,Lutfalla G,Mogensen K,et al.Insecticide resistance in mosquito vectors.Nature.2003,423:136-137.
    283.Wen ZM,Scott JG.Cross-resistance to imidacloprid in strains of German cockroach(Blattella germanica) and house fly(Musca domestica).Pesticide Science.1997,49:367-371.
    284.Wheelock GD,Scott JG.Immunological detection of cytochrome P450 from insecticide resistant and susceptible house flies(Musca domestica).Pestic.Biochem.Physiol.1990,38:130-139.
    285.Williamson,MS,Denholm I,Bell CA,et al.Knockdown resistance(kdr) to DDT and pyrethroid insecticides maps to a sodium channel gene locus in the housefly(Musca domestica).Mol.Gen.Genet.1993,240:17-22.
    286.Xu X,Yu L,Wu Y.Disruption of a Cadherin gene associated with resistance to Cry1Ac {delta}-endotoxin of Bacillus thuringiensis in Helicoverpa armigera.Appl.Environ.Microbiol.2005,71(2):948-954.
    287.Yamamoto I,Yabuta G,Tamizawa M,et al.Molecular mechanism for selective toxicity of nicotinoids and neonicotinoids.Journal of Pesticide Science.1995,20:33-40.
    288.Yamamoto I,Tamizawa M,Saito F,et al.Structural factors contributing to insecticidal and selective actions of neonicotinoids.Archives of Insect Biochemistry and Physiology.1998,37:24-32.
    289.Yang Y.H.,Wu Y.Chen S.The involvement of microsomal oxidases in pyrethroid resistance in Helicoverpa armigera from Asia.Insect Biochem.Mol.Biol.2004.
    290.Yu S J,Nguren SN.,Insecticide Susceptibility and Detoxication Enzyme Activities in Permethrin-Selected Diamondback Moths.Pestic.Biochem.Physiol.1996,56:69-77.
    291.Zhao G,Liu W,Brown JM,et al.Insecticidal resistance in field and laboratory strains of western flower thrips(Thsanoptera:Thripidae).J.Econ.Entomol.1995,88:1164-1170.
    292.Zhao JY,Bishop BA,Grafius EJ.Inheritance and synergismof resistance to the imidacloprid in colorado potato beetle(Coleoptera:Chrysomelidae).J.Appl.Entomol.2000,93(5):1508-1514.
    293.Zhu YC,Dowdy AK,Baker JE.Differential mRNA expression levels and gene sequences of a putative carboxylesterase-like enzyme from two strains of the para-sitoid Anisopteromalus calandrae(Hymenoptera:Pteromalidae).Insect Biochem Molec Biol.1999,29:417-425
    294.Zhu YC,Snodgrass GL,Chen MS,Enhanced esterase gene expression and activity in a malathion-resistant strain of the tarnished plant bug,Lygus lineolaris.Insect Biochem Molec Biol.2004,34:1175-1186
    295.Zieglar R,Whyard S,Downe AER,et al.General esterase,malathion carboxyl in Culex tarsalis.Pest Biochem.Physiol.1987,28:279-285.
    296.Zlotkin,E.The insect voltage-gated sodium channel as target of insecticides.Ann.Rev.Entomol.1999,44:429-455.
    297.Zwart R,Oortgiesen M,Vijverberg HPM.Nitromethylene heterocycles:selective agonists of nicotinic receptors in locust Neurons compared to mouse NI-115 and BC3H1 cells.Pestic Biochem Physiol.1994,48:202-213.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700