类大麦属物种种子贮藏蛋白基因的分子克隆
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
类大麦属作为小麦族中较为少见的单种属,在其系统进化方面研究较多,而对其种子贮藏蛋白的研究尚未见报道。为了深入了解类大麦属物种贮藏蛋白及其编码基因,对类大麦属材料毛节草(Crithopsis delileana)的种子贮藏蛋白分别进行了分析与鉴定,并且对部分编码基因进行了克隆和测序,对其高分子量谷蛋白亚基(how-molecular-weight glutenin subunits,HMW-GS)Kx基因进行了表达分析。本研究所获主要结果如下:
     1.毛节草种子贮藏蛋白SDS-PAGE和A-PAGE分析
     对2份毛节草材料种子贮藏蛋白进行了SDS-PAGE和A-PAGE分析。利用三种不同的提取方法进行SDS-PAGE分析结果表明,普通提取方法中2份材料在小麦的高分子量谷蛋白区域均仅有一条带,电泳迁移率介于普通小麦By8和Dy10亚基之间,推测为一个高分子量谷蛋白亚基。在普通小麦的低分子量谷蛋白区域,出现若干条分辨率不高的蛋白条带。通过丙酮沉淀法提取分析,发现HMW-GS沉淀中只有电泳迁移率介于普通小麦By8和Dy10亚基之间的带存在,初步确认毛节草中只有一种高分子量谷蛋白亚基。A-PAGE分析表明毛节草种子醇溶蛋白存在着一些变异类型,与普通小麦中国春相应的α、γ和ω醇溶蛋白区域的电泳迁移率有一定差异。
     2、HMW-GS基因克隆与序列分析
     利用已知HMW-GS基因序列设计特异性引物,对1份毛节草材料的基因组DNA进行扩增得到两个长度分别为2.1和1.7kb的片段,经过序列分析表明2.1kb片段为Kx亚基编码基因,而1.7kb片段为Ky亚基(未表达)的编码基因。Genebank登录号分别为AY804128和AY834230。Kx基因全长编码区长度为2046bp,由其推导的氨基酸序列含682个氨基酸残基,具有x型HMW-GS的典型特征,包括21个氨基酸残基组成的信号肽,86个氨基酸残基组成的N-端保守区,533个氨基酸残基组成的重复区,42个氨基酸残基组成的C-端保守区。N和C-端保守区内分别含3个和1个半胱氨酸(C)。重复区内,含有9个三肽(GQQ)、56个六肽(PGQGQQ)、16个九肽(GYYPTSLQQ),以及位于重复区起始端的十二肽(RYYPSVTSSQQA)和十一肽(SYYPGQASPQR)和重复区末端的三肽(GYD)。与其它亚基序列进行比较发现它与已知高分子量谷蛋白亚基间的主要差异在重复区内,且集中表现为可重复短肽类型和数目的增加或减少,以及可重复单元内个别座位氨基酸的替换和少量部位的缺失。目前,在已知x型高分子量谷蛋白亚基中,Kx的长度是最短的。Ky亚基的全长序列长度为1725bp,由其推导的氨基酸序列同样具有y型高分子量谷蛋白序列的典型特征。但在核苷酸序列中的1558位置上存在一个提前终止密码子,它的存在可能导致Ky编码基因沉默,从而导致Ky亚基不能得到表达。
     3、LMW-GS基因克隆与序列分析
     利用已知LMW-GS基因序列保守区设计一系列引物对毛节草基因组DNA进行扩增,成功克隆了4个LMW-GS基因LMW-GSK1、LMW-GSK2、LMW-GSK3和LMW-GSK4,Genbank序列号依次为EU283813、EU283814、EU283815和EU283816。其中LMW-GSK3和LMW-GSK4为部分基因序列。同小麦族其它LMW-GS基因进行比对分析后发现,其5'侧翼序列和氨基酸序列同其它亚基存在较高的一致性,同样具备LMW-GS的典型特征,同时也存在着一定的结构差异,这些差异主要来源于氨基酸残基的替换以及重复区结构单元的缺失或插入。在LMW-GSK1基因序列5'侧翼区发现了2个顺式作用元件EM(5'-TGTAAAGT-3')和GLM(5'-GGCGAGTCAT-3')、2个TATA box、1个CAAT box和1个AGGA box。其推导的氨基酸序列具有一个由20个氨基酸残基组成的信号肽,一个15个氨基酸残基组成的N端保守区,一个由80个氨基酸组成的重复区和一个由182个氨基酸残基组成的C端保守区。LMW-GSK2和LMW-GSK4编码区内部均发现了提前终止密码子,故推测它们为假基因。根据所克隆基因的5'侧翼序列和保守区氨基酸序列同小麦族其他LMW-GS相应序列的比对结果进行分子进化分析表明,来源于K染色体组的LMW-GS可以和小麦A、D染色体组以及黑麦的R和大麦的H染色体组分别聚为关系相对较近的类群。
     4.醇溶蛋白基因分子克隆与序列分析
     根据小麦族已知α和γ醇溶蛋白基因保守区设计引物,对毛节草进行PCR扩增,成功获得了3个α醇溶蛋白基因gli-Kal、gli-Ka2和gli-Ka3,Genbank登录号分别为EU283817、EU283819和EU283820;2个γ醇溶蛋白基因gli-KrI和gli-Kr2,Genbank登录号分别为EU283818和EU283821。因在gli-Ka3编码区内发现了1个提前终止密码子,故推测其为假基因。毛节草的3个α醇溶蛋白基因与来源于小麦属普通小麦、乌拉尔图小麦和野生二粒小麦,以及具有S和H染色体组的披碱草属老芒麦、具有D染色体组的粗山羊草、具有W染色体组的澳冰草、具有V染色体组的簇毛麦和具有Ee染色体组的偃麦草属的相应基因进行比较发现它们在结构上有着较高的相似性,同时也存在着一定的差异,这些差异主要来源于氨基酸残基以及重复区内重复单元的的替换、缺失和插入。一致性分析表明3个基因推导的氨基酸序列同其它小麦族相应基因氨基酸序列的相似性在57.59%-88.18%范围内变化。2个γ醇溶蛋白基因与来源于小麦属不同品种相应基因之间同样具有较高的相似性,其一致性在62.41%-85.53%范围内变化。保守区进化分析表明,3个α醇溶蛋白单独聚为一类,其同时与具有Ee染色体组的偃麦草属的α醇溶蛋白基因亲缘关系最近,其次与普通小麦的α醇溶蛋白基因亲缘关系最近;2个γ醇溶蛋白同样单独聚为一类,同时与来自于普通小麦品种Bobwhite的γ醇溶蛋白基因亲缘关系最近。
     5.HMW-GS基因Kx体外表达与植物转基因载体构建
     根据Kx基因编码区序列设计表达引物,扩增其切除信号肽部分的全长编码区后连接入pET-30a表达专用载体后,转化大肠杆菌BL21(DE3),经诱导后Kx基因在细菌中获得表达,且表达产物电泳迁移率同种子蛋白中唯一的高分子量谷蛋白亚基相一致。进一步设计遗传转化载体构建所需引物,扩增其全长编码区后连接入遗传转化专用载体pCMBIA1302中,经PCR、双酶切和测序验证了载体构建成功,为进一步利用转基因手段研究Kx与小麦品质的关系奠定了基础。
Crithopsis delileana(Schult)Roshev(2n=2x=14,KK)is the only member of the genus Crithopsis Jaub.Et Spach.in the Triticeae group.The classification and evolution about this species had been extensively investigated,whereas the storage protein of this species was unknown.For the better understanding of storage protein of C.delileana,the composition of several storage protein in C.delileana were characterized,and some coding genes were isolated and sequenced.
     1.SDS-PAGE and A-PAGE analysis of the storage protein in C.delileana
     The storage proteins in C.delileana were analyzed by the SDS-PAGE and A-PAGE.In SDS-PAGE analysis by general extraction method of total seed protein,two candidate HMW glutenin subunits were detected in 2 accessions of C.delileana from Demark.One putative HMW glutenin subunit has the similar electrophoresis mobility between the subunits By8 and By10 in hexaploid wheat,and the other band has abnormal faster electrophoresis mobility than any of the y-type glutenin in wheat.A number of bands were detected in the LMW glutenins region of common wheat.These bands likely were LMW prolamines or gliadins present in C.delileana.Using acetone extraction method,it was found that only one band with electrophoresis mobility between subunits By8 and By10 in hexaploid wheat was detected.A-PAGE analysis indicated that the electrophoresis mobility of gliadins in C.delileana was different from the electrophoresis mobility ofα,γandωgliadins form common wheat Chinese spring.
     2.Isolation and sequence analysis of HMW-GS genes from C.delileana
     One C.delileana accession was selected for the further studying in the isolation of HMW-GS coding genes.In genomic PCR reactions using the primer pairs designed from published sequences of HMW-GS,two target fragments(2.1kb and 1.7kb)were specifically amplified.It was confirmed that the two target fragments were the coding genes of subunit Kx and Ky(not expressed)by sequence analysis.The sequences of HMW glutenin genes Kx and Ky had been deposited in the GenBank under accession numbers AY804128 and AY834230,respectively.
     The full coding region of Kx was 2,046bp,and could encode a mature protein with 661 amino acids residues.The coding sequence of Kx has the typical primary structures of HMW glutenin subunits.In the deduced amino acid sequence of Kx,a conserved signal peptide with 21 residues,a N-terminal region with 86 residues,a central repetitive domain with 533 residues and a C-terminal region with 42 resisdues were observed.The repetitive domain consists of interspersed repeats based on 9 tripeptide(consensus GQQ),56 hexapeptide(consensus PGQGQQ)and 16 nonapeptide(consensus GYYPTSPQQ) motifs.Two longer repeat units(11 followed by 12 residues)and a tripeptide(GYD)were adjacent to each other at the beginning and end of the repetitive central domain, respectively.It was indicated that the amino acid sequence of Kx were different from the HMW glutenin representatives by substitutions,insertions and/or deletions involving single amino acid residues or motifs.The size of the repetitive domain of the Kx was substantially smaller than those of the known subunits.
     The coding sequence of HMW glutenin subunit Ky was 1,725 bp,and had the similar typical primary structure to those of known y-type HMW glutenin.Due to an in-frame stop codon in the coding regions at position 1558 bp,the HMW glutenin Ky could not to be expressed as an active mature protein.
     3.Isolation and sequence analysis of LMW-GS genes from C.delileana
     Using homologous primers designed from published sequences of LMW-GS,four LMW prolamine gene sequences,designated as LMW-GSK1(EU283813),LMW-GSK2 (EU283814),LMW-GSK3(EU283815)and LMW-GSK4(EU283816),were isolated from C.delileana,among which LMW-GSK3 and LMW-GSK4 were partial gene sequences. These LMW prolamine gene sequences had the similar typical primary structures to the LMW-GS genes previously described in Triticeae.The deduced amino acid sequences of the LMW prolamines of C.delileana were different from the LMW glutenin representatives by substitutions,insertions and/or deletions involving single amino acid residues or motifs.Sequence analysis showed that 5' flanking region of the LMW-GSK1 contained two cis-elements EM(5'-TGTAAAGT-3')and GLM(5'-GGCGAGTCAT-3') besides four general cis-elements with two TATA box,one CAAT box and one AGGA box.The deduced amino-acid sequence of the LMW-GSK1 consisted of a conserved signal peptide with 20 residues,a N-terminal region with 15 residues,a repetitive domain with 80 residues and a C-terminal region with 182 residues.Several in-frame stop codons were found in the coding sequences of LMW-GSK2 and LMW-GSK4,which showed that the LMW-GSK2 and LMW-GSK4 could be the putative pseudogenes.Phylogenetic analysis based on the alignment of 5' flanking regions and deduced amino acid sequences indicated that LMW-GSK1,LMW-GSK2 and LMW-GSK4 from K genome were closely related to the corresponding genes from A,D and R genomes,while LMW-GSK3 could be clustered together with X03103 from H genome.
     4.Isolation and sequence analysis of gliadin genes from C.delileana
     Using homologous primers designed from published sequences ofα- andγ-gliadin genes,threeα- and twoγ-gliadin genes were isolated from C.delileana,which were designated as gli-Ka1,gli-Ka2,gli-Ka3,gli-Kr1and gli-Kr2,respectively.These gene sequences had been deposited in the GenBank under accession numbers EU283817, EU283819,EU283820,EU283818 and EU283821,respectively.A in-frame stop codon was found in the coding sequences of gli-Ka3,indicating that the gli-Ka3 could be the putative pseudogenes.Threeα-gliadin genes of C.delileana had the similar but not identical primary structures to the corresponding gene sequences from Triticum aestivum, T.urartu,T.turgidum,Elymus sibiricus,Aegilops tauschii,Australopyrum retrofractum, Dasypyrum breviaristatum and Lophopyrum in Triticeae.The differences were mainly resluted from substitutions,insertions and/or deletions involving single amino acid residues or motifs ofα-gliadins.The identity analysis indicated that the identity of threeα-gliadin genes with other correspondingly genes in Triticeae changed from 57.59%to 88.18%.Twoγ-gliadin genes of C.delileana also had the similar typical primary structures to the corresponding gene sequences in Triticum.The identity of twoγ-gliadin genes with other correspondingly genes of Triticum changed from 62.41%to 85.53%. Phylogenetic analysis based on the alignment of conserved regions indicated that the threeα- and twoγ-gliadin genes were clustered into two separate groups,and the threeα-gliadin genes were closely related to the corresponding genes from Lophopyrum contained Ee genome and common wheat,while the twoγ-gliadin genes could be clustered together with the corresponding gene of Bobwhite from common wheat.
     5.Expression of the coding sequence of HMW prolamine Kx and construction of transgenic vector
     For bacterial expression,the nucleotide sequence of the signal peptide was removed from the Kx by PCR mutagenesis.After cloning the modified coding sequence into the pET-30a vector,an expression construct pET-Kx was obtained and chosen for expressing the mature proteins of the Kx subunits in bacterial cells BL21(DE3)plysS.In SDS-PAGE analysis of protein extracts prepared from induced bacterial cultures and purified expression protein,the electrophoretic mobility of the protein directed by pET-Kx was similar to that of the subunit from seeds.For construction of transgenic vector,the primers were designed by Kx coding sequence.After cloning the modified coding sequence into transgenic vector pCMBIA1302,the validation of PCR,digestibility analysis of double Enzyme and sequencing indicated that the transgenic vector of Kx was constructed successfully.To estimate the comprehensive effects of the prolamine encoding by Kx gene on the baking quality of wheat,the endosperm specific expression of this gene in transgenic wheat is the desirable method.
引文
1.FAO production yearbook 2000.FAO Rome,Italy
    2.Beccari,J B.De Frumcnto De Bononiensi Scicntiarum et Atrium atque Academia Commentaru,Tomi Secundi.Bononia,1745
    3.Osborne,T B.The Vegetable Proteins Longrnans,Green,London,1924
    4.Payne,P I.Genetics of wheat storage proteins and the effect of allelic variation on bread making quality.Annu.Key.Plant Physiol,1987,38:141-153
    5.周青文.麦胚乳贮藏蛋白组分遗传研究进展.麦类作物学报,2000,20(2):78-83
    6.董超华,徐如宏,张庆勤.小麦醇溶蛋白和谷蛋白研究进展.山地农业生物学报,2003,22(2):164-168
    7.赵文明.种子蛋白质基因工程.西安,陕西科学技术出版社,1995
    8.董玉琛,郑殿升.中国小麦遗传资源.北京,中国农业出版社,2000
    9.李三和,李举,王娜丽等.外源1Dx5基因导致小麦高分子量麦谷蛋白亚基表达变异.生物技术通讯,2007,18(2):217-219
    10.张晓东,李冬梅,徐文英等.利用基因枪将HMW谷蛋白亚基基因与除草剂Basta抗性基因导入小麦不同外植体获得转基因植株.遗传,1998,20(增刊):3-8
    11.Barro F,Rooke L,Bekes F,et al..Transformation of wheatwith high molecular weight subunit genes results in improved fuction properties.National Biotechnology,1997,5(12):1295-1299
    12.李志新,曹双河,张相岐等.小麦及其近缘植物高分子量麦谷蛋白亚基(HMW-GS)基因的研究进展.长江大学学报(自科版)农学卷,2007,4(3):91-95
    13.Forster B P,Reader S M,Forsyth S.An assessment of the homoeology of six Agropyron intermedium chromosomes added to wheat.Genetic Research,1987,50:97-99
    14.孙辉,王岳光,李宝云等.小麦谷蛋白亚基及其基因多态性研究进展.麦类作物学报,2000,20(1):82-86
    15.Lawrence G J,Shepherd K W.Chromosomal location of genes controlling seed proteins in species related to wheat.Theor Appl Genet,1981,59:25-31
    16.Gianibelli M C,Lan'oque R,MacRitchie F,et al..Biochemical,genetic,and molecular characterization of wheat glutenin and its component submits.Cereal Chem,2001,76(6):635-644
    17.Huebner F R,Donaldson G L,Wall J S.Wheat Glutenin Subunits.II Compositional Differences.Cereal Chem,1974,51:240-249
    18.孙辉,王岳光,李宝云等.小麦谷蛋白亚基及其基因多态性研究进展.麦类作物学报,2000,20(1):82-86
    19.Shewry P R,Miflin B J.Seed storage proteins of economically important cereals.Adv Cereal Sci Technol,1985,7:1-84
    20.Payne P I,Lawrence G J.Catalogue of alleles for the complex gene loci Glu-A1,Glu-B1 and Glu-D1,which code for the high-molecular-weight subunits of glutenin in hexaploid wheat.Cereal Res Commun,1983,11:29-35
    21.Shewry P R,Tatham A S,Barro P,Lazzari P.Biotechnology of breadmaking:unraveling and manipulating the multi-protein gluten complex.Bio/technology,1995,13:1185-1190
    22.忻骅.小麦高分子量麦谷蛋白基因的结构分析.植物学报,1992,34(10):729-735
    23.解瑞立,万永芳,张彦等.多倍体山羊草物种高分子量麦谷蛋白亚基的组成与其编码基因的分子克隆.科学通报,2000,45:1867-1873
    24.颜泽洪.山羊草物种高分子量麦谷蛋白基因的分子克隆[学位论文].四川雅安,四川农业大学,2001
    25.刘丽,何中虎,于亚雄等.小麦谷蛋白研究进展.西南农业学报,2003,16(1):54-59
    26.林红波,刘云英,李维琪.小麦高分子量谷蛋白亚基及其基因的研究进展.西北植物学报,2002,22(4):1025-1029
    27.Miles M J,Carr H J,MacMaster T C,et al..Scanning tunneling mioroscopy of a wheat seed storage protein reveals details of unusual supersecondary stzuctured.Proc Natl Aca Sci USA.1991,88:68-71
    28.Goldsbrough A P,Albrecht H,Stratford R,et al..Conformational differences between two wheat (Triticum aestivum)'high-molecular-weight' glutenin subunits are due to a short region containing six amino acid differences.Biochemical Journal,1989,263:837-842
    29.Belton P S,Colquhoun I L,Grant A,et al..FTIR and NMR studies on the hydration era high-Mr subunit of glutenin.International Journal of Biological Macromolecules,1995,17:74-80
    30.Belton,P S.1999.On the elasticity of wheat gluten.J.Cereal Sci.29:103-107.
    31.刘广田,许明辉.普通小麦胚乳高分子谷蛋白亚基的变异和遗传.中国农业科学,1988,21(1):56-58
    32.陆燕,马传喜.高分子量麦谷蛋白亚基变异与加工品质关系的研究.麦类作物学报,2000,20(4):32-36
    33.毛沛.小麦高分子量麦谷蛋白亚基对面包烘烤品质的效应分析.华北农学报,1995,10(增刊):55-59
    34.魏良明,王福亭.普通小麦高分子谷蛋白亚基与沉降值的关系.河南农业大学学报,1999,33(1):25-28
    35.赵和,卢少源.小麦高分子谷蛋白亚基遗传变异及其与品质和其它农艺性状关系的研究.作物学报,1994,20(1).67-75
    36.赵和,卢少源,李宗智.小麦高分子量麦谷蛋白亚基遗传变异及其与品质和农艺性状关系的研究.中国农业科学,1996,29(1):34-39
    37.Payne P l,Corfield K G.Subunit composition of wheat glutenin proteins isolated by gel filtration in a dissociating medium.Planta,1979,145:83-88
    38.Branland G,Daredevil M.Diversity of grain proteins and bread wheat quality.Ⅱ.Correlation between molecular weight subunits of glutenin and flour quality characteristics.J Cereal Sci,1985:345-354
    39.Odenkack W,Mahgoub E S.Relationships between HMW glutenin subunit composition and the sedimentation value in reciprocal sets of inbred back-cross lines derived from two winter wheat crosses.Miller TE.Proceedings of the seventh international wheat genetics symposium.Cambridge:institute of plant science research,1988,987-991
    40.Weegels P L,Hamer R J,Schofield J D.Functional properties of wheat glutenin.J Cereal Sci,1996,23:1-18
    41.Payne P I,Seekings J A,Worland A J,et al..Allelic variation of glutenin subunits and gliadins and its effect on bread making quality in wheat:Analysis of F5 progeny from Chinese Spring ×Chinese Spring(Hope IA).J Cereal Sci,1987,6:103-118
    42.Vasil V,Castillo A M,Fromm M E,et al.Herbicide resistant fertile transgenetic wheat plants obtained by mircoprojectile bombardment of regenerable embyogenic callus.Bio/technology,1992,10:667-674
    43.Fredy A,Vimla V,Vibhaa S,et al..Integration and expression of the High-Molecular-Weight glutenin subunits 1Ax 1 gene into wheat.Nature Biotechnology,1996,14:1155-1159
    44.Blechl A E,Anderson O D.Expression of a novel HMW glutenin subunits gene in transgenic wheat.Nature Biotechnology,1996,14:875-879
    45.Rooke L,Barro F,Tatham A S,et al..Altered functional properties of tritordeum by transformation with HMW glutenin subunit genes.Theor Appl Genet,1999,99:851-859
    46.D'ovidio R,Porceddu E,Lafiandra D,et al..PCR analysis ofgene encoding allelic variants of high molecular weight glutenin subunits at the G Iu-D1 locus.Tbeor Appl Genet,1994,88:175-180
    47.D'ovidio R,Masci S,Porcedu E.Development of a set of oligonucletide primers specific for genes at the Glu-1 complex loci of wheat.TheorAppl Genet,1995,91:189-194
    48.Gu,Y Q,Anderson,O D,Londeore,C F,et al..Structural organization of the barley D-hordein locus in comparison with its orthologous regions of wheat genomes.Genome,2003,46(6):1084-1097
    49.Jackson E A,Holt L M,Payne P I.Characterization of high molecular weight gliadin and low molecular weight glutenin subunits of wheat endosperm by two-dimensional electrophoresis and their controlling genes.Theor Appl Ganet,1983,66:29
    50.Kasarda D D.Glutenin structure in relation to wheat quality.In:Pomeranz Y.Wheat is Unique.American Association of Cereal Chemists:St Paul MN,1989,277-302
    51.赵献林,夏先春,刘丽等.小麦低分子量麦谷蛋白亚基及其编码基因研究进展.中国农业科学,2007,40(3):440-446
    52.D'Ovidio R,Masci S.The low-molecular-weight glutenin subunits of wheat gluten.J Cereal Sci,2004,39:321-339
    53.Payne P I,Jackson E A,Holt L M,et al..Genetic linkage between endosperm protein genes on each of the short arms of chromosomes 1A and 1B in wheat.Theor Appl Genet,1984,68:235-243
    54.Gupta R B,Shepherd K W.Two-step one-dimensional SDS-PAGE analysis of LWM subunits of glutenin Ⅰ variation and genetic control of the subunits in hexaploid wheats.Theor Appl Genet, 1990,80:65-74
    55.董超华,张庆勤,张庆勤.小麦醇溶蛋白和谷蛋白研究进展.山地农业生物学报,2003,22(2):164-168
    56.Liu C Y.Inheritance of B subunits of glutenin and ω-and γ-gliadins in tetraploid wheats.Theor Appl Genet,1995,90:1149-1157
    57.Masci S,Rovelli L,Kasarda D D,et al..Characterisation and chromosomal localization of C-type low-molecular-weight glutenin subunits in the bread cultivar Chinese Spring.Theor Appl Genet,2002,104:422-428
    58.Gupta R B,MacRcitchie F.Allelic variation at glutenin subunit and gliadin loci Glu-l,Glu-3,Gli-1of common wheats.Ⅱ.Biochemical basis of the allelic effects on dough properties.J Cereal Sci,1994,19:19-29
    59.D'Ovidio R,Simeone M,Masci S,et al..Molecular characterization of a LMW-GS gene located on chromosome 1B and the development of primers specific for the GIu-B3 complex locus in durum wheat.Theor Appl Genet,1997,95:1119-1126
    60.Nieto-Taladriz M T,Ruiz M,Martínez L M,et al..Variation and classification of B low-molecular-weight glutenin sununit alleles in durum wheat.Theor Appl Genet,1997,95:1155-1160
    61.Tao H P,Kasarada D D.Two-dimensional gel mapping and N-terminal sequencing of LMW glutenin subunits.J Exp Bot,1989,40:1015-1020
    62.Lew E J,Kuzmicky D D,Kasarda D D.Characterization of Low Molecular Weight Glutenin Subunits by Reversed Phase High-Performance Liquid Chomatography,Sodium Dodecy Sulfate Polyacryl-amide Gel Electrophoresis and N-Ternimal Acid Sequence.J Cereal Sci,1992,69:508-515
    63.Metakovsky E V,Wriley C W,Bekes F,et al..Glutenin polypeptides as useful genetic markers of dough quality in Australian wheats.Aust J Agric Res,1990,41:289-306
    64.Sreeramulu G.,Singh N K.Genetic and biochemical characterization of novel low molecular weight glutenin subunits in wheat(Triticum aestivum L.).Genome,1997,40:41-48
    65.D'Ovidio R,Masci S.The low-molecular-weight glutenin subunits of wheat gluten.J Cereal Sci,2004,39:321-339
    66.Cassidy B G,Dvorak J.Molecular characterization of a low-molecular-weight glutenin cDNA clone from Titicum durum.Them Appl Genet,1991,81:653-660
    67.Cassidy B G,Dvorak J,Anderson O D.The wheat low-molecular-weight glutenin genes:characterization of six new genes and progress in understanding gene family structure.Theor Appl Genet,1998,96:743-750
    68.Masci S,D'Ovidio R,Lafiandra D,et al..Characterization of a low-molecular-weight glutenin subunit gene from bread wheat and the corresponding protein that represents a major subunit of the glutenin polymer.Plant Physiol,1998,118:1147
    69.Shewy P R,Tatham A S.The prolamin storage proteins of cereal seed:structure and evolution.J Biochem,1990,267:1-12
    
    70. D'Ovidio R, Marchitelli C, Cardelli E, et al.. Sequence similarity between allelic Glu-B3 genes related to quality properties of durum wheat. Theor Appl Genet, 1999,98:455-461
    
    71. Kasarda D D,Tao H.P., Evans P.K., Adalsteins A.E., Yuan S.W. Sequence of a protein from a single spot of a 2-D gel pattern :N-terminal sequence of a major wheat LMW glutenin subunits.J Evxp Bot, 1988,39: 899-906
    
    72. Shewry P R, Halford N G, Tatham A S. The high molecular weight subunits of wheat, barley and rye: genetics, molecular biology, chemistry and role in wheat gluten structure and functionality. Oxford Surv Plant Mol Cell Biol, 1989, 6:163-129
    
    73. Pitts E G, Rafalski J A, Hedgcoth C. Nucleotide sequence and encoded amino acid sequence of a genomic gene region for a low molecular weight glutenin. Nucleic Acids Res, 1988,16: 11376
    
    74. Ikeda T M, Nagamine T, Fukuoka H, et al.. Identification of new low-molecular-weight glutenin subunit genes in wheat. Theor Appl Genet, 2002,104: 680-687
    
    75. Tatham A S, Field J M, Simith J S, et al.. The conformation of wheat glutenin proteins Ⅱ, Aggregated gliadins and low molecular weight subunits of glutenin. J Cereal Sci, 1987, 5:203-214
    
    76. Thompson S, Bishop D H,Tatham A S, et al.. Exploring disulphide bond formation in a low molecular weight subunit of glutenin using a baculovirus expression system. Assoc Cereal Res, 1994, 345-355
    
    77. Wrigley C W. Giant proteins with flour power. Nature. 1996,381:738-739
    
    78. Skeritt J H. Glutenin proteins.genetics structure and dough quality a review. Ag Biotech News Information, 1998,10:247-270
    
    79. Nagamine T, Kai Y, Takayama T, et al.. Alleic variation of glutenin subunit loci Glu-1 and Glu-D3 in southern Japanese wheat and their effects on dough and glutenin properties. J Cereal Sci,2000,32:129-135
    
    80. Gupta R B, Shepherd K W, et al.. Genetic control of LMW glutenin subunits in bread wheat and association with physical dough properties. In:Pro 3rd Int Worshop on Glutenin Proteins.Lasztity R,Bekes F(eds) World Scientific Publishing Co Pte Ltd.Singapore, 1987,13-19
    
    81. Gupta R B, Singh N K, Shepherd K W. The cumulative effects of allelic variation in LMW and HMW glutenin subunits on dough properties in the progeny of two bread wheats. Theor Appl Genet, 1989,77:57-64
    
    82. Boggini G, Pogna N E. The bread-making quality and storage protein composition of Italisn durum wheat. J Cereal Sci, 1989,131-138
    
    83. Pogna N E, Autran J C, Mellini F, et al.. Chromosome 1B-encoded gliadins and glutenin subunits in durum wheat: Genetics and relationship to gluten strength. J Cereal Sci, 1990,11: 15-34
    
    84. Sissons M J, Skerrilt J H, Skerrilt J H. Isolation and functionality of low molecular weight glutenin subunits. Cereal Chem, 1998 , 75(1): 30-36
    
    85. Luo C, Griffin W B, Branland G, et al. Comparison of low- and high-molecular-weight glutenin allele effects on flour quality. Theor Appl Genet,2001,102:1088-1098
    86.Lee Y K,Ciaffi M,Appels R,et al..The low-molecular-weight glutenin subunit proteins of primitive wheat Ⅱ The genes from A-genome species.Theor Appl Genet,1999,98:126-134
    87.Skeritt J H.Glutenin proteins:genetics structure and dough quality-a review.Ag Biotech.News Information,1998,10:247-270
    88.晏月明,刘广田,Prodanovic S等.小麦醇溶蛋白的遗传与品质改良.麦类作物,1998,18(1):1-4
    89.Metakovsky E V,Branlard G.Genetic diversity of French common wheat germplasm based on gliadin alleles.Theor Appl Oenet,1998,96:209-218
    90.Sbewry P R,Tatham A S,Lazzeri P.Biotechnology of wheat quality.J Sci Food Agric,1997,73:397-406.
    91.Anderson O D,Litts J C,Greene F C.The α-gliadin gene family.Ⅰ.characterization of ten new wheat α-gliadin genomic clones,evidence for limited sequence conservaton of flanking DNA,and southern analysis of the gene tinily.Theor Appl Genet,1997,95:50-58
    92.Ciaffi M,Lee Y K,Tamas L,et al..The low-molecular-weight glutenin subunit proteins of primitive wheats.Ⅲ.The genes from D-genome species.Theor Appl Genet,1999,98:135-148
    93.Woychik J H,Boundy J A,Dimler R J.Starch gel-electrophoresis of wheat gluten proteins with concentrated urea.Arch Biochem Biophys,1961,94:477-482
    94.Bushuk W,Zillman R R.Wheat cultivar identification by gliadin electrophoregrams.I.Apparatus,method,and nomenclature.Can J Plant Sci,1978,58:505-515
    95.Bietz J A,Huebner F R,Sanderson J E,et al..Wheat gliadin homology revealed through N-terminal amino acid sequence analysis.Cereal Chem,1977,54:1070-1083
    96.Kasarda D D,Autran J C,Lew E I L,et al..N-terminal amino acid sequences of ω-gliadins and ω-secalins;implications for the evolution of prolamin genes.Biochim Biophys Acta,1983,747:138-150
    97.Salcedo G,Prada J,Aragoncillo C.Low-molecular-weight gliadin-like proteins from wheat endosperm.Phytochemistry,1979,18:725-727
    98.Boyd W J,Lee J W.The control of wheat gluten synthesis at.the genome and chromosome levels.Experientla,1967,23,332-333
    99.Shepherd K W.Chromosomal control of endosperm proteins in wheat and rye.Proc Ⅲ Int Wheat Genet Syrup.Canberra,1968,86-96
    100.Payne P I,Holt L M,Jackson E A et al..Wheat storage proteins:Their genetics and potential for manipulation by plant breeding.Philos Trans R Soc Lond B,1984,304:359-371
    101.Masci S,Rovelli L,Kasarda D D,et aL.Characterization and chromosomal localization of C-type low-molecular-weight glutenin subunits in the bread wheat cultivar Chinese Spring.Theor Appl Genet,2002,104:422-428
    102.Metakovsky E V,Branlard G,Chemakov V M,et al..Recombination mapping of some chromosome 1A-,1B-,1D- and 6B-controlled gliadins and low-molecular-weight glutenin subunits in common wheat.Theor Appl Oenet,1997,94:788-795
    103.Gupta R B,Shepherd K W.Production of multiple wheat-rye IRS translocation stocks and genetic analysis of LMW subunits of glutenin and gliadins in wheat using these stocks.Theor Appl Genet,1993,85:719-728
    104.Masci S,Egorov T A,Ronchi C,et.al..Evidence for the presence of only one cysteine residue in the D-type low-molecular-weight subunits of wheat glutenin.J Cereal Sci,1999,29:17-25
    105.DuPont F,Vensel W H,Chan R,et al..Characterization of the lB-type omega gliadins from Triticum aestivum cultivar Butte.Cereal Chem,2000,77:607-614
    106.DuPont F M,Vensel W,Encamacao T,et al..Similarities of omega gliadins from Triticum urartu to those encoded on chromosome IA of hexaploid wheat and evidence for their post-translational processing.Theor Appl Genet,2004,108:1299-1308
    107.Kasarda D D.Glutenin structure in relation to wheat quality.In:Wheat is unique.Eds.Pomeranz Y.Am Assoe Cereal Chem,1989:277-302
    108.Kasarda D D,Autran J C,Lew E J et al..N-terminal amino acid sequences of γ-gliadins and γ-secalins:Implieations for the evolution of evolution of prolamin genes.Biochim Biophys Acta,1983,747:138-150.
    109.周青文,万平,陈佩度等.麦胚乳贮藏蛋白组分遗传研究进展.麦类作物学报,2000,2:83-88
    110.Anderson O D,Hisa C C,Torres V.The wheat γ-gliadin genes:characterization of ten new sequences and further understanding of γ-gliadin gene family structure.Theor Appl Genet,2001,103:323-330
    111.Mtlller S W,Wieser H.The location of disulphide bonds in α-type gliadins.J Cereal Sci,1995,22:21-27
    112.邓志英,田纪春.小麦贮藏蛋白与小麦品质性状的关系及研究进展.生命科学,2003,4:44-48
    113.Branlard G,Dardevet M.Diversity of grain protein and bread wheat quality Ⅰ.Correlation between gliadin bands and flour quality characteristics.J Cereal Sci,1985,3:329-343
    114.雷东锋,马建岗,赵文明.小麦种子贮藏蛋白质研究进展.西北植物学报,2001,3:205-214
    115.Pogna,N E,Boggini,G,Corbellini,M,et al..Association between gliadin electrophoretic bands and quality in common wheat.Can J Plant Sci,1982,4:913-918
    116.黄思棣.中国和英国普通小麦制做中国白面条和碱水面条的品质特性.中国粮油学报,1988,32(6):84-88
    117.Branlard G,Dardevet M.Diversity of grain proteins and bread wheat quality.Ⅰ.Correlation between gliadin bands and flour quality characteristics.J Cereal Sci,1985,3:329-343
    118.Kota R S,Gill B S.A Cytogenetically Based Physical Map of Chromosome 1B in Common Wheat.Genome,1993,36:548-554
    119.Van Lonkhuijsen,H J,Hamer R J,Schrender C.Influence of specific gliadins on the bread making quality of wheat.Cereal Chem,1992,69:174-177
    120.Fido R J,Bekest F,Grast P W,et al..Effects of α-,β-,γ-and ω-gliadins on the dough mixing properties of wheat flour.J Cereal Sci,1997,26:271-277
    121.Weegles P L,Grootet A M,Verhoek J A,et al..Large-Scale Separation of Gliadins and Their Bread-Making Quality.J Cereal Sci,1994,20:253-264
    122.Uthayakumaran S,Tatham A S,Tatham A S.Effect of Gliadin Fractions on Functional Properties of Wheat Dough Depending on Molecular Size and Hydrophobity.Cereal Chem,2001,78(2):138-141
    123.丁虹.小麦醇溶蛋白的研究.遗传,1988,10(6):39-41
    124.颜启传,黄亚军,徐嫒.试用ISTA推荐的种子醇溶蛋白电泳方法鉴定大麦和小麦品种.作物学报,1992,18(1):61-68.
    125.刘香利,李玉红.醇溶蛋白酸性电泳及其在种质资源分析中的应用.西北农林科技大学学报,2001,29(2):17-20
    126.张学勇,杨欣明,董玉琛.醇溶蛋白电泳在小麦种质资源遗传分析中的应用.中国农业科学,1995,28(4):25-32
    127.杜金哲.春小麦不同品质类型籽粒蛋白质组分和亚基形成规律及品质的关系.[学位论文].黑龙江哈尔滨,东北农业大学,1999
    128.兰秀锦,魏育明,王志容等.中国节节麦与中东节节麦的醇溶蛋白遗传多样性比较研究.四川农业大学学报,1999,17(3):245-248
    129.刘华,王宇生,张辉等.小麦种质资源醇溶蛋白指纹图谱数据库的初步建立及应用.作物学报,1999,6:674-682
    130.William M D,Pena R J,Mujeeb K A.Seed protein and isozyme variations in Triticum tauschii (Aegilops squarrosa).Theor Appl Genet,1993,87:257-263
    131.Pena R J,Zaroco Hernandez J,Mujeeb-Kazi A.Glutenin subunit composition and bread baking quality characteristics of synthetic hexaploid wheats derived from Triticum turgidum×Triticum tauschii(Coss.)Schamal crosses.J.Cereal Sci,1995,21:15-23
    132.Mackie A M,Lagudah E S,Sharp P J et al..Molecular and biochemical characterization of HMW glutenin subunits from T.tauschii and the D genome of hexapoid wheat.J Cereal Sci,1996,23:213-225
    133.Kreis,M.,Shewry P.R.,Forde B.G.et al..Structure and evolution of seed storage proteins and their genes,with particular reference to those of wheat,barley and rye.Oxford Surveys of Plant Cell and Molecular Biology,1985,Vol.2:253-317
    134.李保云,解超杰,尤明山等.野生二粒小麦高分子量谷蛋白亚基的多态性分析.麦类作物学报,2002,22(3):21-24
    135.Wan Y,Wang D,Shewry P R,et al..Isolation and characterization of five novel high molecular weight subunit of glutenin genes from Triticum timopheevi and Aegilops cylindrica.Theor Appl Genet,2002,104:828-839
    136.Liu Z,Yan Z,Wan Y,et al.Analysis of HMW glutenin subunits and their coding sequences in two dipliod Aegilops species.Theor Appl Genet,2003,106:1368-1378
    137.Yan Zehong,Wan Yongfang,Liu Kunfan,et al..Identification of a novel HMW gultenin subunit and comparison of its amino acid sequence with those of homologous subunits.Chinese Science Bulletin,2002,47(3):220-225
    138.Yan Ze-Hong,Wei Yu-Ming,Wang Ji-Rui,et al..Characterization of two HMW glutenin subunit genes from Taenitherum Nevski.Genetica,2006,127:267-276
    139.Bustos A D,Rubio P,Jouve N.Characterization of two gene subunits on the Ig chromosome of rye as orthologs of each of the Glu-1 genes of hexaploid wheat.Theor Appl Genet,2001,76:513-529
    140.Bustos A D,Rubio P,Jouve N.Molecular characterisation of the inactive allele of the gene Glu-A1and the development of a set of AS-PCR markers for HMW glutenins of wheat.Theor Appl Genet,2000,100:1085-1094
    141.Wang,J R,Yah,Z H,Wei,Y M,et al..Identification of y-type high-molecular-weight glutenin subunit genes from Elytrigia elongata(Host)Nevski.Journal of Agricultural Biotechnology,2004,12:143-146.
    142.Wang J R,Yan Z H,Wei Y M,et al..A novel HMW glutenin subunit gene Eel.5 from Elytrigia elongata(Host)Nevski.J Cereal Sci,2004,40:289-294
    143.Wang J R,Yan Z H,Wei Y M,et al..Characterization of high-molecular-weight glutenin subunit genes from Elytrigia elongata.Plant Breeding,2006,125,89-95
    144.Lawrence G J,Shepherd K W.Chromosomal location of genes controlling seed proteins in species related to wheat.Theor Appl Genet,1981,59:25-31
    145.Montebove L,Depace C,Jan C C,et al..Chromosomal location of isozyme and seed storage protein genes in Dasypyrum villosum(L.)Candargy.Theor Appl Genet,1987,73:836-845
    146.Morris L D,Raupp W J,Gill B S.Isolation of Ht genome chromosome additions from polyploid Elymus trachycaulus(StStHtHt)into common wheat(Triticum aestivum).Genome,1990,33:16-22
    147.Forde J,Malpica J M,Halford N G,et al..The nucleotide sequence of an HMW glutenin subunit gene located on chromosome IA of wheat.Nucleic Acids Research,1985,13:6817-6832
    148.Obukhova L V,Generalova G V,Agafonov A V,et al..A Comparative Molecular Genetic Study of Glutelins in Wheat and Elymus.Genetika,1997,33:1174-1178
    149.Blanco A,Resta P,Simeone R,et al..Chromosomal location of seed storage protein genes in the genome ofDasypyrum villosum(L.)Candargy.Thvor.Appl.Genet,1991,82:358-362
    150.Atienza S G,Alvarez J B,Villegas A M,et al..Variation for the low-molecular-weight glutenin subunits in a collection of Hordeum chilense.Euphytica,2002,128:269-277
    151.Ladogina M P,Pomortsev A A,Netsvetaev V P,et al..Identification of three loci controlling low-molecular-weight glutenin subunits in barley Hordeum-vulgare.Genetika,1989,25:1818-1826
    152.黄卓.具有5+12优质亚基节节麦的低分子量谷蛋白基因序列分析[学位论文].四川雅安,四川农业大学,2005
    153.Hou Y C,Liu Q,Long H,et al..Characterization of Low-Molecular-Weight glutenin subunit genes from Hordeum brevisubulatum ssp.turkestanicum.Biology Bulletin,2006,33(1):35-42
    154.Shang H Y,Wei Y M,Long H,et al..Identification of LMW glutenin like genes from Secale sylvestre Host.Russian Journal of Genetics,2005,41(12):1372-1380
    155.Johal J,Gianibelli M C,Rahman S,et al..Characterization of low-molecular-weight glutenin genes in Aegilops tauschii.Theor Appl Genet,2004,109:1028-1040
    156.Galterio,G,Cardarilli D,Codianni P,et al..Evaluation of chemical and technological characteristics of new lines of Triticum turgidum ssp.dicoccum.Nahrung/Food 2001,45:263-266.
    157.杨瑞武,周永红,郑有良等.小麦族四个属模式种的醇溶蛋白分析.广西植物,2001,21(3):239-242
    158.车永和,李立会,何蓓如.冰草属(Agropyron Gaertn.)植物遗传多样性取样策略基于醇溶蛋白的研究.植物遗传资源学报,2004,5(3):216-221
    159.丁春邦,周永红,杨瑞武等.拟鹅观草属植物的醇溶蛋白研究_四川农业大学学报,2004,22(2):112-116
    160.侯永翠,郑有良,魏育明.青藏高原近缘野生大麦醇溶蛋白遗传多样性分析.西南农业学报,2004,17(5):545-551
    161.李光蓉,杨足君,张勇等.澳冰草中一个新型α-gliadin基因的克隆与序列分析.安徽农业科学,2007,35(27):8457-8458
    162.Ciaffi M,Dominici L,Lafiandra D.Gliadin polymorphism in wild and cultivated einkom wheats.Theor Appl Genet,1997,94(1):68-74
    163.马昭才.一粒系小麦种质资源分子生物学研究.[学位论文].四川雅安,四川农业大学,2006
    164.杨瑞武,周永红,郑有良等.波兰小麦醇溶蛋白遗传差异及其与新疆稻麦的关系.麦类作物学报,2000,20(4):1-5
     165.张小英,李伟,魏育明等.密穗小麦(Triticum compactum Host.)醇溶蛋白遗传多样性分析.西南农业学报,2005,18(6):680-683
    166.杨瑞武,魏秀华,周永红等.赖草属植物醇溶蛋白的遗传多态性.云南植物研究,2004,26(1):103-110
    167.刘静,杨瑞武,张海琴等.小麦族猬草属和近缘属物种醇溶蛋白分析.四川农业大学学报,2006,24(3):263-268
     168.李光蓉,杨足君,畅志坚.茸毛偃麦草醇溶蛋白位点向小麦中的导入.麦类作物学报,2004,24(2):34-37
    169.Zambryski P,Joos H,Genetello C,et al..Ti plasmid vecter for the introduction of DNA into plant cells without alteration of their normal regeneration capacity.EMBO Journal,1983,2:2143-2150.
    170.王海波,张艳贞,晏月明.基因枪法转化小麦谷蛋白基因研究进展.生物技术通讯,2007,3:101-104
    171.Vasil V,Castillo A M,Fromm M E,et al..Herbicide resistant fertile transgenetic wheat plants obtained by mircoprojectile bombardment of regenerable embyogenic callus.Bio/technology,1992,10:667-674
    172.Fredy A,Vimla V,Vibhaa S,et al..Integration and expression of the High-Molecular-Weight glutenin subunits lax 1 gene into wheat.Nature B iotechnology,1996,14:1155-1159
    173.Blechl A E,Anderson O D.Expression of a novel HMW glutenin subunits gne in transgenic wheat.Nature Biotechnology,1996,14:875-879
    174.Rooke L,Barro F,Tatham A S,et al..Altered functional properties oftritordeum by trans formation with HMW glutenin subunit genes.Theor Appl Genet,1999,99:851-859
    175.Barro F,Rooke L,Bekes F,et al..Transformation of wheat with high molecular weight subunit genes results in improved functional properties.Nat Biotechnol,1997,15(12):1295-1299
    176.Altpeter F,Popelka J C,Wieser H.Stable expression of 1Dx5 and 1Dy10 high-molecular-weight glutenin subunit genes in transgenic rye drastically increases the polymeric glutelin fraction in rye flour.Plant Molecular Biology,2004,54:783-792
    177.张晓东,梁荣奇,陈绪清等.优质HMW谷蛋白亚基转基因小麦的获得及其遗传稳定性和品质性状分析.科学通报,2003,48(5):474-479
    178.施农农,何光源,李克秀等.基因枪法获得优质HMW亚基基因表达的转基因小麦.中国农业科学,2005,38(5):874-881
    179.Masci S,D'Ovidio R,Scossa F,et al..Production and characterization of a transgenic bread wheat line over-expressing a low-molecular-weight glutenin subunit gene.Molecular Breeding,2003,12:209-222
    180.Tosi P,Masci S,Giovangrossi A,et al..Modification of the low molecular weight(LMW)glutenin composition of transgenic durum wheat:effects on glutenin polymer size and gluten functionality.Molecular Breeding,2005,16(2):113-126
    181.颜济,杨俊良.小麦族生物系统学(第二卷).北京,中国农业出版社,2004
    182.Jaubert H F,Spach E.Illustrationes plantarum orientalum.Vol.4.(In Latin.)Roret,Paris,1851
    183.Roshevitz R Y.Grasses:an introduction to the study of fodder and cereal grasses.Leningrad 1937.Translated from Russian 1980,New Delhi.
    184.Sakamoto S.Patterns phylogenetic differentiation in the tribe Triticeae.Rep Kihara Inst Biol Res,1973,24:11-31
    185.Catalan P,Kellogg E A,Oimstead R G.Phylogeny of Poaceae subfamily Pooideae based on chloroplast ndhF gene sequences.Mol Phylogenet Evol,1997,8(2):150-166
    186.Petersen G,Seberg O.Phylogenetic analysis of the Triticeae(Poaceae)based on rpoA sequence data.Mol Phylogenet Evol,1997,7(2):217230
    187.Hsiao C,Chatterton N J,Asay K H.Phylogenetic relationships of the monogenomic species of the wheat tribe,Triticeae(Poaceae),inferred from nuclear rDNA(internal transcribed spacer)sequences.Genome,1995,38(2):211231
    188.Bietz J A.Wheat gluten subunits:Molecular weights determined by sodium dodecyl sulfate-polyacrylamide gel eletrophoresis.Cereal Chem,1972,49:416-430
    189.Singh N K,Shepherd K W.Linkage mapping of the genes controlling endosperm proteins in wheat.I.Genes on the long arms of group-1 chromosome.Theor Appl Genet,1988,75:642-650
    190.Gupta R B,Singh N K,Shepherd K W.The cumulative-effect of allelic variation in LMW and HMW glutenin subunits on physical dough properties in progeny of two bread wheats.Theor Appl Genet,1989,77:57-64
    191.Draper S R.ISTA vatiety committee report of the working group for biochemical tests for cultivar identification 1983-1986.Seed Science Technology,1987,15:431-434
    192.Duan S E,Zhao W M.Rapid separation and SDS-PAGE analysis of wheat glutenin subunits.J Shanxi Normal Univ,2004,32:77-79
    193.程子刚,程强,敖光明.小麦基因组文库的构建及高分子量(HMW)谷蛋白亚基基因的筛选.北京农业大学学报,1992(18):117-121
    194.Anderson O D,Greene F C.The α-gliadin family.Ⅱ.DNA and protein sequence variation,subfamily structure,and origins of pseudogenes.Theor Appl Genet,1997,95:59-65
    195.Rafalski J.A Structure of wheat γ gliadin genes.Gene,1986,43:221-229
    196.Dvorák J,Kasarda D D,Dietler M D,et al..Chromosomal location of seed storage protein genes in the genome of Elytrigia elongata.Can J Genet Cytol,1986,28:818-830
    197.Ahmad M.Molecular marker assisted selection of HMW glutenin alleles related to wheat bread quality by PCR-generated DNA marker.Theor Appl Genet,2000,101:892-896
    198.Frederiksen,Signe.Taxonomuc studies in some annual genera of the Triticeae(poaceae).Nord J Bot,1993,13:481-493
    199.Colot V,Bartels D,Thompson R,et al..Molecular characterization of an active wheat LMW glutenin gene and its relation to other wheat and barley pmlamin genes.Molecular Genomics and Genetics,1989,216:81-9.
    200.Shewry P R,Autran J C,Nimmo C C,et al..N-terminal amino acid sequence homology of storage protein components from barley and diploid wheat,blature,1980,286:520-522
    201.Shewry P R,Tatham A S,Pappin D J,et al..N-terminal amino acid sequences show that D-hordein of barley and high molecular weight(HMW)secalins of rye are homologous with HMW glutenin subunits of wheat.Cereal Chera,1988,65:510-511
    202.D'Ovidio R,Simeone M,Masci S,et al..Nucleotide sequence of a gamma-type glutenin gene from a durum wheat:Correlation with a gamma-type glutenin subunit from the same biotype,Cereal Chem,1995,72:443-449
    203.Cameron-Mills V,Brandt A.A γ-hordein gene,Plant Mol Biol,1988,11:449-461
    204.Qi P F,Yue Y W,Long H,et al..Molecular characterization of ~t-gliadin genes from wild emmer wheat(Triticum dicoccoides).DNA Sequence,2006,17(6):415-421
    205.Pistón F,Dorado G,Martin A,et al..Cloning of nine γ-gliadin mRNA(cDNAs)from wheat and the molecular characterization of comparative transcript levels of γ-gliadin subclasses.J Cereal Sci,2006,43:120-128
    206.Pistón F,Dorado G,Martin A,et al..Cloning and characterization of a gamma-3 hordein mRNA (cDNA)fi'om Hordeum chilense(P,.oem.Et Schult.).Thcor Appl Genet,2004,105:1359-1365
    207.Ali M N,Shuhei N,Akira K,et al..Molecular cloning,sequencing,and chromosome mapping of a 1A-encoded ω-type prolamin sequence from wheat.Genome,2002,45:661-669
    208.Shewry P R,Tatham A S.The prolamin storage proteins of cereal seeds:structure and evolution.Biochemistry Journal,1990,267:1-12
    209.安学丽.小麦近缘种谷蛋白新亚基鉴定与编码基因克隆及其分子进化分析.[学位论文].北京,首都师范大学,2006.
    210.Gailil G.Heterologous expression of a wheat high molecular weight glutenin gene in E.coli.Proc Natl Acad Sci USA,1989,20:7756-7760
    211.Anderson O D,Kuhl J C,Tam A.Constrution and expression of a synthetic wheat storage portein gene.Gene,1996,1741:51-58
    212.D'Ovidio R,Anderson O D,Masci S,et al..Construction of novel wheat high-Mr glutenin subunit gene variabiilty modification of the erpetitivedomain of expression in E.coli.J Cereal Sci,1997,25:1-8.
    213.Wan Y,Liu Z,D'Ovidio R,et al..Comparative anaylsis of the D genome encoded high-molecular weight subunits of glutenin.Theor Appl Genet,2005,111:1183-1190
    214.Blechl A E,Le H Q,Anderson O D.Engineering changes in wheat flour by genetic transformation.J Plant Physiol,1998,152:703-707
    215.Altpeter F,Vasil V,Srivastava V,et al..Integration and expression of the high-molecular-weight glutenin subunit IAxl gene into wheat.Nature Biotechnol,1996,14:1155-1159
    216.Alvarez M L,Guelman S,Halford N,et al..Silencing of LMW glutenins in transgenic wheat expressing extra HMW subunits.Theor Appl Genet,2000,100:319-327
    217.Alvarez M L,Gomez M,Carrilo I M,et al..Analysis of dough functionality of flours form transgenic wheat.Mol Breed,2001,8:103-108
    218.Barro F,Barcelo P,Lazzeri P A,et al..Functional porperties of flours from field gorwn tansgenic wheat lines expressing the HMW glutenin subunit IAxl and 1Dx5 genes.Mol Breed,2003,12:223-229
    219.曹军,郝林.CaMV35S双启动子显著提高转基因在拟南芥中表达水平的研究.2000,6:517-520
    220.焦改丽,盂钊红,聂安全等.花椰菜花叶病毒(CaMV)35S启动子在转基因棉花中的表达.作物学报,2004,30(11):1135-1139

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700