CHAMP卫星非差几何法定轨的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低轨卫星星载GPS低轨精密定轨是近年来迅速发展起来的一项新的精密定轨技术。利用星载GPS接收机低轨卫星提供的相对经济、精确、连续观测值进行低轨卫星的自主定轨成为精密定轨的有效的途径,具有广泛的应用前景。非差GPS定位与差分方法相比具有不需要地面站、能直接得到测站坐标、工作量小、效率高等优点,因此精密单点定位在低轨卫星的定轨方面具有良好的应用前景。本文系统研究了非差星载GPS低轨卫星定轨中的理论和方法,对以下一些关键问题作了一些有益的探索:
     (1)系统的研究了非差GPS定轨的观测模型及其误差分析
     非差GPS定位观测模型是描述非差观测值与被估计参数之间的函数关系,是非差精密单点定位的基础。本文讨论了GPS非差定轨模型,比较了非差和差分定位模型的优缺点。本文还讨论了一些特殊的非差线形组合观测值的性质及用途,并仔细研究了影响非差定轨的误差因素及其改正方法。
     (2)制定了有效的数据预处理方案
     星载GPS数据质量控制是星载GPS定轨的关键,数据质量的好坏对最终解的结果有着直接的、十分明显的影响。而本文采用了非差几何法定轨,根据星载GPS观测数据的特点,采用双频观测值之间的组合,制定了适合星载GPS数据预处理方法,详细讨论了数据预处理计算机程序设计思路和一些细节问题。算例结果表明,计算结果表明本文所采取的预处理过程是有效和可靠的,较好的提高了数据质量。
     (3)系统地研究了非差几何法定轨方法
     本文讨论了精密单点定位的数学模型、其未知参数的估计方法以及随机模型,并详细的讨论了定轨误差的处理方案。本文描述的精密单点定位方法,仅利用低轨卫星的GPS观测资料和IGS精密卫星星历与钟差就可实现低轨卫星的精密定轨。
     (4)较系统的研究了消电离层组合的模糊度解算问题
     在非差星载GPS定轨中,要想获得高精度的定轨结果,必须使用相位观测
    
    CHAMPJ之星非差几何法定轨的4沙}究
    值。而不采用差分时,需要求解相位模糊度。对于利用多余观测来求模糊度由于
    存在复杂病态问题,本文加入了伪距观测值进行约束,并取得了优于平滑伪距的
    定轨结果。
Methods and theories of precise orbit determination of LEOS with GPS have been developed very quickly in recent years ,Using economy , consecutive, precise data from GPS receiver of LEO satellite , precise orbit determination of LEOS is efficiently achieved .Precise orbit determination with GPS has the good and applied foreground. Compared with differencing model, the method of precise orbit determination of low earth orbiters with GPS point positioning have a few advantages, such as no using of terrain receivers, small amount of work. It has a good foreground in precise orbit determination. So the theory, methods and some key issues of kinematic orbit determination are discussed in this dissertation:
    1. Observation equations and correction models have been presented in details in this
    paper.
    The observation equations are related to user position, clock, and ambiguity parameters, it is the base of Precise Point Positioning .The correction model is quite important in PPP. This paper has presented the observation equations and correction model in details.
    2. The preprocessor is build up successfully through several combinations of observation.
    It was found that the geometric CHAMP orbit solutions are very sensitive to data editing performed in the preprocessor. Data editing consists of applying a signal-to-noise filter and a rate-of-change of widelane-phase minus narrowlane-pseudorange linear combination filter. The former removes low strength signals at the measurement input stage, while the latter eliminates measurements that deviate from the norm before the initial estimation process. This preprocessor strategy therefore cleans the data in the measurement domain, without need for post-estimation residual analysis or need for a reference CHAMP orbit to constrain the definition of typical measurement behaviour.
    3. The theories, principles, specific methods and selection of suitable design of GPS-based absolute OD are discussed at full length.
    Firstly, the principles, specific method and precision evaluation of GPS-based
    
    
    
    
    OD using carrier-phase smoothed ionosphere-free combination of dual-frequeny P codes is discussed. Then the method of combination of both codes and carrier phase is discussed .The last results show that the precision of GPS-based absolute OD using carrier-phase smoothed ionosphere-free combination of dual-frequency P codes can attain 1 meter level, and the combination of both codes and carrier phase, can reach to less than 1 meter. 4. Ambiguity of ionosphere-free combination was well studied.
    For high speed LEOS, the ill-conditioned problem exists in absolute OD using GPS carrier phase data. To get rid of ill-conditioned problem, the P codes are used to constrain ambiguity solution. And the method using Melourne-Wubbena (M_W) linear combination of phase and code observations to first resolve the wide-lane ambiguities and the narrow-lane ambiguities resolved through ionosphere-free linear combination of the L] and L2 phase observations is not ok for POD, because of high speed change of ionosphere.
引文
1. Auton J.R. and J. Cruz.Simulation GPS receiver measurement errors.ION GPS-96 Kansas City, Missouri, 17-20 Sept., 1996: 739~747.
    2. Bastos L, H. Landau. Fixing Cycle Slips in Dual-frequency Kinematic GPS-applications Using Kalman Filtering. Manuscripta Geodaetica, 1988, No. 13: 249~256.
    3. Bertiger, W. I., Y. E. Bar-Sever, et al. GPS Precise Tracking of TOPEX/POSEIDON: Result and Implication. Journal Of Geophsical Research, 1994, 99(12): 24449~24464.
    4. Bertiger W I, B. Haines D. Kuang, et al. Precise real-time low-earth-orbiter navigation with the global positioning system. TMO Progress Report: 42-137, May 15, 1999.
    5. Bertiger W I.and Sien-Chong Wu. Single Frequency GPS Orbit Determination for Low Earth Orbiters. Paper presented at Santa Monica, California, USA, January 23, 1996.
    6. Bisnath, S. B., Richard B. Langley. GPS phase-connected, precise point positioning of low earth orbiters.GNSS2001, May 8-11,2001, Seville, Spain.
    7. Bisnath, S.B. Efficient, automated cycle-slip correction of dual-frequency kinematic GPS data. Proceedings of ION GPS 2000, Salt Lake City, Utah 19-22, September, pp: 145-154.
    8. Bisnath, S.B. and R.B. Langley (1999). "Precise A Posteriori Geometric Tracking of Low Earth Orbiters with GPS." Canadian Aeronautics and Space Journal, Vol. 45, No. 3, pp: 245-252.
    9. Bisnath, S.B. and R.B. Langley (2000). Automated Cycle-slip Correction of Dual-frequency Kinematic GPS Data. Proceedings of the 47th Annual Conference of the Canadian Aeronautics and Space Institute, Ottawa, 30 April - 3 May 2000, pp: 121-125.
    10. Bisnath, S.B. and R.B. Langley (2001). A New Technique for GPS-Based Orbit Determination of Geoscience Spacecraft. Viewgraphs presented at the Second International Symposium on Digital Earth (Digital Earth 2001), Fredericton, New Brunswick, 24-28 June 2001, in press.
    11. Bisnath, S.B. and R.B. Langley (2001). Precise Orbit Determination of Low Earth Orbiters with GPS Point Positioning. Proceedings of the Institute of Navigation National Technical Meeting 2001, Long Beach, California, 22-25 January 2001, pp: 725-733.
    12. Bisnath, S.B. and R.B. Langley (2001). CHAMP Orbit Determination with GPS Phase-connected, Precise Point Positioning. First CHAMP Mission Results for Gravity, Magnetic and Atmospheric Studies, Potsdam ,Germany, December 2002, pp:59~65.
    13. Blewitt G. An automated editing algorithm for GPS data. Geophysical Research Letters,1990,17(1): 199~202.
    14. Bock H., G. Beutler, U. Hugentobler (2001). Kinematic Orbit Determination for Low Earth Orbiters (LEOs). Paper presented at IAG 2001 Scientific Assembly, Budapest Hungary.
    15. Da Kuang, Yoaz Bar-Sever, Bertiger W, et al. Precise orbit determination for CHAMP using data from BlackJack Receiver. Proceeding of ION NTM 2001, Long Beach, California, January 24, 2001.
    16. Hatch, R. (1982). The Synergism of GPS Code and Carrier Measurements. Proceedings of the Third International Geodetic Symposium on Satellite Doppler Positioning, DMA, NOS, Las Cruces, New Mexico, 8-12 February, Physical Science Laboratory, New Mexico State University, Las Cruces, New Mexico, Vol. Ⅱ, pp.1213-1232.
    
    
    17. Heroux P., Kouba J., Collins P., et al. GPS Carrier-Phase Point Positioning With Precise Orbit Products.The International Symposium on Kinematic Systems in Geodesy, Geomaitcs and Navigation 2001, Banff, Canada, 2001.
    18. Hugentobler U., S. Schaer, et al. Documentation for Bernese GPS Software Version 4.2, 2001.
    19. IERS. IERS Conventions (1996), International Earth Rotation Service (IERS), Central Bureau.
    20. Jan Kouba and Pierre Heroux. Precise Point Positioning Using IGS Orbit and Clock Products. GPS Solutions, 2001 ,Vol.5,NO.2,pp: 12-28
    21. Kleusberg, A. (1986). Kinematic Relative Positioning Using GPS Code and Carrier Beat Phase Observations. Marine Geodesy, Vol. 10, No. 3/4, pp. 257-274.
    22. Lachapelle G., M.E. Cannon, W, Qiu and C. Varner. Precise aircraft single-point positioning using GPS post-mission orbits and satellite clock corrections, Journal of Geodesy, 1996, 70: 542~571.
    23. Leitinger, R.(1990). Electron content measurement and IRI-International Reference Ionosphere 1990, edited by D.Bilitza.NSSDC/WDC-A-R&S. 1990:11~22.
    24. Massmann, F.-H., J. C. Raimundo, C. Reigber, et al.(2000). The PRARE system onboard ERS-2: Status and results. In Proceedings of the ERS-ENVISAT Symposium, Gothenburg, Sweden, 16-20 October 2000, Eur. Space Agency Spec. Publ., ESA SP-461.
    25. McDonald Keith D (2002). The modernization of GPS: Plans, new capabilities and the future relationship to Galileo. Journal of Global Positioning Systems, 2002:1 (1): 1~17.
    26. Melbourne, W. G., E. Davis, T. P. Yunck, and B. Tapley. The GPS flight experiment on TOPEX/POSEIDON. Geophysical Research Letters 21 (19), 2171 --2174.
    27. Oliver Montenbruck. Kinematic GPS positioning of LEO satellites using Ionosphere-free single frequency measurements, 2003. www.weblab.dlr.de/rbrt/pdf/AST_02_LEOL1_Draft.pdf
    28. Oliver Montenbruck, Eberhad Gill. Ionospheric error removal in the positioning of LEO satellites based on low cost GPS receivers. 16th International symposium on space flight dynamic, Pasadena, California, U.S.A. 3-7, December 2001.
    29. Remondi, B.W., Pseudo-kinematic GPS results using the ambiguity function method, Navigation, Vol.38, No.1, 1991.
    30. Rim H., Z. Kang, P. Nagel, et al. CHAMP precision orbit determination, AAS/AIAA AAS-01-334.
    31. Robert Schutz. Orbit Determination Using GPS.The Global Positioning System for the Geosciences: Summary and Proceedings of a Workshop on Improving the GPS Reference Station Infrastructure for Earth, Oceanic, and Atmospheric Science Applications. pp: 182 -185.
    32. Rothacher, M. and L.Mervant(eds.). Bernese GPS Software Version 4.0. Astronomical Institute, University of Bern, Swizerland, September 1994.
    33. Schutz, B.E., B.D.Tapley, P.A.M. Abusali and H,J. Rim. Dynamic orbit determination using GPS measurements from TOPEX/POSEIDON. Geophysical Research Letters, 1994, 21 (19): 2179~2182.
    34. Seeber Günter. Real-time satellite positioning on the centimeter level in the 21st century using permanent reference stations. Paper given during the Nordic Geodetic
    
    Sunmmerschool, Fevik, Norway, 30 August 2000.
    35. Seeber, G., and G. Wubbena, Kinematic Positioning with Carrier phase and On the Way Ambiguity Solution. Procedding of the 5th International Geodetic Symposium on Satellite Positioning , Las Cruces, New Mexico, 1989:600-610
    36. Svehla D. Kinematic orbit determination of LEOs based on zero or double-difference algorithms using simulated and real SST data. IAG 2001 scientific assembly, Budapest, Hungary, 2001.
    37. Svehla, D. and M. Rothacher. Kinematic and Reduced-Dynamic Precise Orbit Determination of Low Earth Orbiters. Paper presented at EGS 2002, Nice, France.
    38. Svehla, D. and M. Rothacher. Kinematic and reduced-dynamic precise orbit determination of CHAMP satellite over one year using zero-differences. Poster presented at EGS-AGU-EUG Joint Assembly, 06-11 April 2003, Nice, France.
    39. Tae-suk Bae, Jay H. Kwon and Dorota A. G-B. Data screening and quality analysis for kinematic orbit determination of CHAMP satellite. National Technical Meeting Proceedings, January 28-30, 2002, San Diego, California.
    40. Tapley B.D., J.C. Ries, G.W. Davis, et al. Precision orbit determination for TOPEX/POSEIDON, 1994, Journal of Geophysical Research, 99(C12): 24383-24404.
    41. Tapley, B.D., Born, G. and Schutz B. Orbit Determination Fundamental And Application. Center of Space Research, The University of Texas, 1986.
    42. Teunissen, P.J.G. On the minimal detectable biases of GPS phase ambiguity slips. In Proceedings DGPS-91.First Int. Symposium. Real time differential applications of the global positioning system Vol 2. pp. 679-686
    43. Teunissen, P.J.G. The Least-squares Ambiguity Decorrelation Adjustment:A Method for Fast GPS Integer Ambiguity Estimation. Journal of Geodesy, Vol.70, No. 1-2:65-82.
    44. Visse P.N.A.M., J. van den ljssel. GPS-based precise orbit determination of the very low earth-orbiting. Gravity mission GOCE, 2000 74: 590~602.
    45. Wu S.C, T.P. Yunck and C.L. Thornton. A reduced-dynamic technique for precise orbit determination. TDA Progress Report 42-101, May 15, 1990, pp: 13~25.
    46. Wu, S. C. and T. P. Yunck. Precise kinematic positioning with simultaneous GPS pseudorange and carrier phase measurements, Proc. ION National Technical Meeting, Anaheim, CA, Jan 18-20.
    47. Wu, S. C., T. P. Yunck, S. M. Lichten, B. J. Haines and R. P. Malla. GPS-based precise tracking of Earth satellites from very low to geosynchronous orbits. Proc. National Telesystems Conference, Ashburn, VA.
    48. Xu G. GPS, Theory, Algorithms and Applications, Springer Heidelberg ISBN 3-540-67812-3,340 pages, in English.
    49. Yunck T. P. GPS precise tracking of TOPEX/POSEIDON: Results and implications. Journal of Geophysical Research 99(C12), 24449--24464.
    50. Yunck, T. P., S.-C. Wu, and J.-T. Wu . Strategies for Sub-Decimeter Satellite Tracking with GPS. Proceedings of IEEE Position, Location, and Navigation Symposium 1986, Las Vegas, Nevada, U.S.A., 4-7 November, Institute of Electrical and Electronics Engineers, Inc., New York, New York,U.S.A., pp: 122-128.
    51. Yunck, T. P., W. I. Bertiger, S. C. Wu, et al. First assessment of GPS-based reduced dynamic orbit determination on Topex/Poseidon. 1994,Geophysical Research Letter, 21(7):
    
    541~544.
    52. Yunck.T.P., Bertiger W.I., Wu S.C.,et al. First assessment of GPS-based reduced dynamic orbit determination on TOPEX/Poseidon. 1994, Geophysical Research Letters, 21(7): 541-544.
    53.陈俊勇.GPS应用的最新进展.测绘科学,2001,26(4):6~7。
    54.方秀花,尹志忠,张文静.美国GPS发展新动向.国际太空,2002年10月号。
    55.韩保民,欧吉坤.基于GPS非差观测值进行精密单点定位研究.武汉大学学报信息科学版,2003,No.4。
    56.韩保民.基于星载GPS的低轨卫星几何法定轨理论的研究[博士论文].武汉:中科院测量与地球物理研究所,2003。
    57.何海波,杨元喜.GPS动态测量连续周跳检验.测绘学报,1999,28(3):199~204。
    58.胡国荣.星载GPS低轨卫星定轨理论研究:博士学位论文,中科院测地所,武汉,1999。
    59.胡国荣,欧吉坤.星载GPS低轨卫星几何法精密定轨研究.空间科学学报,2000(1)32~39
    60.季善标,朱文耀,熊永清.星裁GPS定轨中精密GPS卫星钟差的改正和应用.导航,1999,No.3:100~107。
    61.焦文海,周建华,基于C/A码观测量的星载GPS动力学定轨,军事测绘,1999,No.6:46~50.
    62.焦强摘译.GPS在未来十年中的进展.空间电子技术,1997,No.4:54~61。
    63.李德仁.误差处理和可靠性理论.北京:测绘出版社,1988。
    64.李济生.人造卫星精密轨道确定.北京:解放军出版社,1995.7。
    65.刘斌.低轨飞行器利用GPS定轨的算法研究.中国空间科学技术,1995,15(4):22~31。
    66.刘大杰,施一明,过静君(1997).全球定位系统(GPS)的原理与数据处理,上海:同济大学出版社,1997。
    67.刘基余,李德仁,陈小明.星载GPS测量及其在我国的应用研究.GPS技术应用论。
    68.刘基余,李征航,王跃虎,桑吉章.全球定位系统原理及其应用.北京:测绘出版社,1993。
    69.刘基余.GPS信号测定低轨卫星的实时位置.导航,1993(3):39~49。
    70.刘经南等.CHAMP卫星的纯几何定轨及动力平滑中的动力补偿模型的研究.武汉大学学报信息科学版.2004,29(1):1~6。
    71.刘林.航天器轨道理论.北京:国防工业出版社,2000。
    72.刘林.人造地球卫星轨道力学.北京:高等教育出版社,1992。
    73.柳东升,刘健,郭建宁.我国在返回式卫星上首次成功搭载GPS定位接收机.卫星应用,1997,1:5-7。
    74.柳响林,精密GPS动态定位的质量控制与随机模型精化,武汉大学博士学位论文,武汉,2002。
    75.吕志伟.郝金明,高精度GPS动态定位中周跳检测量的构造,测绘通报.2000,No.8,5~8。
    76.欧吉坤.误差理论若干问题研究.兼论大气对GPS测量的影响:博士学位论文,中科院测地所,1994。
    77.欧吉坤.一种检测粗差的新方法——拟准检定法.科学通报,44(10):1999。
    78.欧吉坤、韩保民、柴艳菊(2002),一种快速检测GPS周跳的途径,GPS应用,2002导航技术与智能交通研讨会,10~12 Oct.,2002,南京,中国。
    79.沈云中.应用CHAMP卫星星历精化地球重力场模型的研究.博士学位论文,中科院测
    
    地所,武汉,2000。
    80.宋福香,左文辑.近地卫星的GPS自主定轨算法研究.空间科学学报,2000(1):40~46。
    81.王广运.GPS用于卫星测高定轨.导航,1993(3):32~38。
    82.王志强.高精度GPS测量中的海潮问题_中科院测地所硕士学位论文,武汉,2002。
    83.魏子卿、葛茂荣.GPS相位对定位的数学模型.北京,测绘出版社,1997。
    84.文援兰.博士学位论文.国防科技大学,长沙,2001。
    85.文援兰,王威,刘新跃,杨元喜.星载GPS几何法实时定轨有关问题的研究.中国空间科学技术,2001,No.2:43~48。
    86.吴斌,彭碧波.星载GPS技术的低轨卫星精密定轨研究进展—方法和算例.大地测量与地球动力学进展,武汉,湖北科学技术出版社,2004。
    87.徐天河,杨元喜.能量守恒方法导出的CHAMP重力场模型.大地测量与地球动力学进展,武汉,湖北科学技术出版社,2004。
    88.许厚泽.卫星重力研究.21世纪大地测量研究的新热点,测绘科学,2001,26(3):1~3。
    89.叶世榕.GPS非差相位精密单点定位理论与实现.武汉大学博士学位论文,武汉,2002。
    90.袁建平,方群,郑谔.GPS在飞行器定位导航中的应用.西安:西北工业大学出版社,2000。
    91.袁运彬.基于GPS的电离层监测及延迟改正理论与方法的研究.中科院测地所博士学位论文,武汉,2002。
    92.张金槐.线性模型参数估计及其改进.国防科技大学出版社,长沙,1999。
    93.张强,寥新浩,黄珹(2000).两种观测技术综合精密定轨的探讨,天文学报,2000,41(4):347~354。
    94.周江文,欧吉坤,杨元喜等.测量误差理论新探.北京:地震出版社,1999.
    95.周良,刘经南,张全德,GPS2000年前后的进展和状况。1998,http://jy.zjdz.gov.cn/xzs/gps4.html。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700