气溶胶化学气相淀积及其制备陶瓷膜燃料电池功能层研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化学气相淀积(Chemical Vapor Deposition,CVD)是通过气态物质在在固体表面上发生反应生成固态淀积物的过程,它已成为制备各种无机功能薄膜材料和微电子器件的精湛而广泛应用的核心制造技术。早在上世纪80年代,原美国西屋电器公司(现西门子—西屋公司)就发展了一种CVD和EVD(电化学气相淀积)技术成功地研制了固体氧化物燃料电池(SOFCs)装置,以其高性能和高寿命(>10年)演示了SOFC技术的可行性和先进性,成为举世公认的21世纪高效绿色能源。鉴于CVD/EVD技术的高难度和高成本等问题,近几十年来SOFC领域的研究主流集中于发展新型陶瓷工艺,包括流延法、丝网印刷法、悬浮粒子浆料涂覆法和等离子喷涂法等,制备薄膜化的电池部件,以提高电池和电池堆的功率输出性能,并把操作温度拓宽到中低温范围(<600℃)。本实验的实践和文献报道结果表明,薄膜材料陶瓷工艺虽有成本价廉和适于大规模制造之优点,但由于涉及陶瓷粉体、浆料、涂覆、干燥、共烧等众多步骤和相当复杂的工艺参数,SOFCs的实用化、市场化仍然步履艰难,特别是长期性能的稳定性尚未达到西屋公司CVD/EVD技术所制装置的水平。另一方面,SOFC的小型化和集成化也必然是未来电源的需求,而CVD技术在现代大规模集成电路制造中的应用和伟大功勋预示它们在各种器件制造技术中潜在地位。基于这一“逆主流思考”,本实验室在广泛研发各种新型陶瓷膜制备技术追求高性能SOFCs的同时,十多年来坚持探索低成本CVD技术,发展了多种新颖的CVD过程和装置,成功的应用于SOFC相关功能层的制备,在国际上可谓“独树一帜”遥遥领先。在此基础上,气溶胶辅助的化学气相淀积(AACVD)过程中特殊的先驱物提供方式使之特别适于多元素氧化物功能材料,因而对于SOFC体系而言应是一种首选的技术路线。本论文侧重研究了AACVD用于制备SOFCs的两种关键材料层,电解质材料YSZ(Y_2O_3稳定的ZrO_2)、SDC(Sm_2O_3掺杂的CeO_2)和连接材料,掺杂-LaCrO_3,证实和展现了AACVD的技术可行性和潜在的应用前景,也从CVD科学和晶体生长角度获得了若干新的认识。
     论文第一章首先综述介绍了AACVD技术及其发展,主要是近一二十年来发展的各种改进的AACVD技术的原理和应用,包括气溶胶辅助的金属有机源CVD(AAMOCVD)、AA-PCVD、AACCVD、超声喷雾AACVD、ESAVD。归纳了AACVD过程所涉及的科学问题。第二章阐述了SOFC的原理特点、结构、材料和研发趋势,包括物理法(如物理气相沉积)、化学法(如EVD、气溶胶CVD)和陶瓷粉末法(如丝网印刷、流延法)等在内的致密电解质薄膜的制备方法。
     建立CVD技术路线制备功能材料层,首先需要适宜的可气化源物质。鉴于SOFC所涉及新材料的多种元素并无商品化可挥发源物质供应,本论文第三章报道,化学合成了β-二酮类螯合物M(DPM)_n(其中M=Sm、Fe、Cr、Mn、Co),所用的β-二酮是自制的HDPM(四甲基庚二酮)。利用元素分析、红外光谱、热分析和质谱等分析手段对合成的M(DPM)_n样品进行了纯度、结构和热性能以及挥发性研究。分析结果显示,五种螯合物样品纯度较高,都不含结晶水,均具有良好的挥发性,到300℃失重率都达到95%以上,符合应用要求。TG-DTA研究比较发现,空气中的CO_2和O_2的存在使得样品的升华和分解提前,同时样品残余率提高,这可能是样品中形成少量氧化物或碳酸盐之故。采用非等温过程热重法研究了Mn(DPM)_3和Cr(DPM)_3样品的气化动力学,可以得出其反应过程为二维扩散(圆柱形对称)控制,反应速率表达式为G(α)=α+(1-α)Ln(1-α)。通过样品的变温红外和质谱分析发现,热解过程中各化学键的断裂先后顺序为C-O>M-O>C-C(CH_3)_3>C-C和C-H。基于质谱分析结果提出了不同螫合物的分解机理,随着金属离子半径的增大,金属螯合基团的解离行为由一个DPM基团的直接脱离到~+C(CH_3)_3和~+OCCH_2COC(CH_3)_3的依次解离
     第四章报道,以改进的冷壁AA-MOCVD系统和M(DPM)_n为前驱物,在NiO-SDC阳极衬底上成功制备了YSZ薄膜。低温(400℃)下沉积的是无定型结构;中温(550-700℃)下生长的为立方相和单斜相混合结构,1100℃焙烧后全部转变为单一立方相;淀积温度高于800℃时,可直接得到单一立方相萤石结构。低温下沉积的薄膜晶粒尺寸很小,表面平整,为层状结构,随衬底温度升高,薄膜中晶粒长大,先形成分散的晶粒,然后形成连续的薄膜,800℃下沉积的薄膜为柱状结构,960℃下沉积的薄膜致密但表面粗糙。400-800℃下,薄膜生长速率0.6-1.5μm/h,活化能小于22kJ/mol,薄膜生长主要处于质量输运控制的区域。薄膜中Y的含量比源溶液中偏低。随着源溶液浓度增加,易于出现多孔的团簇结构。通过动力学模型计算,薄膜的生长速率与衬底绝对温度的1/4次方、气体流速的1/2次方和源溶液浓度成正比,结果表明薄膜生长主要表现为质量输运控制。
     设计改进了喷雾型AAMOCVD装置,分别在α-Al_2O_3和NiO-YSZ衬底上成功的制备了SDC薄膜(第五章)。结果发现,当沉积温度在450℃以上,在两种衬底上都得到了单一的立方相SDC薄膜,在NiO-YSZ衬底上表现出明显的取向和匹配生长。低温下所获得的SDC薄膜表面较为粗糙,这主要是相对较快的成核速度所致。650℃条件下,在α-Al_2O_3衬底上沉积的薄膜为典型柱状结构,而在NiO-YSZ衬底上500℃时即可获得更均一的表面。根据XPS分析,薄膜中的Sm/Ce摩尔比例在400~500℃之间显示先增后降的过程。只有在450℃沉积的SDC薄膜与前驱物溶液的摩尔组成相近(Sm:Ce=1:4),较高或较低的沉积温度都会导致薄膜组分的明显偏移。其原因主要是Sm(DPM)_3和Ce(DPM)_4前驱物不同的热分解性质,导致了不同温度下Sm_2O_3和CeO_2组分不同的生长速率。
     为强化淀积过程,采用了卤钨灯辅助加热方式,在NiO-SDC衬底上650℃下制备了YSZ薄膜。可以发现,不同Y_2O_3含量的薄膜均为单一立方结构,薄膜致密,生长速率约为3μm/h。薄膜中Y/Zr的摩尔含量与前驱物溶液的组分成线性关系,可以通过调节前驱物溶液中的相对含量来精确控制薄膜组分。卤钨灯的强热模式极大地加速了溶剂的提前蒸发,从而使得薄膜生长由扩散控制转为反应动力学控制。阻抗谱测量表明,YSZ薄膜的氧离子电导率(0.034 S/cm,800℃)接近于传统烧结提YSZ材料(0.045 S/cm),低于640℃时电导活化能为138.8kJ/mol,高于640℃时为80.8 kJ/mol,分别相应于氧空位缺陷的低温蒂合状态和高温段的离化无序状态。
     在SOFC的制造工艺中,最重要和关键的步骤是多孔电极支撑体上制备致密的电解质膜和致密的连接材料膜。迄今文献报道,包括本实验室的研究,主要是电解质膜的制备成果。在阳极支撑体上以传统的陶瓷共烧工艺制备致密陶瓷连接材料膜具有难度,以新颖CVD技术制备陶瓷膜连接材料层尚未见报道,在第六章中主要进行了这方面的初步探索。选取SOFCs中常用的陶瓷连接材料,钙钛矿型的稀土铬酸盐复合氧化物LaCrO_3基材料作为制备对象,分别尝试使用超声AACVD、AAMOCVD和静电AACVD制备了La(Ca)CrO_3薄膜,并对它们的微结构、组成、形貌以及形成机理做了深入的分析。对超声AACVD制备的薄膜的XRD和XPS分析发现,随着淀积温度从600℃升高到900℃,薄膜经历了从La(OH)CrO_4和LaCrO_4立方混合相转变为立方LaCrO_3的过程;对不同温度下沉积的薄膜的形貌变化分析,提出了不同微结构的薄膜形成机理。实验结果指出,乙醇作为源溶剂与甲苯作为源溶剂相比更易获得致密的薄膜。
     除此以外,还采用静电AACVD制备了La_(0.7)Ca_(0.3)CrO_(3-δ)薄膜,分别讨论了沉积温度、衬底材料、溶剂组成对薄膜的微观结构的影响。发现随着衬底温度的提高,膜层的孔隙率降低,孔径减小,孔壁变薄;源溶液雾滴与衬底浸润情况的好坏,导致形成了网状和笼状堆积的不同溥膜形貌;改变乙醇与1,2-丙二醇混合溶剂的组成,可以分别获得网状、纳米线状以及分散微粒状的薄膜形貌。
Chemical Vapor Deposition (CVD) involves the dissociation and/or chemical reactions of gaseous reactants in an activated (heat, light, plasma) environment, followed by the formation of a stable solid product. It is a widely used materials-processing technology, which involves electronic, optoelectronic, surface modification, ceramic fibre production and CMC applications. This thesis focuses on a novel CVD technique (Aerosol Assisted CVD, AACVD), with its development and applications.
     SOFCs, an energy conversion device, possess many advantages such as high energy conversion efficiency, less pollution and convenience. But it still failed to reach commercial viability due to its high operating temperature (>1000℃). Decrease the thickness of solid electrolyte is one of the key steps for intermediate temperature SOFC operated in 600-800℃. In this thesis, assembled AACVD apparatus were used to prepare: electrolyte thin films, including YSZ (yttria stabilized zirconia), SDC (samarium doped ceria); interconnect and electrode materials, LaCrO_3 based materials. Simultaneously, systematic research has been done, including selection and preparation of metalorganic precursors, design and assembly of AACVD apparatus, growth kinetics, deposition mechanism, film morphologic zone models, and film properties testing. The present research also gave a well-knit academic and experimental base in the in-situ continuous growth and fabrication of all components of SOFCs in the future development.
     In the first part of chapter 1, several AACVD techniques developed in last two decades have been reviewed, including AAMOCVD, AA-PCVD, AACCVD, AACVD, ESAVD. Some science aspects in AACVD have been reviewed, such as selection of precursors, generation and transportation of aerosol droplets. The application of AACVD has also been reviewed systematically.
     In chapter 2, the working principle and materials of SOFCs were reviewed. Various manufacturing processes for SOFCs thin films were also reviewed, including physical methods (physical vapor deposition), chemical methods (EVD, AACVD) and ceramic powder processes (screen painting, casting).
     In chapter 3, precursors, M(DPM)_3 (DPM=dipivaloylmethanate, M=Sm, Mn, Cr, Co, Fe) were synthesized from HDPM, NaOH/NaAc/CO(NH_2)_2 and inorganic salts and characterized by elemental analyses, X-ray diffraction, thermogravimetry-differential thermal analysis, nuclear magnetic resonance spectroscopy and fourier transform infrared spectroscopy. These compounds have been identified with high purity and anhydrous.
     All the compounds exhibit high volatility. They volatize and decompose completely below 300℃. The decomposition process is sensitive to the ambient gases. The decomposition and oxidation of the M(DPM)_3 are occurred at lower temperature in air than in N_2, which suggests that O_2 and CO_2 facilitates the two processes. in air makes the formation of Sm_2(CO_3)_3 by-product by heating. The kinetic parameters of activation energy, frequency factor were computed using different models and thereinto D2 model best adjusted the experimental isothermal thermogravimetric data of Mn(DPM)_3 and Cr(DPM)_3.
     The results of infrared spectroscopy and mass spectroscopic spectroscopy indicated that the chemical bonds in these compounds dissociate generally following the sequence of C-O>M-O>C-C(CH_3)_3>C-C and C-H at elevated temperatures. The decomposition processes of M(DPM)_n are strongly influenced by the coordination number and central metal ion radius.
     In chapter 4, cold-wall AA-MOCVD were assembled and successfully employed to fabricate YSZ films on NiO-SDC anode substrates from M(DPM)_n precursors, with substrate temperature 400-960℃and reactor pressure 0.1 atm.
     YSZ thin films with amorphous microstructure were obtained at the substrate temperature 400℃and mixture phase of cubic and monoclinic structures at 550-700℃, which were all changed into full cubic microstructure after annealing treatment at 1100℃. Thin films exhibited full cubic phase at the substrate temperature higher than 800℃. Film morphologies were changed from uniform, smooth and laminated structure to columnar structure and then to coarse but dense surface with increasing of substrate temperatures. At substrate temperature 400-800℃, YSZ film growth was diffusion controlled with growth rate 0.6-1.5μm/h and Ea<22 kJ/mol. The Y/Zr and Gd/Ce ratios in the films were found to be smaller than those in the source solution. YSZ film was prone to porous cluster with increasing of source concentration. Kinetic model shown that the growth rate of YSZ film was proportional to quarter root of substrate temperature, square root of carrier flow rate and source concentration.
     In chapter 5, Samarium-doped ceria (SDC) thin films were prepared from Sm(DPM)_3 and Ce(DPM)_4 using the AAMOCVD method.α-Al_2O_3 and NiO-YSZ disks were chosen as substrates in order to investigate the difference in the growth process on the two substrates. Single cubic structure could be obtained on eitherα-Al_2O_3 or NiO-YSZ substrates at deposition temperatures above 450℃; the similar structure between YSZ and SDC results in matching growth compared with the deposition onα-Al_2O_3 substrate. A typical columnar structure could be obtained at 650℃onα-Al_2O_3 substrate and a more uniform surface was produced on NiO-YSZ substrate at 500℃. The composition of SDC film deposited at 450℃is close to that of precursor solution (Sm:Ce=1:4), higher or lower deposition temperature will both lead to sharp deviation from this elemental ratio. The different thermal properties of Sm(DPM)_3 and Ce(DPM)_4 may be the key reason for the variation in composition with the increase of deposition temperature.
     With Y(DPM)_3 and Zr(DPM)_4 as precursors, YSZ thin films were deposited onto NiO-SDC substrates using a modified AAMOCVD apparatus, where high power halogen lights were used as assisted heaters. Cubic structured YSZ was obtained when the films were deposited at 650℃. The cubic YSZ transformed to tetragonal structure after annealed at 1100℃for 3h, possibly due to crystallite growth. Y/Zr mole ratio of the deposited film depends on the Y/Zr ratio of the precursors, indicating that the thin film composition can be effectively controlled. Scanning electron microscopy (SEM) analysis showed a strong bonding between the films and substrates. Thickness of the film was estimated to be about 9 urn with a high growth rate of 50 nm/min, which inferring the AAMOCVD is very effective in synthesis of YSZ films. AC impedance analyses showed that the ionic conductivity of the YSZ film is 0.034 S/cm at 800℃, which is slightly less than that of bulk YSZ, and the conduction activation energy (Ea) changed from 80.8 kJ/mol to 138.8 kJ/mol at 640℃with decreasing temperature.
     In chapter 6, LaCrO_3 thin films on electrolyte yttria-stabilized zirconia (YSZ) substrates were prepared by ultrasonic AACVD technique in the temperature range of 600~750℃using lanthanum and chromium nitrates as precursors. Thin films obtained at 600~650℃appear to be a mixture of cubic La(OH)CrO_4 and cubic LaCrO_4 phases, which transforms to pure cubic LaCrO_4 with the substrate temperature increasing to 700~750℃. After annealed at 900℃for 2h, all films convert to single cubic LaCrO_3 phase. The change of Cr2p spectra in X-ray photoelectron spectroscopy (XPS) analysis shows the similar phase transformation process. Reaction processes with respect to the substrate temperature were proposed according to X-ray diffraction (XRD) and XPS analysis. The surface morphology of the films was found to depend strongly on the substrate temperature, which would be the deciding factor of film growth mechanisms.
     The deposition of La_(0.7)Ca_(0.3)CrO_(3-δ) (LCC) thin films was studied in detail by electrostatic AACVD process, considering the functions of deposition temperature, substrate material and solvent composition. The microstructures of LCC films, varied from porous reticulated model, cage-like particles to interconnect nanowire structure, can be effectively assembled. With increasing substrate temperature, the porosity decreases considerably; the pore and pore wall sizes both became smaller. When changing the substrate material from nickel, aluminum, and alumina substrates to copper substrate, the microstructure of LCC film converted from porous reticulated model to cage-like particle model. It may be interpreted by the bigger contact angle on the copper substrate than that on other substrates. A qualitative mechanism involved in the formation of various microstructures was presented. Moreover, by changing the solvent composition, the layer morphology may also be significantly modified, from porous reticulated model to interconnect nanowire structure.
引文
[1] 孟广耀《化学气相淀积与无机新材料》,科学出版社,1984
    [2] 郭新,袁润章,化学气相淀积在无机新材料制备中的应用,材料科学与工程,12(1)1994 58-61
    [3] T. T. Kodas, M. J. Hampden-Smith, Aerosol Processing of Materials, Wiley-VCH, Weinheim, Germany 1999.
    [4] K.-L. Choy, Prog. Mater. Sci. 2003, 48, 57.
    [5] H. B. Wang, G. Y. Meng, D. K. Peng, Thin Solid Films 2000, 368, 275.
    [6] C.Y. Xu, M. J. Hampden-Smith, T. T. Kodas, Chem. Mater. 1995, 7, 1539.
    [7] M. Oljaca, Y. Xing, C. Lovelace, S. Shanmugham, A. Hunt, J. Mater. Sci. Lett. 2002, 21, 621.
    [8] H. B. Wang, C. R. Xia, Ca Y. Meng, D. K. Peng, Mater. Lett. 2000, 44, 23.
    [9] A. E. Turgambaeva, V. V. Krisyuk, S.V. Sysoev, etc., Chemical Vapor Deposition 7 (2001) 121.
    [10] A.C. Jones, Chemical Vapor Deposition 4 (1998) 169.
    [11] R. Xu, The Challenge of Precursor Compounds in the MOCVD of Oxides, JOM-e, October 1997 (vol. 49, no. 10).
    [12] 王怀兵,博士学位论文,中国科学技术大学,2000年12月.
    [13] H. Y. Xie, R. Raj, Appl. Phys. Lett. 63 (1993) 3146.
    [14] M. Veith, A. Altherr, H. Wolfanger Chemical Vapor Deposition 5 (1999) 87.
    [15] K. W. Chour, J. Chen, R. Xu, Thin Solid Films 304 (1997) 106.
    [16] I. M. Watson, Chemical Vapor Deposition 3 (1997) 9.
    [17] L. G. Hubert-Pfalzgraf, H. Guillon, Appl. Organometal. Chem. 12 (1998) 221.
    [18] K. T. R. Reddy, H. Gopalaswamy, P. J. Reddy, etc., Journal of Crystal Growth 210 (2000) 516.
    [19] F. Paraguay D., W. Estrada L., D. R. Acosta N., etc., Thin Solid Films 350 (1999) 192.
    [20] M. D. Uplane, P. N. Kshirsagar, etc., Materials Chemistry and Physics 64 (2000) 75.
    [21] P. Puspharajah, S. Radhakrishna, A. K. Arof, Journal of Materials Science 32 (1997) 3001.
    [22] H. B. Wang, D. K. Peng, G. Y. Meng, Thin Solid Films 368 (2000) 275.
    [23] A. Smith, J. M. Laurent, D. S. Smith, Thin Solid Films 315 (1998) 17.
    [24] M. Glerup, H. Kanzow, R. Almairac, M. Castignolles, P. Bernier, Chem. Phys. Lett. 2003, 377, 293.
    [25] C. F. Xia, T. L. Ward, P. Atanasova, R. W. Schwartz, J. Mater. Res 13 (1998) 173.
    [26] K. Frohlich, D. Machajdik, F. Weiss, B. Bochu, Materials Letters 21(1994)377.
    [27] F. C. Yuan, Y. Y. Xie, J. P. Chen, G. W. Yang, B. J. Cheng, Supercond. Sci. Technol. 9 (1996) 991.
    [28] G. I. Taylor, Proc. Roy. Soc. London 1964, A280, 383.
    [29] J. N. Smith, R. C. Fiagan, J. L. Beauchamp, J. Phys. Chem. A. 2002, 106, 9957.
    [30] A. Gomez, G Chen, Combust. Sci. Technol. 1994, 96, 47.
    [31] X. H. Hou, K.-L. Choy, Surf. Coat. Technol. 2004, 180-181, 15.
    [32] H. B. Wang, J. F. Gao, D. K. Peng, G. Y. Meng, Materials Chemistry and Physics 72 (2001) 297.
    [33] A. Conde-Gallardo, N. Castillo, M. Guerrero, J. Appl. Phys. 2005, 98, 054 908.
    [34] F. Maury, Chem. Vap. Deposition 1996, 2, 113.
    [35] I. E. Korsakov, A. R. Kaul, L. Klippe, J. Korn, U. Krause, M. Pulver, G. Wahl, Microelectron. Eng. 1995, 29, 205.
    [36] O. Gorbenko, V. Fuflyiguin, Y. Erokhin, I. Graboy, A. Kaul, Y. Tretyakov, G. Wahl, I. Klippe, J. Mater. Chem. 1994, 4, 1585.
    [37] Y. Z. Jiang, H. Z. Song, J. F. Gao, G. Y. Meng, J. Electrochem. Soc. 2005, 152, C498.
    [38] A. T. Hunt, in Innovative Processing of Films and Nanocrystalline Powders (Ed: K.-L. Choy), Imperial College Press, London 2002.
    [39] M. D. Lima, M. J. de Andrade, S. Stein, R. Bonadiman, C. P. Bergmann, Nanotechnology 2005, 16, 2497.
    [40] H. Z. Song, C. R. Xian, G. Y. Meng, D. K. Peng, Thin Solid Films 2003, 434, 244.
    [41] R. G. Palgrave, I. P. Parkin, J. Am. Chem. Soc. 2006, 128, 1587.
    [42] K.-L. Choy, in Innovative Processing of Films and Nanocrystalline Powders (Ed: K.-L Choy), Imperial College Press, London, 2002.
    [43] B. Su, K.-L Choy, Thin Solid Films 2000, 361, 102
    [44] L. G. Hubert-Pfalzgraf, H. Guillon, Appl. Organomet. Chem. 1998, 12,221.
    [45] X. Hou, K.-L. Choy, Chem. Vap. Deposition 2006, 631.
    [46] O. T. Heyning, P. Bernier, M. Glerup, Chem. Phys. Lett. 2005, 409, 43.
    [47] X. H. Hou, J. Williams, K.-L. Choy, Thin Solid Films 2006, 495,262.
    [48] X. H. Hou, K.-L. Choy, Mater. Sci. Eng., C 2005, 25,669.
    [49] I. E. Korsakov, A. R. Kaul, L. Klippe, J. Korn, U. Krause, M. Pulver, G. Wahl, Microelectron. Eng. 1995, 29, 205.
    [50] O. Gorbenko, V. Fuflyiguin, Y. Erokhin, I. Graboy, A. Kaul, Y. Tretyakov, G.Wahl, I. Klippe, J. Mater. Chem. 1994, 4, 1585.
    [51] M. Pan, G. Y. Meng, H. W. Xin, C. S. Chen, D. K. Peng, Y. S. Lin, Thin Solid Films 1998, 324, 89.
    [52] C. H. Chen, F. L. Yuan, J. Schoonman, Eur. J. Solid State Inorg. Chem., 35 (1998) 189.
    [53] A. T. Hunt, United States Patent, 5652021, 1997.
    [54] A. T. Hunt, W. B. Carter, J. K. Cochran, Appl. Phys. Lett. 63 (1993) 266.
    [55] D. W. Stollberg, W. B. Carter, J. M. Hampikian, Surface and coating tech. 94-95 (1997) 137.
    [56] M. R. Hendrick, J. M. Hampilian, W. B. Carter, J. Electrochem. Soc. 145 (1998) 3986.
    [57] W. B. Carter, G. W. Book, T. A. Polley, etc., Thin Solid Films 347 (1999) 25.
    [58] G. W. Book, W. B. Carter, T. A. Polley, K. J. Kozaczek, Thin Solid films 287 (1996) 32.
    [59] B. C. Valek, J. M. Hampikian, Surface and coating technology 94-95 (1997) 13.
    [60] T. A. Polley, W. B. Carter, D. B. Poker, Thin Solid Films 357 (1999) 132.
    [61] J. M. Hampikian, W. B. Carter, Mater. Sci. and Engineering A267 (1999) 7.
    [62] Y. Liu, J. Dong, M. L. Liu, Adv. Mater. 2004, 16. 353.
    [63] Y. Liu, M. L. Liu, Adv. Funct. Mater. 2005, 15, 57.
    [64] S. E. Pratsinis, Prog. Energy Combust. Sci. 1998, 24, 197.
    [65] T. A. Polley, W. B. Carter, Thin Solid Films 2001, 384, 177.
    [66] Z. Xu, J. Sankar, S. Yarmolenko, Surf. Coat. Technol. 2004, 177-178, 52.
    [67] A. T. Hunt, W. B. Carter, J. K. Cochran, Appl. Phys. Lett. 1993, 63, 266.
    [68] W. B. Carter, G. W, Book, T. A. Polley, D. W. Stollberg, J. M. Hampikian, Thin Solid Films 1999, 347, 25.
    [69] D. W. Stollberg, W. B. Carter, J. M. Hampikian, Thin Solid Films 2005, 483, 211.
    [70] Y. Liu, S. W. Zha, M. L. Liu, Adv. Mater. 2004, 16, 256.
    [71] Y. Liu, E. Koep, M. L. Liu, Chem. Mater. 2005, 17, 3997.
    [72] K.-L. Choy, Materials World 2003, 2.
    [73] K.-L. Choy, W. Bai, US Patent 6 331 330, 2001.
    [74] X. H. Hou, K.-L. Choy, Thin Solid Films 2005, 480-481, 13.
    [75] K.-L. Choy, Mater. Sci. Eng., C 2001, 16, 139.
    [76] K.-L. Choy, B. Su, US Patent 6 800 333, 2004.
    [77] P.S. Patil, Materials Chemistry and Physics 59 (1999) 185.
    [78] 彭定坤等,高等学校化学学报,10(7)(1989)687.
    [79] M. O. Lopeza, A.M. Acevedoa, O.S. Feriab, Thin Solid Films 385 (2001) 120.
    [80] A. Ortiz, J.C. Alonso, J. Mater. Sci. 13 (2002) 7.
    [81] P. Bohac, L. Gauckler, Solid State Ionics 119 (1999) 317.
    [82] Y. Matsuzaki, M.Hishinuma, I.Yasuda, Thin Solid films 340 (1999) 72.S.P
    [83].S. Arya, H.E. Hinterman, Thin Solid Films 193-194 (1990) 841.
    [1] Fuel Cell Handbook (Fifth Edition), by EG&G Services Parsons, Inc., Science Applications International Corporation, 2000.
    [2] Ngugen Q. Minh, J. Am. Ceram. Soc. 76 [3] (1993) 563-588.
    [3] M. Mogensen, N.M. Sammers and G.A. Tompsett, Solid State Ionics, 129 (2000) 63-94.
    [4] R. Doshi, V.L. Richards, J.D. Carter, X.P. Wang et al, J. Electrochem. Soc., 146 (1999) 1273-1278.
    [5] S.W. Zha, C.R. Xia, and G.Y. Meng, J. Applied Electrochemistry, 31 (1), (2001) 93-98.
    [6] Z. Xie, W. Zhu, B.C. Zhu and C.R. Xia, Electrochimica Acta, 51 (2006) 3052-3057.
    [7] K. Yamaji, T. Horita, M. Ishikawa et al, Solid State Ionics 121(1999) 217-224.
    [8] K. Yamaji, T. Horita, M. Ishikawa et al, Solid State Ionics 108(1998) 415-421.
    [9] K. Yamaji, H. Negishi, Y. Horita et al, Solid State Ionics 135 (2000) 389-396.
    [10] Ngugen Q. Minh, J. Am. Ceram. Soc. 76 [3] (1993) 563-588.
    [11] V.Dusatre, J.A.Kilner, Solid State Ionics, 126 (1999) 163.
    [12] A. Nagata, H. Okayama, Vacuum 66 (2002) 523.
    [13] Darja Kek, Peter Panjan, Elke Wanzenberg, Janez Jamnik, Journal of the European Ceramic Society 21 (2001) 1861.
    [14] K. L. Choy, Progress in Materials Science 48 (2003) 57.
    [15] 周庆生。等离子喷涂技术[M].南京:江苏科学技术出板社,1982,110-115
    [16] W.S. Ronald, K. Richard, JOM, 48 (4) (1996)16.
    [17] M. Scagliotti, F. Parmigiani, G. Samoggia, G. Lanzi, D.Richon, J. Mater. Sci. 23 (1988) 3764.
    [18] R. Henne, E. Fendler, M. Lang, in: U. Bossel (Ed.), Proc. 1st European Solid Oxide Fuel Cell Forum, European SOFCs Ulrich (Eds.), Forum, Oberrohrdorf, Switzerland, 1994, p. 617.
    [19] P. Charpentier, P. Fragnaud, D. M. Schleich, E. Gehain, Solid State Ionics, 135(2000)373.
    [20] R. Ihringer, J. Van Herle, A. J. McEvoy, in: U. Stimmung, S.C. Singhal, H. Yagawa, W. Lehnert (Eds.), Proc. 5th Int. Conf. Solid Oxide Fuel Cells, Electrochemical Society, Pennington, NJ, 1997, p. 340.
    [21] Global Thermoelectrics Inc, The emergence of viable solid oxide fuel cell technology, Fuel Cells Bulletin 26 (2000) 8.
    [22] C. Reiichi, Y. Fumikatsu, Y. Junichi, in: Proc. MRS Fall Meeting, 496, Warrendale, PA, 1998, p. 181.
    [23] H. Yamane, Y. Hirai, J. Mater. Sci. Lett. 6 (1987) 1229.
    [24] H. Yamane, T. Hirai, J. Cryst. Growth., 94 (1989) 880.
    [25] A. C. Jones, Chem. Vap. Deposition., 4 (1998) 169.
    [26] Y. Takahashi, T. Kawae, M. Nasu, J. Cryst. Growth 74 (1986) 409.
    [27] K. W. Chour, H. Chen, R. Xu, Thin SolidFilms 304 (1997) 106.
    [28] D. Perednis, M.B. Joerger, K. Honneger and L.J. Gauckler, Proc. of the 8th International Symposium on Solid Oxide Fuel Cells, (SOFCs-Ⅷ), Paris, France.
    [29] S. C. Singhal, M. Dokiya (Eds.), The Electrochem. Soc., Pennington, NJ, USA, 2003.
    [30] Y. S. Lin L. G. J. de Haart, etc., J. Electrochem. Soc. 137 (1990) 3960.
    [31] Y. S. Lin, J. Meijerink, H. W. Brinkman, etc., Key Engineering Materials 61/62 (1991)465.
    [32] J. Han, Y. Zeng, G. Xomeritakis, Y. S. Lin, Solid State Ionics 98 (1997) 63.
    [33] U. B. Pal, S. C. Singhal, High Temperature Science 27 (1990) 251.
    [34] A. Mineshige, M. Inaba, Z. Ogumi, J. Am. Ceram. Soc. 78 (1995) 3157.
    [35] P. Bohac, L. Gauckler, Solid State Ionics 119 (1999) 317.
    [36] K. L. Choy, W. Bai, S. Charojrochkul, B. C. H. Steele. J Power Source 71 (1998) 361.
    [37] Y. Matsuzaki, M. Hishinuma, I. Yasuda, Thin Solid films 340 (1999) 72.
    [38] D. Perednis, M. B. Joerger, K. Honneger and L. J. Gauckler, Solid oxide fuel cells with YSZ films prepared using spray pyrolysis, Proc. of the 8th International Symposium on Solid Oxide Fuel Cells, (SOFC-Ⅷ), Paris, France, S. C. Singhal, M. Dokiya (Eds.), The Electrochem. Soc., Pennington, NJ, USA, (2003).
    [1] E. Giera, J. Chem. Thermodynamics 32 (2000) 821
    [2] M. Leskela, R. Sillanpaa, L. Niinisio. etc., Acta Chemica Scandinavica 45 (1991) 1006-11
    [3] I. Baxter, J. A. Darr, M. B. Hursthouse, etc., J. Chemical Crystallography 28 (1998) 267
    [4] T. Hashimoto, H. Koinuma, M. Nakabayashi, T. Shiraishi, Y. Suemune, T. Yamamoto, J. Mater. Res. 7 (1992) 336.
    [5] E. Giera, J Chem Thermodynamics 32 (2000)821.
    [6] V. Burtman, M. Schieber, S. Yitzchaik, Y. Yaroslavsky, J. Crystal Growth 174 (2001) 801.
    [7] H. Z. Song, Y. Z. Jiang, C. R. Xia, G. Y. Meng, D. K. Peng, J. Crystal Growth 250 (2003) 423.
    [8] H. K. Ryu, J. S. Heo, S. I. Cho, C. Chuang, S. H. Moon, J. Electrochem. Soc. 147 (2000) 1130
    [9] J. S. Lee, H. W. Song, K. S. Kim, etc., J. Vac. Sci. Technol. A 15 (1) (1997) 72.
    [10] B. Arkles (Eds), Metal-Organics Including Silanes and Silicones, Gelest, Inc, 1995.
    [11] G. S. Hammond, D. C. Nonhebel, C. H. S. Wu, Inorg. Chem. 2 (1963) 73.
    [12] Strem Chemicals for Research (metals, inorganics, and organometallics), Catalog No. 20, 2004-2006.
    [13] T. Ozawa, Bull. Chem. Soc. Jpn. 38 (1965) 1881.
    [14] Timmer, K.; Spee, C. I. M. A.; Mackor, A.; Meinema, H. A.; Spek, A. L.; van Sluis, P.; Inorg. Chim. Acta 1991, 190, 109.
    [15] Turnipseed, S. B.; Barkley, R. M.; Sievers, R. E. Inorg. Chem. 1991,30, 1164.
    [16] Nakamura, T.; Tai, R.; Nishimura, T.; Tachibana, K. J. Electrochem. Soc. 2005, 152, C584.
    [17] Nakamura, T.; Tai, R.; Nishimura, T.; Tachibana, K. Journal of applied physics 2005, 97, 712.
    [18] Nakamura, T.; Nishimura, T.; Tai, R.; Tachibana, K. Materials Science and Engineering B 2005, 118, 253.
    [19] Wang, H. B.; Xia, C. R.; Peng, D.K.; Meng, G. Y. Mater. Lett. 2000, 44, 23.
    [20] Artaud, M. C.; Ouchen, F.; Martin, L.; Duchemin, S. Thin Solid Films 1998, 324, 115.
    [21] Reijnen, L.; Feddes, B.; Vredenberg, A. M.; Schoonman, J.; Goossens, A. J. Phys. Chem. B 2004, 108, 9133.
    [22] Belova, N. V.; Girichev, G. V.; Hinchley, S. L.; Kuzmina, N. P.; D. Rankin, W. H.; Zaitzeva, I. G.; Dalton Trans. 2004, 1715.
    [23] 王艳艳,硕士学位论文,中国科学技术大学,2006年.
    [1] N. Q. Mirth, J. Am. Ceram. Soc. 76 (1993) 563.
    [2] S. C. Singhal, Solid State Ionics 135 (2000) 305.
    [3] A. O. Isenberg, National Fuel Cell Seminar. Sundiago, CA (1980) 127.
    [4] G. Z. Cao, J. Am. Ceram. Soc. 76 (1993) 2201.
    [5] B. P. Uday, Solid State lonics 52 (1992) 227.
    [6] H. Tomaszewski, Denul Jurgen, De Gryse, Haemers Johan, De Roo Nico, Thin Solid Films 293 (1997) 67.
    [7] A. R. Nicoll, A. Salito, K. Honegger, Solid State Ionics 52 (1992) 269.
    [8] T. Zhang, C. Tang, D. Zhou, X. Pan, Journal of Inorganic Materials 12 (1997) 201.
    [9] W. K. Timothy, J. V. Steven, L.C.D. Jonghe, Solid State lonics 52 (1992) 251.
    [10] K.L. You, W.P. Jony, Journal of Materials Sci. Letters 16 (1997) 678.
    [11] S. Selmar, J.V. Steven, C. J. Lutgard, Solid State Ionics 98 (1997) 57.
    [12] E. K. Oh, S. G. Kim, J. Aerosol Sci. 27 (1996) 1143.
    [13] C. Dubourdieu, S.B.Kang, Y.Q.Li, G.Kulesha, B.Gailois, Thin Solid Films 339 (1999) 165.
    [14] H. Z. Song, Y. Z. Jiang, C.R. Xia, G.Y. Meng, D.K. Peng, J. Crystal Growth 250 (2003) 423.
    [15] M.L.Hammond, Solid State Technology 22(12) (1979)61.
    [16] U. Baltensperger, M. Ammann, M. Kalberer, J. Aerosol Sci. 29 (Suppl. 1) (1998) S637.
    [17] 孟广耀《化学气相淀积与无机新材料》,科学出版社,1984.
    [18] Chemical vapor deposition, edited by Jong-Hee Park, T. S. Sudarshan, Materials Park, OH, ASM International, 2001.
    [19] J.Si, S.B.Desu, C.Y.Tsai, J.Mater.Res. 9 (1994) 1721.
    [20] 王怀兵,《气溶胶源气相沉积制备固体氧化物燃料电池薄膜》,中国科学技术大学,2000.
    [21] 宋海政,《气溶胶化学气相淀积过程和SOFC薄膜制备的研究》,2003.
    [1] H. Yahiro, T. Ohuchi, K. Eguchi, H. Arai, J. Mater. Sci., 23(1998) 1036.
    [2] J. G. Li, T. Ikegami, T. Mori and T. Wada, Chem. Mater. 13(2001)2913-2920.
    [3] J. M. Ralph, J. Przydatek, J. A. Kilner, etc., Phys. Chem. 101 (1997) 1403.
    [4] K. D. Pollard, H. A. Jenkins, R. J. Puddephatt, Chem. Mater. 12 (2000) 701.
    [5] A. Wang, J. A. Belot, T. J. Marks, etc., Physica C 320 (1999) 154.
    [6] JCPDS-International Center for Diffraction Data [DB/MT]. PCPDFWIN, V. 2. 02, 1999.
    [7] K, L. Choy, Prog. Mater. Sci. 48 (2003) 57.
    [8] Y. Matsuzaki, M. Hishinuma, I. Yasuda, Thin Solid Films 340 (1999) 72.
    [9] M. Pulver, W. Nemetz, G. Wahl, Surface and Coatings Technology 125 (2000) 400
    [10] H. Z. Song, H. B. Wang, S. W. Zha, D. K. Peng, G. Y. Meng, Solid State Ionics 156 (2003) 249.
    [11] H. Z. Song, C. R. Xia, Y. Z. Jiang, G. Y. Meng, and D. K. Peng, Materials letters 57 (2003) 3833.
    [12] H. B. Wang, C. R. Xia, G. Y. Meng, and D. K. Peng, Materials letters 44 (2000)23.
    [13] J. S. Lee, T. Matsubara, T. Sei, T. Tsuchiya, J. Mater. Sci. 32 (1997) 5249.
    [14] X. Bokhimi, A. Morales, A. Garcia-Ruiz, T. D. Xiao, H. Chen, RR. Strutt, J. Solid State Chem. 142 (1999) 409.
    [15] M. Yashima, M. Kakihana, M. Yoshimura, Solid State Ionics 86-88 (1996) 1131.
    [16] S. C. Singhal, K. Kendall, High Temperature Solid Oxide Fuel Cells: Fundermentals, Design and Applications, Elsevier Advanced Technology, 2003.
    [17] R. C. Garvie, J. Phys. Chem., 69 (1965) 1238.
    [18] R. C. Garvie, J. Phys. Chem., 82 (1978) 218.
    [19] N. Wu, Bulletin of the College of Engineering, N. T. U., 84 (2002) 85.
    [20] D. Majumdar, D. Chaterjee, Thin Solid Films 206 (1991) 349.
    [21] F. Parrnigiani, L. E. Depero, L. Sangaletti, and G. Samoggia, J. Electron Spectrosc. Relat. Phenom. 63 (1993) 1.
    [22] Y. Akiyama, N. Imaishi, Y. S. Shin, and S. C. Jung, J. Crystal Growth 241 (2002) 352.
    [23] I. Kosacki, C. M. Rouleau, P. F. Becher, J. Bentley, D. H. Lowndes, Solid State Ionics 176 (2005) 1319.
    [24] H. Ullmann, N. Trofimenko, F. Tietz, et al, Solid State Ionics 138 (2000) 1.
    [25] E. Wanzenberg, F. Tietz, D. Kek, P. Panjan and D. Stover, Solid State Ionics, 164 (2003) 121.
    [1] N. Q. Minh, T. Takahashi, Science and Technology of Ceramic Fuel Cells, Amsterdam, Elsvier Science B, 1995.
    [2] W. Z. Zhu, S. C. Deevi. Materrials Science and Engineering A348 (2003) 227.
    [3] D. B. Meadowcroft, in: T. Gray, (Ed.), International Conference on Strontium Containing Compounds, Atlantic Research Institute, Halifax, Canada, 1973, p. 119.
    [4] W. J. Desisto, R. L. Henry, J. Crystal Growth 109 (1991) 314.
    [5] J. Karthikeyan, C. C. Berndt, J. Tikkanen, S. Reddy, 14. Herman, Materials Science and Engineering A238 (1997) 275.
    [6] Y. Matsuzaki, M. Hishinuma, I. Yasuda, Thin Solid Films 340 (1999) 72.
    [7] Z. Wu, M. Okuya, S. Kaneko, Thin Solid Films 385 (2001) 109.
    [8] D. Perednis, O. Wilhelm, S. E. Pratsinis, L. J. Gauckler, Thin Solid Fihns 474 (2005) 84.
    [9] A. Princivalle, D. Perednis, R. Neagu, E. Djurado, Chem. Mater. 2004, 16, 3733.
    [10] C. H. Chen, E. M. Kelder, J. Schoonman, J. Mater. Chem. 1996, 6, 765.
    [11] H. Ruiz, H. Vesteghem, A. R. Digiampaolo, J. Lira, Surf. Coat. Technol. 1997, 89, 77.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700