双极膜技术光助电氧化降解苯酚的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苯酚废水毒性大,难以被生物降解,降解苯酚废水的研究倍受关注。本研究以TiO2-葸醌改性双极膜中间层。将其用作为电解槽隔膜,光助电氧化降解苯酚。
     利用双极膜技术,在紫外灯照情况下,于显碱性的阳极室中,利用阳极发生的特殊氧化反应可以形成羟基自由基(·OH),继而羟基自由基降解苯酚为CO2和H2O,或将其转换成可生化降解的中间产物,实现对苯酚进行降解。
     减少双极膜的阻抗,提高水解离效率是当今双极膜研究的焦点。为此本文在双极膜的中间层中涂布纳米尺寸的光催化剂TiO2和光敏剂葸醌(Anthraquinone,缩写为Anth),制得三明治式的双极膜。测定了双极膜的膜的离子交换能力、溶胀度、OH-渗透性、I-V工作曲线;并用扫描电镜(SEM)观察双极膜界面层形态;用电化学工作站测试膜交流阻抗,并在实验室双极膜电解槽中,对制得的膜的性能进行了综合电化学性能的测试。实验结果表明,在紫外光照射下,以TiO2-Anth修饰的双极膜表现出更高的水解离效率及氢离子和氢氧根离子的渗透率,阻抗减小,工作电压将低等特点。当工作电流密度达125 mA·cm-2时,电槽工作电压小于5.0V。
     通过测定降解过程中苯酚溶液的紫外-可见分光光度和高效液相色谱的变化研究了苯酚的降解机理。电镜扫描、膜阻抗测定、渗透性测定等分析测定结果表明,TiO2-葸醌改性双极膜在提高膜性能,降低膜阻抗,减少能源消耗等方面效果良好,紫外光照180min,苯酚降解为CO2和H2O。
Phenolic water was unique difficult degrading by the bacteria treatment. The degradation of phenolic water was paid more and more attention. In this paper, TiO2-anthraquinone was used to modify the intermediate layer of a bipolar membrane (BPM), which was equiped in a cell for the elevctro-catalytic degradation of the phenolic water.
     The usage of the membrane technology, under the ultraviolet light, in the alkali anode chamber, the hydroxyl radical(·OH) was formed by the most special reaction to achieve the deep degradation. The phenol was degraded to CO2 and H2O or converted into a biochemical degradation of the production by this hydroxyl radical.
     How to promote water splitting at the intermediate layer and lower the IR drop of bipolar membrane (BPM) is the focus of BPM research. In the interlayer of bipolar membrane modified with nanometer-sized TiO2 as a photo-catalyst and the anthraquinone (abbreviated as Anth) as a photosensitizer. SEM and electrochemical workstation were used to characterize the BPMs.Ⅰ-Ⅴcurve, ion exchange capacity, swelling degree, changes of pH in anode were investigated. Experimental results showed that the sandwich-type BPM exhibited a several good properties:a higher efficiency for the water splitting in the interlayer, and a higher operation current density, lower impedance and working voltage. When the working current density is at 125 mA·cm-2, the working voltage is as low as 5.0 V under the UV illumination.
     The degradation process of phenol solution was measurmented by UV-visible spectrophotometry and high performance liquid chromatography. The mechanism of its degradation was discussed. The TiO2-anthraquinone modified bipolar membrane was investigated by SEM, electrochemical workstation and OH- permeability. Experimental results showed that the modified BPM enhanced membrane performance, and reduced membrane resistance and the energy consumption. In conditions of UV irradiation for 180min, the phenol was degraded to CO2 and H2O.
引文
[1]钟理,陈建军,张浩.臭氧氧化降解苯酚动力学研究[J].中国给排水,2002,18(9):8-11.
    [2]张芳西,金承基,周淑芬,等.含酚废水的处理与利用[M].化学工业出版社,北京,1983,16-19.
    [3]斯琴高娃,乌云,田艳飞.浅析苯酚对环境的污染[J].内蒙古石油化工,2006,5:50-51.
    [4]陈国华,王光信.电化学方法的应用(第二版)[M].化学工业出社,2003:175-180.
    [5]冯玉洁,李晓岩,尤宏,等.电化学技术在环境工程中的应用(第五版)[M].化学工业出版社,北京,2002:131-150.
    [6]陈玉峰.电生成Fenton试剂在废水处理中应用的研究[D].福建师范大学硕士学位论文,2004:1-25.
    [7]Helfferich F. Ion Exchange[M]. McGraw-Hill. New York. 1962:45-56.
    [8]Simons R. Electric field effects on proton transfer between ionizable groups and water in ion exchange membranes[J]. Electrochimica Acta,1984,29(2):151-158.
    [9]Ramirezl P, Rappa H J, Mafe S, et al. Bipolar membranes under forward and reverse bias conditions [J]. Theory vs. experiment. Journal of Electroanalytical Chemistry, 1994,375(1-2,19):101-108.
    [10]Schaffner F, Pontaher P Y, Sanchez V, et al. Comparison of diester waste treatment by conventional and bipolar electrodialysis [J]. Desalination,2004,170:113-121.
    [11]Hsueh C H, Peng Y J, Wang C C, et al. Bipolar Membrane Prepared by Grafting and Plasma Polymerization[J]. Journal of Membrane Science,2003,219:1-13.
    [12]Pourcelly G, Gavach C. Electrodialysis Water Splitting Applications of Electrodialysis with Bipolar Membranes [M]. Handbook on Bipolar Technology. Germany, A.J.B. Kemperman,2001:34-56.
    [13]Bauer B, Gerner F J, Strathmann H. Development of bipolar membranes [J]. Desalination,1988,68:279-292.
    [14]傅荣强,徐铜文,杨伟华.双极膜中间界面层研究进展[J].膜科学与技术,2002,22(6):42-47.
    [15]Strathmann H, Krol J J, Rapp H J, et al. Limiting current density and water dissociation in bipolar membranes [J]. Journal of Membrane Science, 1997,125 (1): 123-142.
    [16]Akihiko T, Koji S, Keizo M, et al. Effect of polymer materials on membrane potential, rectification and water splitting in bipolar membranes [J]. Polymer, 1996, 37(10):1883-1889.
    [17]Simons R. Origin and elimination of water splitting in ion-exchange membranes during water demineralization by electrodialysis[J]. Desalination,1979,28 (1): 41-42.
    [18]Frilette V. Preparation and characterization of bipolar ion exchange membrane [J]. J.Phys.Chem.,1956,60:435-439.
    [19]Chlanda F P, Lee L T, Liu K J. Bipolar membranes and method of making same[P]. US 4116889,1978.
    [20]Tanioka A, Shimizu K, Hosono T, et al. Effect of interfacial state in bipolar membrane on rectification and water splitting [J]. Colloid Surface A,1999, 159(2-3):395-404.
    [21]任羽西,郑曦,陈日耀,等.接枝改性SAMS-CMC-CS双极膜及其在电合成高铁酸盐中的应用[J].高等学校化学工程学报,2008,22(2):265-269.
    [22]许彩霞.功能高分子膜的制备及在电合成中的应用[D].福建师范大学硕士论文集,2008:1-21.
    [23]陈妮娜,陈日耀,郑曦,等.mCMC-PEG/mCS-PEG双极膜的制备与表征[J].高分子学报,2008,11:1068-51075.
    [24]徐铜文,汪志武,刘宁.双极膜的理论及应用展望[J].水处理技术1998,24(1):20-25.
    [25]Simons R. High Performance Bipolar Membrane[P]. Unisearch td. (Australia), WO 89/01059 Al,1989.
    [26]Posar F, Riccardi M. Process for the manufacture of a bipolar membrane and process for the manufacture of an aqueous alkali metal hydroxide solution [P]. US 5,380,413 1995.
    [27]Posar F. Method for making a bipolar membrane [P]. Solvay S.A. (Belgium), US 5849167,1998.
    [28]Fumio H, Koki H, Nobuhiko O, et al. Bipolar membrane and method for its production[P]. US 5221455,1993.
    [29]傅荣强.多层结构双极膜催化层的筛选及催化水解离机理的研究[D].中国科学技术大学博士学位论文,2005:9.
    [30]Onsager L.Deviations from Ohm's Law in weak electrolytes [J]. J Chem phys, 1934,3:599-612
    [31]Simons R. Strong electric fields effects on proton transfer between membrane-bound amines and water[J]. Nature,1979,280824-826.
    [32]Simons R. Water splitting in ion-exchange membranes[J]. Electrochim Acta.1985, 30(3):275-282.
    [33]Ramirez P, Rapp H J, Reichle S, et al. Current-voltage curves of bipolar membranes[J]. J Appl Phys.1992,72(1):259-264.
    [34]Mafe S, Ramirez P, Alcaraz A. Electric field-assisted proton transfer and water dissociation at the junction of a fixed-charge bipolar membrane[J]. Chem Phys Lett. 1998,294(4-5):406-412.
    [35]Zabolotskii V I, Gnusin N P, Sheldeshov N V, et al. Investigation of the catalytic activity of secondary and tertiary amino-groups in the dissociation of water on a bipolar mb-2 membrane[J]. Soviet Electrochemistry.1985,21 (8):993-996.
    [36]Zabolotskii V I, Sheldeshov N V, Gnusin N P. Influence of the ionogenic groups on the dissociation-constants of water in bipolar ion-exchange membranes[J]. Soviet Electrochemistry.1986,22 (12):1573-1576.
    [37]Sheldeshov N V, Gnusin N P, Zabolotskii V I, et al. Chronopotentiometric study of electrolyte transport in commercial bipolar membranes [J]. Soviet Electrochemistry. 1985,21 (2):137-142.
    [38]Irwin K J, Barnett S M, Freeman D L. Quantum-mechanical studies of local water-structure near fixed ions in ion-exchange membranes[J]. J Membrane Sci., 1989,47(1-2):79-89.
    [39]Eigen M, De Maeyer L, Hydrogen bond structure, proton hydration, and proton transfer in aqueous solution, in the structrure of electrolytic solutions [M]. John Wiley & Sons, New York,1959:76-98.
    [40]Mafe S, Manzanares J A. Model for ion transport in bipolar membranes [J]. Phys Rev A,1990,42:6245-6248.
    [41]Mafe S, Ramirez P, Alcaraz A. Electric field assisted pronton transfer and water dissociation at the junction of a bipolar fixed charge membrane [J]. Chem.Phys.Lett, 1998(294):406-408.
    [42]Irwin K J, Barant S M, Freeman D L. Quantum mechanical studies of local water structure near fixed ions in ion exchange membrane [J]. J.Membrane SCI,1989(47):79-84.
    [43]Zabolotskii V I, Ganych V V, Sheldeshov N V. Effect of copper-complexes with the ionogenic groups of the ma-40 anion-exchange membrane on the dissociation rate of water-molecules in the electric-field[J]. Sovief electrochemistry. 1991,27(10): 1098-1102.
    [44]Simons R. A novel method for preparing bipolar membranes [J]. Electrochim Acta, 1986,31 (9):1175-1177.
    [45]Kang M S, Choi Y J, Lee H J, et al. Effects of inorganic substances on water splitting in ion-exchange membranes:I. Electrochemical characteristics of ion-exchange membranes coated with iron hydroxide/oxide and silica sol[J]. Journal of Colloid and Interface Science,2004,273 (2):523-532.
    [46]Kazuo U, Tutomu N, Haruhisa M. Bipolar membrane [P], US 5401408,1995.
    [47]Jeevananda T, Kyeong H Y, Seung H M. Synthesis and characterization of bipolar membrane using pyridine functionalized anion exchange [J]. Journal of Membrane Science,2006,283 (1-2):201-208.
    [48]Xue Y H, Wang N, Huang C H, et al. Catalytic water dissociation at the intermediate layer of a bipolar membrane:The role of carboxylated Boltorn(?) H30[J]. Journal of Membrane Science,2009,344(1-2):129-135.
    [49]Peng Feiyan, Peng Shuchuan, Huang Chuanhui, et al. Modifying bipolar membranes with palygorskite and FeCl3[J]. Journal of Membrane Science,2008, 322(1):122-127.
    [50]Gerald J, Dege, Liu K J. Single film performance bipolar membrane [P]. US 4024043,1977.
    [51]Frederick P, Chlanda, Liu K J. Bipolar membranes and method of making same[P]. US 4116889,1978.
    [52]Fumio H, Koki H, Nobuhiko O, et al. Bipolar membrane and method for its production[P]. US 5221455,1993.
    [53]Kazuo U, Tutomu N, Haruhisa M. Bipolar membrane[P]. US 5401408,1995.
    [54]Frederick P, Chlanda, Ming J L. Bipolar membranes and methods of making same[P]. US 4766161,1988.
    [55]Xu Z L, Gao H F, Qian M P, et al. Preparation of bipolar membranes via radiation peroxidation grafting [J]. Radiat Phys Chem, 1993,42 (4-6):963-966.
    [56]Hegazy E S, Kamal H, Maziad N, et al. Membranes prepared by radiation grafting of binary monomers for adsorption of heavy metals from industrial wastes [J]. Nucl Instrum Meth B,1999,151(1-4):86-392.
    [57]Mintz M S. Bipolar membranes and the production of acids and bases therefrom [P]. US 435791,1974.
    [58]黄雪红.SBS基材接枝改性双极膜的制备及在电合成中的应用[D].福建师范大学博士学位论文,2009:8.
    [59]徐铜文,杨伟华,何炳林.双极膜水解离现象-双极膜的物理构型、离子传递及其水解离压降分析[J].中国科学(B辑),1999,29(6):481-488.
    [60]Mafe S, Ramirez P, Alcaraz A, et al. Handbook on Bipolar Membrane Technology[M]. Enschede:Twente University Press,2000:49-78.
    [61]Carmen C. Bipolar membrane pilot performance in sodium chloride salt splitting [J]. Desali Water Reuse,1995,4:46-54.
    [62]Audinos R. Ion-exchange membrane processes for clean industrial chemistry[J]. Chem Eng Technol,1997,20:247-258.
    [63]Cherif A T, Molenat J, Elmidaoui A. Nitric acid and sodium hydroxide generation by electrodialysis using bipolar membranes [J]. J Appl Electrochem,1997,27: 1069-1074.
    [64]Paleogou M, Thibault A, Wong P Y, et al. Enhancement of the current efficiency for sodium hydroxide production from sodium sulphate in a two-compartment bipolar membrane electrodialysis system[J]. Sep Purif Technol,1997,11:159-171.
    [65]Trivedi G S, Shah B G, Adhikary S K, et al. Studies on bipolar membranes. Part III: conversion of sodium phosphate to phosphoric acid and sodium hydroxide [J]. React Funct Polym,1999,39:91-97.
    [66]Ferrer J S J, Laborie S, Durand G, et al. Formic acid regeneration by electromembrane process[J]. J Membr Sci,2006,280:509-516.
    [67]Trivedi G S, Shah B G, Adhikary S K, et al. Studies on bipolar membranes Conversion of sodium acetate to acetic acid and sodium hydroxide [J]. React Funct Polym,1997,32(2):209-215.
    [68]Koter S, Warszawski A. Electromembrane processes in environment protection [J]. Pol J Environ Stud,2000,9(1):45-56.
    [69]Lee E G, Moon S H, Chang Y K, et al. Lactic acid recovery using two-stage electrodialysis and its modelling [J]. Journal of Membrane Science,1998, 145(1):53-66.
    [70]Li H, Mustacchi R, Knowles C J, et al. An electrokinetic bioreactor:using direct electric current for enhanced lactic acid fermentation and product recovery [J]. Tetrahedron,2004,60(3):655-661.
    [71]Xu Tongwen, Yang Weihua. Citric acid production by electrodialysis with bipolar membranes[J]. Chem Eng Process,2002,41 (6):519-524.
    [72]Xu Tongwen, Yang Weihua. Effect of cell configurations on the performance of citric acid production by a bipolar membrane electrodialysis. Journal of Membrane Science,2002,203(1-2):145-153.
    [73]Novalic S, Kulbe K D. Separation and concentration of citric acid by means of electrodialytic bipolar membrane technology [J]. Food Technol Biotech,1998, 36(3):193-195.
    [74]Pinacci P, Radaelli M. Recovery of citric acid from fermentation broths by electrodialysis with bipolar membranes[J]. Desalination,2002,148 (1-3):177-179.
    [75]Novalic S, Okwor J, Kulbe K D. The characteristics of critic acid separation using electrodialysis with bipolar membranes[J]. Desalination,1996,105:277-282.
    [76]Novalic S, Kongbangkerd T, Kulbe K D. Recovery of organic acids with high molecular weight using a combined electrodialytic process [J]. J Membr Sci.,2000, 166:99-104.
    [77]肖艳春,陈日耀,郑曦,等. P-mSA/mCS双极膜的制备及其在一价、二价离子分离中的应用[J].物理化学学报,2009,25(6):1207-1212.
    [78]王小敏,陈震,郑曦,等.a、p、丫和δ-MnO2吸附Li+的研究[J].电池,2007,37(4):282-283.
    [79]Bazinet L, Ippersiel D, Mahdavi B. Fractionation of whey proteins by bipolar membrane electroacidification[J]. nnov Food Sci Eng Technol,2004,5:17-25.
    [80]Shee F L, Angers P, Bazinet L Precipitation of cheddar cheese whey lipids by electrochemical acidification[J]. J Agr Food Chem,2005,53 (14):5635-5639.
    [81]王嫣红.双极膜技术在电氧化制备3-甲基-2-吡啶甲酰胺中的应用[D].福建师范大学硕士论文,2009:1-67.
    [82]黄振霞.Ni-mSA/mCS双极膜的制备及在绿色环保新工艺中的应用[D].福建师范大学硕士论文,2008,:1-79.
    [83]Bazinet L, Montpetit D, Ippersiel D, et al. Neutralization of hydroxide generated during skim milk electroacidification and its effect on bipolar and cationic membrane integrity[J]. J Membr Sci.,2003,216(1-2):229-239.
    [84]Senorans F J, Ibanez E, Cifuentes A. New trends in food processing [J]. Crit Rev Food Sci.,2003,43 (5):507-526.
    [85]Tronc J S, Lamarche F, Makhlouf J. Effect of ph variation by eleetrodialysis on the inhibition of enzymatic browning in cloudy apple juice [J]. J Agr Food Chem,1998, 46(3):829-833.
    [86]Strathmann H, Bauer B, Rapp H J. Better bipolar membranes [J]. Chem Tech,1993, 23 (6):17-24.
    [87]Sridhar S. Electrodialysis in a non-aqueous medium:production of sodium methoxide[J]. J Membr Sci,1996,113(1):73-79.
    [88]Honma I, Hirakawa S, Yamada K. Synthesis of Organic/inorganic Nanocomposites Protonic Conducting Membrane Through Sol-gel Processes[J]. Solid State Ionics, 1999,118:29-36.
    [89]Cornelius C, Hibshman C, Marand E. Hybrid organic-inorganic membranes [J]. Separation and Purification Technology,2001,25:181-193.
    [90]Guizard C, Bac A, Barboiu M. Hybridorganic-inorganic membranes with specific transport properties:applicationsin separation and sensors technologies[J]. Separation and Purification Technology,2001,25:167-180.
    [91]Fujishima A, Rao T N, Tryk D A. Titanium dioxide photocaralvsis [J]. J Photoch Photobio C. Photochem Revi,2000,1(1):1-7.
    [92]管晶,梁文懂.可见光响应型TiO2光催化剂研究进展[J].武汉大学学报(自然科学版),2006,29(2):164-167.
    [93]刘守新,孙承林.光催化剂Ti02改性的研究进展[J]. Journal of Northeast Forestry University,2003,31 (1):53-56.
    [94]张茂林.纳米ZnO/SnO2等复合光催化剂的制备及其降解有机污染物研究[D].中国科学院广州地球化学研究所,2004.
    [95]沈伟韧,贺飞,赵文宽,等.纳米Ti02粉体的制备及光催化性[J].武汉大学学报(自然科学版),1994,45(4):389-392.
    [96]徐中其,戴航,陆晓华.难降解有机废水处理新技术[J].江苏环境科技,2000,13(1):32-35.
    [97]娄红波,王建中,张萍,等.电化学法处理苯酚模拟废水的研究[J].环境科学与管理,2008,33(2):72-76.
    [98]姜成春,张佳发,李继.电化学方法现场产生H202的影响因素及其废水处理应用[J].生态环境,2006,15(3):503-508.
    [99]刘守新,刘鸿.光催化及光电催化基础与应用[M],化学工业,2008,8:44-74.
    [100]任羽西,陈日耀,陈震,等.葸醌/TiO2复合膜光催化降解孔雀石绿的研究[J].化工时刊,2005,19(2):14-18.
    [101]孟凡明,肖磊,孙兆奇.Ti02薄膜光催化性能研究进展[J].安徽大学学报(自然科学版),2009,33(4):81-84.
    [102]管晶,梁文懂.可见光响应型Ti02光催化剂研究进展[J].武汉科技大学学报(自然科学版),2006,29(2):164-167.
    [103]刘守新,孙承林.光催化剂Ti02改性的研究进展[J].东北林业大学学报,2003,31(1):53-56.
    [104]白杨,孙彦平,樊彩梅.苯酚光降解过程分析[J].科技情报开发与经济,1999,4: 20.
    [105]赵国华,周兵,朱仲良.苯酚溶液电解的过程分析及中间体的研究[J].同济大学学报,2000,28(5):597-599.
    [106]姜成春,张佳发,李继.电化学方法现场产生H202的影响因素及其废水处理应用[J].生态环境,2006,15(3):503-508.
    [107]奚旦立,孙裕生,刘秀英.环境监测[M].高等教育出版社,2001:572-576.
    [108]白杨.苯酚降解过程中间体变化研究[J].科技情报开发与科技,2003,13(7):129-130.
    [109]Hickey W J, Arnold S M, Harris R F. Degradation of Atrazine by Fenton's Reagent: Condition Optimization and Product Quantification [J]. Environ. Sci. Technol,1995, 29(8):2083-2089.
    [110]李伟,徐桂清,孙瑞霞,等.5-氨基水杨酸中对苯二酚和对苯醌的反相高效液相色谱法的分离和限度检查[J].河南师范大学学报(自然科学版),2001,30:55-59.
    [111]时文中,褚意新,朱国才.阳极电化学氧化降解水体中酚的研究[J].水处理技术,2005,31(6):32-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700