H_2在Pd_n(n=4,6,13,19,38)团簇上吸附解离的DFT研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
原子团簇(简称团簇)是由几个至上千个原子组成相对稳定的聚集体,直径小于50nm,团簇是介于微观的原子和宏观的固体物质之间的一种新层状。Pd团簇由于其独特的物理和化学性质引起了人们极大的研究兴趣,Pd金属具有良好的催化活性、稳定性和选择性,广泛应用在催化加氢与脱氢反应中、汽车尾气催化转化、电催化氧化与还原过程中。在催化反应中,氢分子在催化剂表面的活化吸附与氢分子的吸附解离都是催化反应中的关键步骤。研究原子或分子氢在Pd金属团簇的吸附解离行为,有助于理解吸附物与催化剂相互作用的本质,为高效Pd金属催化剂的设计提供理论数据和依据。
     本论文采用密度泛方法,在DMol3软件包中,选择GGA/PW91交换相关泛函对不同尺寸的Pdn(n=4,6,13,19,38)进行几何优化。在最稳定构型的基础上,我们分析了氢气在Pdn团簇上的一系列吸附性质,包括氢分子在不同吸附位稳定性,氢分子的解离吸附及迁移机理,解离过程的Hirshfeld电荷、HOMO-LUMO轨道和态密度等电子性质,探讨了氢气在钯团簇上吸附解离以及电子性质随团簇尺寸变化的规律。
     全文共分三章。第一章主要陈述了团簇理论和表面吸附理论。第二章主要陈述了现代量子化学的相关理论。第三章介绍了氢分子在Pdn(n=4,6,13,19,38)金属团簇表面的吸附构型、表面解离和迁移机理,以及吸附解离过程中的电子性质变化。主要得到以下结论:
     1.随着Pdn尺寸的增大,Pd团簇的平均结合能从1.660eV显著增大到2.785eV。Pd-Pd键长由2.661A逐渐增大到2.756A。H2分子吸附在Pd4H2-top, Pd6H2-top, Pd13H2-top, Pd19H2-5top, Pd38H2-5top的吸附能最大,最稳定吸附能分别为0.568,0.670,0.629,0.453,0.456eV。
     2.解离的氢原子吸附在Pd4的Pd-Pd桥位更稳定,而吸附在Pd6, Pd13, Pd19, Pd38面位更稳定。从H2在Pd团簇的解离机制可以看出,氢气解离到最稳定吸附位的决速反应能垒是差别不大的,分别为0.448,0.401,0.314,0.304,0.782eV。随着团簇尺寸的增大(n=4,6,13,19)反应能垒减小,Pd38增大。氢气在Pd19上具有最小的吸附能和解离能。
     3.Hirshfeld电荷分析表明,Pd团簇是电子给予体,氢原子是电子接受体,Pd转移电子越多,H-H键越长并解离
Clusters are the agglomerates of a few to a few thousand atoms with relative stability and with a radius smaller than50nm. Clusters are the borderland between the microscopic single atom and the macroscopic solid state. The palladium-ydrogen system has attracted intensive studies in physical chemistry as a model system in view of its high storage capacity, its high sensitivity and selectivity to H2gas, and its ability to easily release hydrogen at room temperature. In particular, palladium has been widely utilized in many chemical processes such as hydrogenation, oxidation and reduction process. Hydrogen dissociative chemisorption on Pd transition metal catalysts is of great industrial importance in various hydrogenation or dehydrogenation processes. In these reactions, hydrogen molecule is dissociated with active hydrogen atoms adsorbed on the catalyst surfaces. Understanding the elementary processes of the chemical reactions is significant to design novel high efficiency catalysts and provide important theoretical knowledge to solve practical problems of industrial catalytic.
     In this work, we use DFT calculations and transition state theory, and we optimize the different sizes'of Pdn(n=4,6,13,19,38) by GGA/PW91function in DMol3software. We investigate systematically a series of nature analysis on the base of optimized structures, including hydrogen molecular adsorption geometry and stability, mechanisms of dissociative chemisorption and diffusion on Pdn(n=4,6,13,19,38). We also examine electronic properties of palladium-hydrogen system by analyzing Hirshfeld charges, HOMO-LUMO gap and the density of states. Through the detailed system's theoretical calculation, we discuss hydrogen dissociative chemisorption on palladium clusters and the electronic properties with the cluster sizes increase.
     In Chapter1, we summarized basic theory of the cluster and surface adsorption. In Chapter2, we introduced the theoretical basis of modern quantum chemistry. In Chapter3, we studied the mechanisms of hydrogen adsorption, dissociative chemisorption and diffusion on Pdn(n=4,6,13,19,38) and electronic and geometric properties of palladium-ydrogen system.
     The main conclusions of this work include:
     1. The average binding energies of the Pdn(n=4,6,13,19,38) clusters significantly increase from1.660to2.785eV with cluster size increased. Pd-Pd bond distances gradually change from2.661to2.756A. The stable adsorption sites for H2molecule are top sites of Pdn(n=4,6,13,19,38), with the respective adsorption energy of0.568,0.670,0.629,0.453and0.456eV. The stable adsorption sites of Pd19and Pd38are at top sites of five-coordinated Pd atoms.
     2. Hydrogen atom adsorbed on the Pd4edge site is more stable while the adsorption on face site is more stable for Pd6, Pd13, Pd19and Pd38. From Pd4to Pd38. the rate-determining step of dissociating H2molecule is overcoming the energy barrier of0.448,0.401,0.314,0.304and0.782eV, respectively. The results show that Pd19has much lower chemisorption energy and the lowest energy barrier. Adsorptive H atom shifts on the Pdn(n=4,6,13,19,38) cluster are testified to be quite flexible.
     3. In the charge transfer process, the Pd cluster behaves as a donor and H2behaves as an acceptor. There is charge being transferred from the Pd atoms to the antibonding orbital of H2, associated with the breaking of the H-H bond.
引文
[1]王广厚.团簇物理学[M].上海:上海科学技术出版社,2003.
    [2]STEIN GD. Atoms and molecules in small aggregates [J]. Phys. Teach.,1979,17:503.
    [3]冯端,金国钧.凝聚态物理学新论[M].上海:科学技术出版社,1992,266.
    [4]唐敖庆.原子簇的结构规则和化学键[M].山东:科学技术出版社,1998.
    [5]ECHT 0, SATTLER K, RECHNAGEL E. Magic Numbers for Sphere Packings:Experimental Verification in Free Xenon Clusters [J]. Phys. Rev. Lett.,1981,47:1121-1124.
    [6]BARRETEAU C, GUIRADO-LOPEZ R, SPANJAARD D, et al. Spd tight-binding model of magnetism in transition metals:Application to Rh and Pd clusters and slabs [J]. Phys. Rev. B.,2000,61:7781-7794.
    [7]BRAC M. Multiple vibrations of small alkali-metal spheres in a semi classical description [J]. Phys. Rev. B,1989,39:3533-3542.
    [8]BEENAKKER C W J. Random-matrix theory of quantum size effects on nuclear magnetic resonance in metal particles [J]. Phys. Rev. B.,1994,50:15170-15173.
    [9]LABASTIE P, WHETTEN R L. Statistical thermodynamics of the cluster solid-liquid transition [J]. Phys. Rev. Lett.,1990,65:1567-1570.
    [10]MARTIN T P, BENEDEK G, MARTIN T P, et al. Elemental and molecular clusters [M]. Berlin:Spinger-Verlag 1989,41:477.
    [11]TOMANEK D, SCHLUTER M A. Calculation of Magic Numbers and the Stability of Small Si Clusters [J]. Phys. Rev. Lett.,1986,56:1055-1058.
    [12]CLEVELAND C L, LANDMAN U, SCHAAFF T G. Structural Evolution of Smaller Gold Nanocrystals:The Truncated Decahedral Motif [J]. Phys. Rev. Lett.,1997,79:1873-1876
    [13]NORTHBY J A. Structure and binding of Lennard-Jones clusters:13≦N≦147 [J]. J. Chem. Phys.,1987,87:6166.
    [14]ROBERTS C, JOHNSTON R L, WILSON N T. A genetic algorithm for the structural optimization of Morse clusters [J]. Theo. Chem. Acc,2000,104:123-130.
    [15]ZHANG H Q, HAN M, WANG Q. HREM characterization of gold-cluster Structures [J]. Surf. Rev. Lett.,1996,3 (1):1195-1198.
    [16]INO S. Epitaxial Growth of Metals on Rocksalt Faces Cleaved in Vacuum. II. Orientation and Structure of Gold Particles Formed in Ultrahigh Vacuum [J]. J. Phys. Soc. Jpn.,1966,21:346-362.
    [17]PUNJ G, STEWART D W. Cluster Analysis in Marketing Research:Review and Suggestions for Application [J]. J. Mark. Res.,1983,20(2):134-148.
    [18]HRTKE B. Global geometry optimization of clusters using genetic algorithms [J]. J. Phys. Chem.,1993,97(39):9973-9976.
    [19]GREGORIO D A. Copper clusters simulated by a many-body tight-binding potential [J]. Philosophical. Mag. B.,1993,68(6):903-911.
    [20]FOULKES W M C, HAYDOCK R. Tight-binding models and density-functional theory [J]. Phys. Rev. B.,1989,39(17):12520-12536.
    [21]ZHAO J, LUO Y, WANG G. Tight-binding study of structural and electronic properties of silver clusters [J]. Eur. Phys. J. D.,2001,14(3):309-316.
    [22]LATHIOTAKIS N N, ANDRIOTIS A N, MENON M, et al. Tight binding molecular dynamics study of Ni clusters [J]. J. Chem. Phys.,1996,104:992-1003.
    [23]TODD B D, LYNDEN-BELL R M. Surface and bulk properties of metals modeled with Sutton-Chen potentials [J]. Surf. Sci.,1993,281:191-206.
    [24]CAI J, YE Y Y. Simple analytical embedded-atom-potential model including a long-range force for fcc metals and their alloys [J]. Phys. Rev. B.,1996,54: 8398-8410.
    [25]CAR R, PARRINELLO M. Unified Approach for Molecular Dynamics and Density-Functional Theory [J]. Phys. Rev. Lett.,1985,55:2471-2474.
    [26]WANG J S, SWENDSEN R H. Cluster Monte Carlo algorithms [J]. Physica A.,1990,167 (3):565-579.
    [27]MAULIK U, BANDYOPADHYAY S. Genetic algorithm-based clustering technique [J]. Patt. Rec.,2000,33 (9):1455-1465.
    [28]KIM H S, LAB M W, LTD M C. An efficient genetic algorithm with less fitness evaluation by clustering [J]. Evolu. Comp.,2001,2:887-894.
    [29]HRUSCHKA E R, EBECKEN N F F. A genetic algorithm for cluster analysis [J]. J. Inte. Dat. Ana.,2003,7(1):15-25.
    [30]GILLET V J, KHATIB W, WILLETT P, et al. Combinatorial Library Design Using a Multi-objective Genetic Algorithm [J]. J. Chem. Inf. Comput. Sci.,2002,42 (2):375-385.
    [31]XU Y, RUBAN A V, MAVRIKAKIS M. Adsorption and Dissociation of O2 on Pt-Co and Pt-Fe Alloys [J]. J. Am. Chem. Soc.,2004,126 (14):4717-4725.
    [32]张辉,刘士阳,张国英.化学吸附的量子力学绘景[M].北京:科学出版社,2004:152-224.
    [33]SCHRODINGER E. Discussion of Probability Relations between Separated Systems [J]. Math. Pro. Camb. Phi. Soc.,1935,31:555-563.
    [34]THOMASh L H. The Calculation of Atomic Fields [J]. Proc. Camb. Phi. Soc.,1926, 23(5):542-548.
    [35]FERMI E. Eine statistische methode zur bestimmung einiger eigenschaftend des atoms und ihre anwendung auf die theories des periodischen systems der elemente [J]. Z. Phys.,1928,48:73-79.
    [36]HOHENBERG P, KOHN W. Inhomogeneous electron gas [J]. Phys. Rev. B.,1964,136(3): 864-871.
    [37]KOHN W, SHAM L J. Self-consistent equations including exchange and correlation effects [J]. Phys. Rev. A,1965,140(4):1133-1138.
    [38]BORN M, HUANG K. Dynamical Theory of Crystal Lattices. Oxford [M]. Oxford University Press,1954.
    [39]HARTREE D R. The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. Theory and Methods [J]. Proc. Camb. Phil. Sco.,1928,24:89-110.
    [40]LOISEAU A, WILLAIME F, DEMONCY N, et al. Boron nitride nanotubes with reduced numbers of layers synthesized by arc discharge [J]. Phys. Rev. Lett.,1996,76(25): 4737-4740.
    [41]JOHANSSON M P, SUNDHOLM D, VAARA J. Au32:A 24-carat golden fullerene [J]. Angew. Chem. Int. Ed.,2004,43:2678-2681.
    [42]PERDEW J P, SCHMIDT K. In Density Functional Theory and its application to materials [R]. AIP, Melville, NY,2001.
    [43]MAHAN G D, Many Particle Physics [M]. NewYork:Plenum Publishing,1990.
    [44]PERDEW J P, ZUNGE A. Self-interaction correction to density functional approximations for many-electron systems [J]. Phys. Rev. B,1981,23(10):5048-5079.
    [45]PERDEW J P. Accurate Density Functional for the Energy:Real-Space Cutoff of the Gradient Expansion for the Exchange Hole [J]. Phys. Rev. Lett.,1985,55(16):1665-1668.
    [46]PERDEW J P, BURKE K, ERNZERHOF M. Generalized Gradient Approximation Made Simple [J]. Phys. Rev. Lett.,1996,77(18):3865-3868.
    [47]PERDEW J P, WANG Y. Accurate and simple analytic representation of the electron-gas correlation energy [J]. Phys. Rev. B,1992,45(23):13244-1324.
    [48]JONES R 0, GUNNARSSON 0. The density functional formalism, its applications and prospects [J]. Rev. Mod. Phys.,1989,61(3):689-746.
    [49]SEGALL M D, PAYNE MC, ELLIS S W, et al. First principles calculation of the activity of cytochrome P450 [J]. Phys.Rev. E,1998,57 (4):4618-4621.
    [50]SHAH R, PAYNE MC, LEE M H, et al. Understanding the Catalytic Behavior of Zeolites: A First-Principles Study of the Adsorption of Methanol [J]. Science,1996, 271:1395-1397.
    [51]RUTTER M J, HEINE V. Phonon free energy and devil's staircases in the origin of polytypes [J]. J. Phys. Cond. Matter,1997,9(9):2009-2024.
    [52]ZENG W S, HEINE V, JEPSEN 0. The structure of barium in the hexagonal close-packed phase under high pressure [J]. J. Phys. Cond. Matter,1997,9(17):3489-3502.
    [53]PERDEW J P, CHEVARYJA, VOSKO S H, et al. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation [J]. Phys. Rev. B,1992,46(11):6671-6687.
    [54]PROYNOV E I, RUIZ E, VELA A, et al. Determining and extending the domain of exchange and correlation functionals [J]. Int. J. Quantum Chem.,1995,56(29):61-78.
    [55]HAMMER B, JACOBSEN K W, NORSKOV J K. Role of nonlocal exchange correlation in activated adsorption [J]. Phys. Rev. Lett.,1993,70(25):3971-3974.
    [56]PHILIPSEN P H T, TEVELDE G, BACRENDS E J. The effect of density-gradient corrections for a molecule-surface potential energy surface slab calculations on Cu(l00)c (2x2)-CO [J]. Chem. Phys. Lett.,1994,226(5-6):583-588.
    [57]HAMMER B, SCHEFFLER M. Local Chemical Reactivity of a Metal Alloy Surface [J]. Phys. Rev. Lett.,1995,74(17):3487-3490.
    [58]HAMANN D R. Generalized Gradient Theory for Silica Phase Transitions [J]. Phys. Rev. Lett.,1996,76(4):660-663.
    [59]GUNNARSSON 0, LUNDQVIST B I. Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism [J]. Phys. Rev. B,1976,13:4274-4298.
    [60]BORN M, OPPENHEIMER R. On the quantum theory of molecules [J]. Quan. Theo. Mole. Am Phys.,1927,84:457.
    [61]赵学庄.化学反应动力学原理[M].北京:高等教育出版社,1984.
    [62]韩德刚,高盘良.化学动力学基础[M].北京:北京大学出版社,1987.
    [63]EYING H. The Activated Complex and the Absolute Rate of Chemical Reactions [J]. Chem. Rev.,1935,17(1):65-77.
    [64]HAKKINEN H, YOON B, LANDMAN U, et al. On the electronic and atomic structures of small AuN-(N=4~ 14) Clusters:a photoelectron spectrcscopy and density-functional study [J]. J. Phys. Chem. A,2003,107:6168-6175.
    [65]DELMELLE R, PROOST J. An in situ study of the hydrading kinetics of Pd thin films [J]. Phys. Chem. Chem. Phys.,2011,13:11412-11421.
    [66]DOYLE A M, SHAIKHUTDINOV S K, JACKSON S D, et al. Hydrogenation on Metal Surfaces: Why are Nanoparticles More Active than Single Crystals? [J]. Angew. Chem. Int. Ed. 2003,42:5240.
    [67]LUNSFORD J H. The direct formation of H202 from H2 and 02 over palladium catalysts [J]. J. Catal.,2003,216:455-460.
    [68]FILHOL J S, NEUROCK M. Elucidation of the Electrochemical Activation of Water over Pd by First Principles [J]. Angew. Chem. Int. Ed.,2006,418:416-420.
    [69]TRIPODI P, ARMANET N, ASARISI V, et al. The effect of hydrogenation /dehydrogenation cycles on palladium physical properties [J]. Phys. Lett. A,2009, 373:3101-3108.
    [70]FELTER T E, FOILES S M, DAW M S, et al. Order-disorder transitions and subsurface occupation for hydrogen on Pd(111) [J]. Surf. Sci. Lett.,1986,171:L379.
    [71]DITTMEYER R, HOLLEIN V, DAUB K. Membrane reactors for hydrogenation and dehydrogenation processes based on supported palladium [J]. J. Mol.Cata. A:Chem. 2001,173:135-184.
    [72]PALLASSANA V, NEUROCK M. Electronic Factors Governing Ethylene Hydrogenation and Dehydrogenation Activity of Pseudomorphic PdML/Re(0001), PdML/Ru(0001), Pd(lll), and PdML/Au(lll) surfaces [J]. J. Catal.,2000,191:301-317.
    [73]JOHANSSON M, SKULASON E, NIELSEN G, et al. Hydrogen adsorption on palladium and palladium hydride at 1 bar [J]. Surf. Sci.,2010,604:718-729.
    [74]KRYLOV O V, KISELEV V F. Adsorption and Catalysis on Transition Metals and their Oxides [M]. Springer, Berlin,1989.
    [75]HENGLEIN A. Colloidal Palladium Nanoparticles:Reduction of Pd(II)by H2; PdcureAusehjinAgshell Particles [J]. J. Phys. Chem. B,2000,104(29):6683-6685.
    [76]TOMASZEWSKA A, CISZEWSKI A, STEPIEN Z M. Interaction of hydrogen with palladium surface:FIM and FEM studies [J]. Appl. Surf. Sci.,2008,254:4386-4390.
    [77]MITSUI T, ROSE M K, FOMIN E., et al. Hydrogen adsorption and diffusion on Pd(lll) [J]. Surf. Sci.,2003,540:5-11.
    [78]MOC J, MUSAEV D G, MOROKUMA K J. Adsorption of Multiple H2 Molecules on Pd3 and Pd< Clusters:A Density Functional Study [J]. J. Phys. Chem. A,2000,104:11606-11614.
    [79]MOC J, MUSAEV D G, MOROKUMA K J. Activation and Adsorption of Multiple H2 Molecules on a Pd5 Cluster:A Density Functional Study [J]. J. Phys. Chem. A,2003,107:4929-4939.
    [80]WANG Y J, CAO Z X, ZHANG Q N. Density functional study of multiple H2 adsorption and activation on a Pd6 cluster [J]. Chem. Phys. Lett.,2003,373:96-102.
    [81]ZHOU C G, YAO S J, WU J P. Hydrogen dissociative chemisorption and desorption on saturated subnano palladium clusters (Pdn, n= 2-9) [J]. Phys. Chem. Chem. Phys. 2008,10:5445-5451.
    [82]ZHANG H L, TIAN D X, ZHAO J J. Structural evolution of medium-sized Pdn(n=15-25) clusters from density functional theory [J]. J. Chem. Phys.,2008,129:114302.
    [83]DELLEY B. From molecules to solids with the DMol3 approach [J]. J. Chem. Phys. 2000,113:7756.
    [84]PERDEW J P, WANG Y. Accurate and simple analytic representation of the electron-gas correlation energy [J]. Phys. Rev. B,1992,45:13244.
    [85]DOLG M, WEDIG U, STOLL H. Energy-adjusted ab initio pseudopotentials for the first row transition elements [J]. J. Chem. Phys.,1987,86:866.
    [86]BERGNER A, DOLG M, KUECHLE W, et al. Ab initio energy-adjusted pseudopotentials for elements of groups 13-17 [J]. Mol. Phys.,1993,80:1431.
    [87]HIRSHFELD F L. Bonded-atom fragments for describing molecular charge densities [J]. Theor. Chim. Acta B,1977,44:129.
    [88]HALGREN T A, LIPSCOMB W N. The synchronous-transit method for determining reaction pathways and locating molecular transition states [J]. Chem. Phys. Lett.,1977, 49:225-232.
    [89]HUBER K P, HERZBERG G. Molecular Spectra Molecular Structures 4:Constants of Diatomic Molecules [M]. Van Nostrand Reinhold, New York,1979.
    [90]LIN S, STRAUSS B, KANT A. Dissociation Energy of Pd2 [J]. J. Chem. Phys.,1969, 51:2282-2283.
    [91]KNIGHT J L B, WELTNER J W. Hyperfine interaction and chemical bonding in the PdH molecule [J]. J. Mol. Spectrosc.,1971,40:317-327.
    [92]TOLBERT M A, BEAUCHAMP J L. Homolytic and heterolytic bond dissociation energies of the second row group 8,9, and 10 diatomic transition-metal hydrides:correlation with electronic structure [J]. J. Phys. Chem.,1986,90:5015-5022.
    [93]KRUGER S, VENT S, NORTEMANN F. The average bond length in Pd clusters Pdn, n= 4-309:A density-functional case study on the scaling of cluster properties [J]. J. Chem. Phys.,2001,115:2082-2087.
    [94]LUO C, ZHOU C G, WU J J, et al. First principles study of small palladium cluster growth and isomerization [J]. Int. Jour. Quan. Chem.,2007,107:1632-1641.
    [95]彭红建.金属Ni, Pd' Pt的原子状态和性质,贵金属[M],2006,12:27.
    [96]GOVIND N, PETERSEN M, FITZGERALD G, et al. A generalized synchronous transit method for transition state location [J]. J. Com. Mater. Sci.,2003,28:250-258.
    [97]GERMAN E D, EFREMENKO I, SHEINTUCH M. Hydrogen Interactions with a Pd4 Cluster: Triplet and Singlet States and Transition Probability [J]. J. Phys. Chem. A,2001, 105(50):11312-11326

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700