统一电能质量调节器检测与控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
统一电能质量调节器(UPQC)是用户电力中一机多用、具有综合电能质量调节能力的设备,它既可以改善电网输入电流的品质,也可以改善负载侧电压的品质,是最能解决多种电能质量问题的有效设备之一。目前,UPQC还未能广泛进入工业应用领域,其相关的检测和控制技术还有待进一步完善和提高。本文针对UPQC信号检测、控制模型和控制方法等方面存在的问题展开深入研究,并提出了新的检测与控制方法。这些工作对于丰富UPQC的检测与控制的基础理论,对于推动UPQC向大规模工业应用,均具有重要意义。
     UPQC的电压电流信号中除包含正序基波分量外,还可能存在负序和零序基波分量以及其它谐波成分。目前普遍采用基于瞬时无功功率理论的dq0变换方法提取正序基波分量,并由此实施对原始信号中非基波分量的补偿。dq0变换方法计算量较大,硬件实施较复杂,且不适用于单相检测场合。针对此问题,本文在分析三角函数提取基波电压电流成分有关信息的基础上,提出了一种检测UPQC电压电流信号的新方法。该方法利用待检测信号与正弦和余弦参考信号的少量乘除法运算,快速获得待检测信号中的基波电压和基波电流表达式,为高效补偿待检测信号中的非基波分量奠定了基础。同时,该方法能够动态实时跟踪系统频率和正序基波成分幅值与初相位的变化,提高了方法对系统运行工况变化的适应性。
     某些电力设备,在将其模型由abc坐标系变换到dq坐标系后,仍然存在d、q轴间的交叉耦合,无法实施完全解耦控制。UPQC的dq坐标模型也不例外。针对此问题,本文提出了一种实现完全解耦的新方法:在原模型由abc坐标系变换到dq坐标系的基础上,再增加一次由dq至αβ间的变换,就可使得再变换后的模型,其各轴分量间具有完全解耦的特性。利用此新方法,建立了UPQC的完全解耦模型。完全解耦后的模型,为在一定控制模式和控制方式下实现UPQC的解耦控制或控制系统的解耦设计提供了便利,有助于提高系统控制或系统设计性能。
     根据UPQC串并联部分在系统控制目标上的不同分工,可以将UPQC的控制模式划分为串压并流模式和串流并压模式,两种模式都可以分别采用开环方式和闭环方式进行控制。本文分别从两种控制模式和两种控制方式入手,提出了相应的控制策略,给出了不同控制策略下给定参考量、检测量等的计算与检测方法。其中,对开环控制,相关参数的计算充分利用了UPQC的解耦模型;对闭环控制,由于控制目标是通过特定的偏差信号进行自动调整,可以不依赖于UPQC串并联部分的具体数学模型,但可以利用解耦模型对闭环控制系统的参数进行设计。仿真与实验结果表明:无论哪种控制模式,按照本文提出的控制策略,都可以实现UPQC的控制目标,且对相同的控制方式,两种控制模式的性能相近。
     UPQC直流电容电压的控制,常采用PI控制器。PI控制器由于受到设计参数数量的限制,其控制性能可能难以达到比较理想的程度。由于分数阶PIλDμ控制器在传统PID控制器的基础上增加了调节参数的个数,提高了控制器设计与控制规律优化的空间。鉴于此,本文将分数阶PIλDμ控制器引入UPQC直流电容电压的控制,设计的分数阶PIλDμ控制器经仿真分析表明:分数阶PIλDμ控制器与传统PI控制器相比,有助于提高UPQC直流电容电压的动态控制性能。
     本文研究工作得到了国家自然科学基金项目(项目编号:50467002)的资助。
Unified power quality conditioner (UPQC) is a device multi- function and it can settle many power quality problem which is one of the most important equipment among the custom power devices. UPQC can not only improve the current quality of the power network but also enhance the voltage quality of the power load. Now it is not widely used in industrial application and its detecting and control technique need to consummate further. This dissertation is dedicated to investigate its signal detecting, control models and control strategies and give the new detecting and control strategy. These researches are significant to improve the cosmically industrial applications of UPQC.
     There are negative sequence elements, zero sequence elements and other harmonics ingredients in voltage and current signals. The dq0 transformation method based on the instantaneous reactive power theory is the most popular method to UPQC in compensating the non-fundamental elements of the signal. The calculation of the dq0 method is large, its hardware in utility is complex and it is not suitable to the single-phase UPQC. A novel non-positive fundamental sequence voltage and current detecting method is presented based on analyzing the function of trigonometric function in detecting the fundamental positive sequence voltage and current. It achieved the expression of fundamental positive sequence voltage and fundamental positive sequence current by using a few calculation of pending test signals multiplies with a cosine function and a sine function. The compensation of the non- fundamental positive sequence ingredients is established on this method. Furthermore, this method can follow the change of the frequency and primal phase angle in dynamic and real-time. It increased the adaptability when parameters of system had changed.
     The double-loop strong coupling problem was existed in the model of some power devices if they were transformed from abc coordinate system to dq coordinate system. So the entirely decoupling control is impracticability. It is the same with the model of UPQC. According to it, a novel decoupling method is proposed in this paper: The model is established by adding a transformation from dq system toαβsystem which has got from abc system to dq system. The elements of each coordinate are decoupled completely in this new model. Using this new method, the entirely decoupling model of UPQC has achieved. The decoupling model of UPQC is advantage to the decoupling control and control system design under some control modes and control manners. It is helpful to enhance the control results and system design.
     The UPQC control can be sort of series/voltage shunt/current and series/current shunt/voltage mode based on the different control objects of series part and shunt part. Both modes can be controlled by open-loop and close-loop manner. Different control strategies were proposed under two control modes and control manners. Method which calculated the reference value and detecting term was presented under different control strategies. The parameter calculations are taken full advantage of UPQC decoupling model in open-loop control. Otherwise, as the control object is auto-conditioning by given error signals in close-loops, it is independent of UPQC series and shunt model. Yet, it is very important to design the parameters of close-loops. Simulation and experient results show every kind of control mode can realize the control objects of UPQC. The results of two control modes are almost the same when they are under same control manner.
     The PI controller, which is restricted to its quantity and capability of parameters, is always used in UPQC DC voltage control and the control capability is difficult to achieve perfect. The fractional PIλDμcontroller has more parameters than traditional PID controller and it expands the optimization field of controller design and control rule. It is introduced into the UPQC DC voltage control. The simulation shows that the control results by using PIλDμcontroller are helpful to enhance the dynamic control capability than the traditional PI control. This research work is supported by National Nature Science Foundation of China (50467002).
引文
1 Hingorani N G. Introducing Custom Power. IEEE Spectrum, 1995, 32(6): 44~48
    2 Chowdhury B H. Power quality. IEEE Potentials 2001, 20(2):5~11
    3何大愚.用户电力技术及柔性交流输电技术.电网技术. 1995, 19(12):59~63
    4 Nara K, Hasegawa J. A New Flexible, Reliable and Intelligent Electrieal Energy Delivery System. Trans. on Electrical Engineering in Japan, 1997, 117(1): 47~53
    5郑健超.电力前沿技术的现状和前景.中国电力. 1999, 32(10): 9~14
    6陈警众.定制电力一一高质量供电的新技术.供用电. 1997, 14(5): 46~48
    7韩英铎,严干贵,姜齐荣等.信息电力与FACTS及DFACTS技术.电力系统自动化. 2000, 24(19): 1~7
    8韩民晓,肖湘宁,徐永海.柔性化供电技术.电力系统自动化. 2002, 26(8):1~5
    9李鹏,陈志业,尹华丽等.统一电能质量控制器及其控制信号检测方法探讨.华北电力大学学报. 2002, 29(2): 1~5
    10吴竞昌主编.中国电力百科全书:电力系统卷.中国电力出版社, 1995: 165
    11 R. C. Dugan, M. F. McGranaghan, H.W. Beaty. Electrical Power Systems Quality. McGraw-Hill Companies, 1996: 5
    12 Fujita H, Akagi, H. The Unified Power Quality Conditioner: the Integration of Series and Shunt-active Filters. IEEE Transactions on Power Electronics, March 1998 13(S): 315~322
    13顾建军,刘汉奎,徐殿国.统一电能质量调节器的实验研究.电力系统自动化. 2002, 26(19):45-47, 55
    14李国勇,刘汉奎,徐殿国等.统一电能质量调节器的研究.电力电子技术. 2003, 37(1):74~78
    15王晓钰,叶英华,何益宏等.双变流器结构通用电能质量控制装置的仿真及实验.电力系统自动化. 2004, 28(8): 63-67
    16李鹏,杨以涵,李和明等.电能质量控制中心与统一电能质量调节器的研究.电力自动化设备. 2003, 23(9):10-14
    17王群,耿云玲,何益宏.不同系统联结方式下通用电能质量控制器的功率分析.中国电机工程学报. 2005, 25(21):98~105
    18 Nasiri A, Emadi A. Different Topologies for Single-phase Unified Power Quality Conditioners. Industry Applications Conference, 2003. 38th IAS Annual Meeting. Conference Record. 2003, 2(2):976 ~ 981
    19丁洪发,段献忠,朱庆春.混合型电能质量调节器及其控制策略.中国电机工程学报. 2006, 26(8):33~38
    20 Khadkikar V, Chandra A. A Novel Structure for Three-Phase Four-Wire Distribution System Utilizing Unified Power Quality Conditioner (UPQC). International Conference on Power Electronics, Drives and Energy Systems. Dec 12-15, 2006:1 ~ 6
    21 Mika Salo, Heikki Tuusa. A Novel Open-Loop Control Method for a Current-Source Active Power Filter. IEEE Transactions on Industrial Electronics. 2003, 50(2): 313~321
    22李庚银,陈志业,丁巧林等. dq0坐标系下广义瞬时无功功率定义及其补偿.中国电机工程学报. 1996, 20(10): 55~58
    23孙驰,魏光辉,毕增军.基于同步坐标变换的三相不对称系统的无功与谐波电流的检测.中国电机工程学报. 2003, 23(12): 44~48
    24马莉,周景海,吕征宇等.一种基于dq变换的改进型谐波检测方案的研究.中国电机工程学报. 2000, 20(10): 55~58
    25张桂斌,徐政,王广柱.基于空间矢量的基波正序负序分量的实时检测方法.中国电机工程学报. 2001, 21(10):1~5
    26陈祥训.采用小波技术的几种电能质量扰动的测量与分类方法.中国电机工程学报. 2002, 22(10): 1~6
    27罗世国,侯振程.一种谐波及无功电流的自适应检测方法.电工技术学报. 1993, 8(3): 42~46
    28文继锋,刘沛.一种电能质量扰动检测的新方法.中国电机工程学报. 2002, 22(12): 17 ~20
    29万健如,裴玮,张国香.统一电能质量调节器同步无差拍控制方法研究.中国电机工程学报. 2005, 25(13): 63~67
    30时颖,周雒维,谢品芳.基于单周期控制的半桥结构电能质量调节器.电源世界. 2005, (7):18 ~21
    31李鹏,杨以涵.基于H∞控制理论的UPQC串并联单元协调控制的实现.中国电机工程学报. 2006, 26(20): 91~97
    32谭智力,李勋,陈坚.基于p-q-r理论的UPQC直接控制策略.电力自动化设备. 2006, 26(11): 12~17
    33束洪春,王晶,陈学允.动态电能质量波形辨识的暂态分析方法(I).华北电力大学学报. 2004, 31(1): 1~4
    34束洪春,王晶,陈学允.动态电能质量波形辨识的暂态分析方法(II)华北电力大学学报. 2004, 31(2): 1~4
    35王晶,束洪春,陈学允.动态电能质量的分形指数小波分析方法.中国电机工程学报. 2004, 24(5): 40~45
    36王群,吴宁,苏向丰.有源电力滤波器谐波电流检测的一种新方法.电工技术学报. 1997, 12(1): l~5
    37石敏,吴正国,徐袭.基于概率神经网络和双小波的电能质量扰动自动识别.电力自动化设备. 2006, 26(3): 5~8
    38 Hirofumi Akagi, Yoshihira Kanazawa, Akira Nabae. Generalized Theory of the Instantaneous Reactive Power in Three-Phase Circuits. IEEE& JIEE Proceedings IPEC. Tokyo: IEEE, 1983: 1375~1386
    39 Hirofumi akagi,Yoshihira Kanazawa, Akira Nabae. Instantaneous Reactive Power Com. IEEE Transactions on Industry Application. 1984, 20(3): 625~630
    40公茂忠,刘汉奎,顾建军等.并联型有源电力滤波器参考电流获取的新方法.中国电机工程学报. 2002, 22(9):43~47
    41尉冰娟,王明渝,张淑国.无锁相环ip-iq法在有源滤波器中的实现.电力系统及其自动化学报. 2006, 18(2): 50 ~53
    42 F Kamran, T G Habetler. Combined Deadbeat Control of a Series-Parallel Converter Combination Used as a Universal Power Filter. IEEE Trans. on Power Electron. 1998, 13(1): 160~168
    43 S A O da Silva, P F Donoso-Garcia, P C Cortizo, et al. A Comparative Analysis of Control Algorithms for Three-Phase Line-Interactive UPS Systems with Series-Parallel Active Power-Line Conditioning Using SRF Method. IEEE PESC Conf. Rec., 2000, 1023~1028
    44 A Ellmitwally, M S Kandil, M Elkateb. A Fuzzy-controlled Versatile System for Harmonics, Unbalance and Voltage Sag Compensation. IEEE PES Conf. Rec., 2000, 1439~1444
    45 Su Chen, Geza Joos. A Unified Series-parallel Deadbeat Control Technique for an Active Power Quality Conditioner with Full Digital Implementation. IEEE IAS Conf. Rec., 2001, 172~178
    46 S A O da Silva, P F Donoso-Garcia, P C Cortizo, et al. A Three-Phase Line-Interactive UPS System Implementation with Series-Parallel Active Power-Line Conditioning Capabilities. IEEE Trans. Ind. Appl., 2002, 38(6): 1581~1590
    47 Xun Li, Pengcheng Zhu, Yinfu Yang, et al. A New Controlled Scheme for Series-Parallel Compensated UPS System. IEEE IEMDC Conf. Rec., 2003, 2: 1133~1136
    48 Xun Li, Pengcheng Zhu, Yinfu Yang, et al. Experimental Investigation of a Three-Phase Series-Parallel Compensated UPS for Non-Linear Load. IEEE IECON Conf. Rec., 2003, (1): 794~799
    49李勋,戴珂,杨荫福等.双变流器串-并联补偿式UPS控制策略研究.中国电机工程学报. 2003, 23(10):104~108
    50李勋,朱鹏程,戴珂等.双变流器串-并联补偿式UPS控制系统.电气传动, 2003, 33(6):35~38
    51朱鹏程,李勋,康勇等.统一电能质量控制器控制策略研究.中国电机工程学报, 2004, 24 (8):67-73
    52 Pengcheng Zhu, Xun. Li, Yong Kang, et al. Control Scheme for Universal Power Quality Manager in a Two-phase Synchronous Rotating Frame. IEE Proceedings Generation, Transmission & Distribution, 2004, 151 (5): 590-596
    53杨莉,文福拴,吴复立.基于可能性理论的发电公司最优报价策略.电力系统自动化. 2002, 26(23): 12~17
    54 Y W Li, D M Vilathgamuwa, P C Loh. Micro-Grid Power Quality Enhancement Using a Three-Phase Four-Wire Grid-Interfacing Compensator. IEEE IAS Conf. Rec., 2004, 1439~1446
    55 Peng-cheng Zhu, Xun Li, Yong Kang, et al. Analysis and Experimental Verification of a Control Scheme for Unified Power Quality Conditioner.International Journal of Energy Technology and Policy, 2005, 3 (3): 253-268
    56谭智力,李勋,陈坚,等.基于简化p-q-r理论的统一电能质量调节器控制策略.中国电机工程学报. 2007, 36(27): 85~91
    57王宝安,蒋平,刘成民.电能质量综合补偿器补偿电压跌落和浪涌的新策略[J].电力系统及其自动化学报, 2003,15(4): 19~23.
    58 Y. Ye,M. Kazerani,V. H. Quintana. A novel modeling and control method for three-phase PWM converters. IEEE Transactions on Power Electronics, Vol. 13:315– 322, March 1998.
    59 Khoor M S, Machmoum M. A Novel Single-Phase Reduced Parts On-Line UPS with Power Quality Conditioning Capability. Power Electronics Specialists Conference, 2007. PESC 2007. IEEE17-21 June 2007:1170~1175
    60 Rubilar I A, Espinoza J R, Munoz, J A, et al. DC Link Voltage Unbalance Control in Three-Phase UPQCs based on NPC Topologies. Industry Applications Conference, 2007. 42nd IAS Annual Meeting. Conference Record of the 2007 IEEE. 23-27 Sept. 2007: 597~602
    61 Kisck Dragos Ovidiu, Navrapescu Valentin, Kisck Mariana. Single-Phase Unified Power Quality Conditioner with Optimum Voltage Angle Injection for Minimum VA requirement. Industrial Electronics, 2007. ISIE 2007. IEEE International Symposium on 4-7 June 2007: 2443~2448
    62 Hui Zhang, Jinjun Liu, Xinming Huang, et al. Design of a New DC Link Voltage Controller for Universal Power Quality Controllers Applied Power Electronics Conference, APEC 2007 - Twenty Second Annual IEEE Feb. 25 2007-March 1 2007: 473~477
    63 Liang Zuquan, Shu Hongchun. A novel PI D controller and its application in UPQC DC voltage controlλμElectric Utility Deregulation and Restructuring and Power Technologies, 2008. DRPT 2008. Third International Conference on 6~9 April 2008:1859~1862
    64 Shu Hongchun, Liang Zuquan, Yu Jilai et al. A Novel Control Strategy for UPQC. Transmission and Distribution Conference and Exhibition: Asia and Pacific, 2005. IEEE/PES.2005: 1~4
    65 Xun Li, Guorong Zhu, Shanxu Duan, et al. Control Scheme for Three-Phase Four-Wire UPQC in a Three-Phase Stationary Frame. Industrial Electronics Society, 2007. IECON 2007. 33rd Annual Conference of the IEEE 5-8 Nov.2007:1732~1736
    66 Kwan K H, Png Y S, Qui Y C, et al. Model Predictive Control of Unified Power Quality Conditioner for Power Quality Improvement. Control Applications, 2007. CCA 2007. IEEE International Conference on 1-3 Oct. 2007: 916~921
    67 Chakraborty S, Weiss M D, Simoes M G. Distributed Intelligent Energy Management System for a Single-Phase High-Frequency AC Microgrid. IEEE Transactions on Industrial Electronics. 2007, 54: 97~109
    68 Turunen J., Tuusa H. Improvement of the Voltage Compensation Performance of the Series Active Power Filter Using a Simple PI-Control Method. Power Electronics and Applications, 2007 European Conference on 2-5 Sept. 2007:1~9
    69 Mastromauro R A, Liserre M, Dell Aquila A. Single-phase Grid-connected Photovoltaic Systems with Power Quality Conditioner Functionality. Power Electronics and Applications, 2007 European Conference on 2-5 Sept. 2007:1~11
    70 Axente I, Basu M, Conlon M F. A Control Approach for UPQC Connected to Weak Supply Point. Universities Power Engineering Conference, 2007. UPEC 2007. 42nd International 4-6 Sept. 2007: 619~623
    71 Kisck D O, Navrapescu V, Kisck M. Single-Phase Unified Power Quality Conditioner with Optimum Voltage Angle Injection for Minimum VA Requirement Power Electronics Specialists Conference, 2007. PESC 2007. IEEE 17-21 June 2007: 574~579
    72 Tan Zhili, Li Xun, Chen Jian et al. A New Control Strategy of UPQC in Three-phase Four-wire System. Power Electronics Specialists Conference, 2007. PESC 2007. IEEE 17-21 June 2007:1060~1065
    73 Kwan K H, So P L, Chu Y C. A Harmonic Selective Unified Power Quality Conditioner Using MVR with Kalman Filters. Power Engineering Conference, 2007. IPEC 2007. International 3-6 Dec. 2007:332~337
    74 Hamadi Ab, Al-Haddad K, Rahmani R. Series Active Filter to Mitigate Power Quality for Medium Size Industrial Loads (Multi Pulses Transformer and Modern AC Drive). Industrial Electronics, 2006 IEEE International Symposium on 2006, 2:1510~1515
    75 Zhan Qizhi, Zhuo Fang, Dong Wenjuan et al. Study on a Large-volume High-performance Programmable Voltage Disturbance Source. Power Electronics and Motion Control Conference, 2006. IPEMC '06. CES/IEEE 5th International 2006 Vol.3 :1~4
    76 Jaya Laxmi A, Ram Das G T, Uma Rao K, et al. Different Control Strategies for Unified Power Quality Conditioner at Load Side. Industrial Electronics and Applications, 2006 1ST IEEE Conference on May 2006:1~7
    77 Vadirajacharya K, Agarwal P, Gupta H O. Unified Constant Frequency Integration Control of Universal Power Quality Conditioner. Power Electronics, Drives and Energy Systems, 2006. PEDES '06. International Conference on 12-15 Dec. 2006:1~5
    78 Khadkikar V, Chandra A. A Novel Control Approach for Unified Power Quality Conditioner without Active Power Injection for Voltage Sag Compensation. Industrial Technology, 2006. ICIT 2006. IEEE International Conference on 15-17 Dec. 2006:779~784
    79 Tan Zhili, Li Xun, Chen Jian et al. A Direct Control Strategy for UPQC in Three-phase Four-wire System. Power Electronics and Motion Control Conference, 2006. IPEMC' 06. CES/IEEE 5th International. 2006, Vol.2:1 ~5
    80 Sepulveda Cristian A, Espinoza Jose R, Landaeta Leonardo M, et al. Operating Regions Comparison of VSC-based Custom Power Devices. IEEE Industrial Electronics, IECON 2006 - 32nd Annual Conference on Nov. 2006:5344~5349
    81 Zhou Ming, Wan Jian-Ru, Wei Zhi-Qiang.et al. Control Method for Power Quality Compensation Based on Levenberg-Marquardt Optimized BP Neural Network. Power Ele ctronics and Motion Control Conference, 2006. IPEMC'
    06. CES/IEEE 5th International 2006, Vol.3:1~ 4
    82 Landaeta Leonardo M, Sepulveda Cristian A, Espinoza Jose R, et al. A Mixed LQRI/PI based Control for Three-Phase UPQCs. IEEE Industrial Electronics, IECON 2006-32nd Annual Conference on Nov. 2006: 2494~2499
    83 Banaei M R, Hosseini S H. Mitigation of Current Harmonic Using Adaptive Neural Network with Active Power Line Conditioner. Power Electronics and Motion Control Conference, 2006. IPEMC'06. CES/IEEE 5th International. 2006, 2:1~5
    84 Kazemi A, Sarlak M, Barkhordary M. An Adaptive Noise Canceling Method for Single-Phase Unified Power Quality Conditioner. Industrial Electronics and Applications, 2006 1ST IEEE Conference on May 2006:1~6
    85 Kazemi A, Mokhtarpour A, Haque M T. A New Control Strategy for Unified Power Quality Conditioner (UPQC) In Distribution Systems. Power System Technology, 2006. PowerCon 2006. International Conference on Oct. 2006:1~5
    86 Forghani M, Afsharnia S. Wavelet Based Control Strategy for UPQC Control System Used for Mitigating Voltage Sag. IEEE Industrial Electronics, IECON 2006 - 32nd Annual Conference on Nov. 2006:2003~2008
    87 Peng Li, Qian Bai, Gengyin Li. Coordinated Control Strategy for UPQC and its Verification. Power Engineering Society General Meeting, 2006. IEEE 18-22 June 2006:8~13
    88 Khadkikar V, Chandra A. A Novel Structure for Three-Phase Four-Wire Distribution System Utilizing Unified Power Quality Conditioner (UPQC). Power Electronics, Drives and Energy Systems, 2006. PEDES '06. International Conference on 12-15 Dec. 2006:1~6
    89 Khadkikar V, Chandra A, Barry A O, et al.Application of UPQC to Protect a Sensitive Load on a Polluted Distribution Network. Power Engineering Society General Meeting, 2006. IEEE 18-22 June 2006:6 pp
    90 Khadkikar V, Chandra A, Barry A O, et al. Conceptual Study of Unified Power Quality Conditioner (UPQC). Industrial Electronics, 2006 IEEE International Symposium on 2006 Vol.2:1088~1093
    91 Jayanti N G, Basu Malabika, Conlon Michael F, et al. Optimising the Rating of the UPQC for Applying to the Fault Ride Through Enhancement of Wind Generation. Universities Power Engineering Conference, 2006. UPEC '06. Proceedings of the 41st International. 2006 Vol.1:123~127
    92 Khadkikar V, Chandra A, Barry A O, et al. Analysis of Power Flow in UPQC during Voltage Sag and Swell Conditions for Selection of Device Ratings Electrical and Computer Engineering, 2006. CCECE'06. Canadian Conference on May 2006:867~872
    93 SudeepKumar R, Ganesan P. 250kVA Unified Power Quality Controller. TENCON 2006. 2006 IEEE Region 10 Conference 14-17 Nov. 2006:1~4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700