风力发电系统能量优化问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球能源的紧缺和环保的要求,风力发电机技术得到了世界各国的重视。其中变速变桨距风电系统具有广阔的前景,但由于系统的多参数、强耦合、非仿射非线性等特性,其高效控制成为一个具有挑战性的问题。传统的风电系统能量优化研究着重解决不同风速下单机系统的效率和可靠性问题。随着电网内风电容量的增加,对风电系统的输出能量提出了新的要求,如动态时要求风电系统提供足够的能量支撑;稳态时要求其输出功率足够平稳。这些内容已成为当前风电系统能量优化的研究重点。本文系统地研究了变速变桨距风电系统的动态风能捕获和输出功率水平控制问题,主要的研究工作和创新性成果如下:
     1.提出了考虑动态性能的最大风能捕获控制策略。迄今,最大风能捕获策略基于稳态寻优的思想,忽略了系统的动态能量捕获。本文基于反馈线性化方法,对风力发电机的输出有功和无功功率进行了解耦控制;利用“零观测器”间接观测系统的动态功率,并对最大风能捕获控制进行动态补偿。该策略提高了系统的全局效率和对电网的动态能量支撑能力。
     2.提出了一种用于风电系统输出功率水平控制的逆系统方法。针对本质为非仿射型非线性的风电系统,该方法设计了核心为风电系统逆模型的非线性桨距角控制器。与传统线性控制器相比,该方法工程实现非常简单,可以保证较大风速范围内风电系统的稳定性和输出功率水平控制所要求的动态性能,并且对风机参数的小扰动具有一定的鲁棒性。
     3.提出了一种用于风电系统输出功率水平控制的逆系统鲁棒控制方法。该方法复合了逆系统控制方法和鲁棒补偿方法,与逆系统控制方法相比,该方法在实现系统输出功率水平的控制的同时,对风机参数的大范围扰动以及其它有界不确定性扰动具有较好的鲁棒性。
     4.构建了基于硬件在环方式的风电系统模拟实验平台。对以上用于风电系统的能量优化控制方法进行了计算机仿真实验和基于该平台的半实物仿真实验。实验结果验证了上述方法的有效性和优越性。
The wind generation technology has gained much attention all over the worldbecause of the global energy shortage and the environmental protection require-ments. However, due to the multi-variable and highly coupled nona?aine structure,high-performance control of the variable-speed variable-pitch wind generation system(VSVP-WGS) becomes a challenging problem. Conventional researches on the energyoptimization of the wind generation system focus on the e?ciency and reliability ofthe single set system in di?erent wind speed regions. However, along with the increaseof the wind power capacity in a power grid, more requirements have been proposedfor the safety operation of the grid, such as enough power supply in dynamic state andsmooth power injection in steady state from the VSVP-WGS. All the contents havebeen today’s key issues for the energy optimization of the VSVP-WGS. In this disser-tation, the controls of the dynamic energy capture and the steady output power levelwere systematically investigated. The main works and innovative contributions of thisdissertation are as follows.
     1. The maximal power point tracking (MPPT) strategy taking the wind turbines’dynamics into account was proposed. Conventional strategies of the maximal powerpoint tracking control are based on the steady optimization algorithm, and do not con-sider the turbine dynamics. With the feedback linearization theory, the control of theactive and reactive power of the generator is discoupled. And with a”zero-observer”,the dynamic power of the wind generation system is observed indirectly, which is usedfor the dynamic compensation of MPPT. As the results, the e?ciency and the dynamicpower supply capability of the wind generator system are improved.
     2. The inverse-system pitch control strategy is proposed for the output power levelcontrol of the VSVP-WGS. Based on the inverse-system theory, a nonlinear pitch con-troller is designed for the control of the nona?ne wind generation system. Comparedwith the classical linear controller, this nonlinear one reserves the capabilities of the simple implementation. Moreover, the controller keeps not only stable and rapid re-sponse in a large wind speed region but also robustness to the small disturbance of thewind turbine parameters.
     3. The inverse-system based robust pitch control strategy is proposed for the out-put power level control of the VSVP-WGS. The strategy combines the inverse-systemand robust compensation method. Compared with the inverse-system pitch controlstrategy, it can keep not only the output power level of the VSVP-WGS but also robust-ness to the large scaled disturbances of the wind turbine parameters and other boundeduncertainties.
     4. The performances of the nonlinear control methods mentioned above for theenergy optimization of the VSVP-WGS are verified by the simulations and experimentsbased on a hardware-in-loop platform of the VSVP-WGS which is partly establishedby the author.
引文
[1]何祚庥,王亦楠.风力发电我国能源和电力可持续发展战略的最现实选择.自然辩证法研究, 2004, 20(10):80–85.
    [2]叶杭冶.风力发电机组的控制技术.北京:机械工业出版社, 2002.
    [3] Cardenas R, Pena R. Sensorless Vector Control of Induction Machines for Variable-SpeedWind Energy Applications. IEEE Transactions on Energy Conversion, 2004, 19(1):196–205.
    [4] Xu L Y, Cheng W. Torque and reactive power control of a doubly fed induction machine byposition sensorless scheme. IEEE Transactions on Industry Applications, 1995, 31(3):636–642.
    [5] Morimoto S, Nakayama H, Sanada M, et al. Sensorless Output Maximization Control forVariable-Speed Wind Generation System Using IPMSG. IEEE Transactions on IndustryApplications, 2005, 41(1):60–67.
    [6] Javid S H, Murdoch A, Winkelman J R. Control design for a wind turbine-generator usingoutput feedback. Control Systems Magazine, 1982, 2(3):23–29.
    [7] Muljadi E, Butterfield C P. Pitch-controlled variable-speed wind turbine generation. IEEETransactions on Industry Applications, 2001, 37(1):240–246.
    [8] Kosaku T, Sano M, Nakatani K. Optimum pitch control for variable-pitch vertical-axiswind turbines by a single stage model on the momentum theory. Proceedings of IEEEInternational Conference on Systems, Man and Cybernetics, Hammamet, Tunisia, 2002.
    [9] Hansena A D, S?rensena P, Iov F, et al. Centralised power control of wind farm with doublyfed induction generators. Renewable Energy, 2006, 31(7):935–951.
    [10] Tang Y F, Xu L Y. A Flexible Active and Reactive Power Control Strategy for a VariableSpeed Constant Frequency Generating System. IEEE Transactions on Power Electronics,1995, 10(4):472–478.
    [11] Muller S, Deicke M, DeDoncker R W. Adjustable speed generations for wind turbinesbased on doubly-fed induction machines and 4-quadrant IGBT converters linked to the ro-tor. Proceedings of IEEE Industry Applications Conference, Rome, Italy, 2000.
    [12] Rabelo B, Hofmann W. Optimal active and reactive power control with the doubly-fedinduction generator in the MW-class wind-turbines. Proceedings of the 4th IEEE Interna-tional Conference on Power Electronics and Drive Systems, Denpasar, Bali-INDONESIA,2001.
    [13]高景德,王祥珩,李发海.交流电机及其系统的分析.北京:清华大学出版社, 1993.
    [14]杨耕,罗应立.电机与运动控制系统.北京:清华大学出版社, 2006.
    [15] Wang Q, Chang L C. An Intelligent Maximum Power Extraction Algorithm for Inverter-Based Variable Speed Wind Turbine Systems. IEEE Transactions on Power Electronics,2004, 19(5):1242–1249.
    [16] Li H, Shi K L, McLaren P. Neural Network Based Sensorless Maximum Wind Energy Cap-ture with Compensated Power Coe?cient. IEEE Transactions on Industrial Applications,2005, 41(6):1548–1556.
    [17] Lescher F, Zhao J Y, Borne P. Robust Gain Scheduling Controller for Pitch RegulatedVariable Speed Wind Turbine. Studies in Informatics and Control, 2005, 14(12):299–315.
    [18] Bianchi F D, Mantz R J, Christiansen C F. Gain scheduling control of variable speed windenergy conversion systems using quasi-LPV models. Control Engineering Practice, 2005,13(2):247–255.
    [19] Leith D J, Leithead W E. Appropriate Realisation of Gain-Scheduled Controllers withApplication to Wind Turbine Regulation. International Journal of Control, 2005, 65(2):223–248.
    [20] Balas M J, Wright A, Hand M, et al. Dynamics and control of horizontal axis wind turbines.Proceedings of the American Control Conference, Denver, Colorado, 2003. 3781–3793.
    [21] Chedid R, Mrad F, Basma M. Intelligent Control of a Class of Wind Energy ConversionSystems. IEEE Transactions on Energy Conversion, 1999, 14(4):1597–1604.
    [22] Jack Hochheimer P E. Wind Generation Integration & Operation - Technical Chal-lenges/Issues. Proceedings of Power Engineering Society General Meeting, Montreal,Canada, 2006.
    [23] Rabelo B, Hofmann W. Control of an optimized power ?ow in wind power plants withdoubly-fed induction generators. Proceedings of the 34th IEEE Power Electronics Special-ists Conference, Acapulco, Mexico, 2003.
    [24] El-Fouly T H M, El-Saadany E F, Chikhani A Y. Regulating wind turbine output powerutilizing MEMs based actuators and sensors. Proceedings of IEEE Canadian Conferenceon Electrical and Computer Engineering, Montreal, Canada, 2003.
    [25] Bhowmik S, Spee R. Wind speed estimation based variable speed wind power generation.Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society,Aachen, Germany, 1998.
    [26] Morimoto S, Nakayama H, Sanada M, et al. Sensorless output maximization control forvariable-speed wind generation system using IPMSG. IEEE Transactions on IndustrialApplications, 2005, 41(1):60–67.
    [27] Nakamura T, Morimoto S, Sanada M, et al. Optimum Control of IPMSG for Wind Genera-tion System. Proceedings of IEEE Power Conversion Conference, Osaka, Japan, 2002.
    [28] Leidhold R, Garcia G, Valla M I. Maximum e?ciency control for variable speed winddriven generators with speed and power limits. Proceedings of the 28th IEEE Annual Con-ference of the Industrial Electronics Society, Seville, Spain, 2002.
    [29] Hossein M K, Chang L C, Tobie B. Development of a Novel Wind Turbine Simulator forWind Energy Conversion Systems Using an Inverter-Controlled Induction Motor. IEEETransactions on Energy Conversion, 2004, 19(3):547–552.
    [30] Moor G D, Beukes H J. Maximum power point trackers for wind turbines. Proceedings ofthe 35th IEEE Power Electronics Specialists Conference, Aachen, Germany, 2004.
    [31] Ermis M, Ertan H B, Akpinar E, et al. Autonomous wind-energy conversion system witha simple controller for maximum-power transfer. IEE Proceedings B of Electric powerapplications, 1992, 139(5):421–428.
    [32]刘其辉,贺益康,赵仁德.变速恒频风力发电系统最大风能追踪控制.电力系统自动化, 2003, 27(20):62–67.
    [33] Koyanagi A, Nakamura H, Kobayashi M, et al. Study on maximum power point track-ing of wind turbine generator using a ?ywheel. Proceedings of IEEE Power ConversionConference, Osaka, Japan, 2002.
    [34] Tsoumas I, Safacas A, Tsimplostefanakis E, et al. An Optimal Control Strategy of a Vari-able Speed Wind Energy Conversion System. Proceedings of the 6th IEEE InternationalConference on Electrical Machines and Systems, Beijing, China, 2003.
    [35] Jia Y Q, Yang Z Q, Cao B G. A New Maximum Power Point Tracking Control Scheme forWind Generation. Proceedings of International Conference on Power System Technology,Kunming, China, 2002.
    [36] Raju A B, Chatterjee K, Fernandes B G. A Simple Maximum Power Point Tracker for Gridconnected Variable Speed Wind Energy Conversion System with Reduced Switch CountPower Converters. Proceedings of International Conference on Power System Technology,Acapulco, Mexico, 2003.
    [37] Datta R, Ranganathan V T. A Method of Tracking the Peak Power Points for a VariableSpeed Wind Energy Conversion System. IEEE Transactions on Energy Conversion, 2003,18(1):163–168.
    [38]张新房,徐大平,吕跃刚,等.大型变速风力发电机组的自适应模糊控制.系统仿真学报, 2004, 16(3):573–577.
    [39] Marcelo G S, Bimal K B, Ronald J S. Fuzzy Logic Based Intelligent Control of a VariableSpeed Cage Machine Wind Generation System. IEEE Transactions on Power Electronics,1997, 12(1):234–239.
    [40] Tang Y F, Xu L Y. Vector Control and Fuzzy Logic Control of Doubly Fed VariableSpeed Drives with DSP Implementation. IEEE Transactions on Energy Conversion, 1995,10(4):661–668.
    [41] Wang Q, Chang L C. An Intelligent Maximum Power Extraction Algorithm for Inverter-Based Variable Speed Wind Turbine Systems. IEEE Transactions on Power Electronics,2004, 19(5):1242–1249.
    [42] Li H, Shi K L. Neural Network Based Sensorless Maximum Wind Energy Capture withCompensated Power Coe?cient. IEEE Transactions on Industrial Applications, 2005,41(6):1548–1556.
    [43] Horiuchi N, Kawahito T. Torque and Power Limitations of Variable Speed Wind TurbinesUsing Pitch Control and Generator Power Control. Proceedings of IEEE Power EngineeringSociety Summer Meeting, Vancouver,Canada, 2001. 638–643.
    [44] Sahin A D. Progress and Recent Trends in Wind Energy. Progress in Energy and Combus-tion Science, 2004, 30(5):501–543.
    [45] Senjyu T, Sakamoto R, Kinjo T, et al. Output Power Leveling of Wind Turbine Generator forAll Operating Regions by Pitch Angle Control. IEEE Transactions on Energy Conversion,2006, 21(2):467–475.
    [46] Hand M M, Balas M J. Systematic Control Design Methodology for Variable-SpeedWind Turbine. Technical report, National Renewable Energy Laboratory, February, 2002.http://www.nerl.org/.
    [47] Abdin E S, Xu W. Control Design and Dynamic Performance Analysis of a Wind Turbine-Induction Generator Unit. IEEE Transactions on Energy Conversion, 2000, 15(1):91–96.
    [48] Stol K, Rigney B, Balas M J. Disturbance Accommodating Control of a Variable-SpeedTurbine Using a Symbolic Dynamics Structural Model. Proceedings of the 2000 ASMEWind Energy Symposium, Reno,Nevada, 2000. 84-90.
    [49] Rocha R, Filho L S M. A multivariable H∞control for wind energy conversion system.Proceedings of IEEE Conference on Control Applications, Istanbul,Turkey, 2003. 206–211.
    [50] Stol K A, Balas M J. Periodic Disturbance Accommodating Control for Blade Load Miti-gation in Wind Turbines. Journal of Solar Energy Engineering, 2003, 125(4):379–385.
    [51] Slootweg J G, Kling W L, Polinder H. Dynamic Modeling of a Wind Turbine with Dou-bly Fed Induction Generator. Proceedings of IEEE Power Engineering Society SummerMeeting, Vancouver,Canada, 2001. 644–649.
    [52] Geng H, Zhou W S, Yang G. Inverse-System Control Approach for Variable-SpeedVariable-Pitch Wind Generator. Proceedings of the 33th IEEE Annual Conference of theIndustrial Electronics Society, Taipei, Taiwan, 2007.
    [53] Lubosny Z, Bialek J W. Supervisory Control of a Wind Farm. IEEE Transactions on PowerSystems, 2007, 22(3):985– 994.
    [54] Luo C L, Far H G, Banakar H, et al. Estimation of Wind Penetration as Limited by Fre-quency Deviation. IEEE Transaction on Energy Conversion, 2007, 22(3):783– 791.
    [55] Senjyu T, Sakamoto R, Urasaki N, et al. Output Power Leveling of Wind Farm UsingPitch Angle Control with Fuzzy Neural Network. Proceedings of IEEE Power EngineeringSociety General Meeting, Quebec, Canada, 2006. 1–8.
    [56] Fernandez R D, Mantz R J, Battaiotto P E. Contribution of wind farms to the network sta-bility. Proceedings of IEEE Power Engineering Society General Meeting, Quebec, Canada,2006. 1–6.
    [57] Rawn B G, Lehn P W, Maggiore M. Toward Controlled Wind Farm Output: AdjustablePower Filtering. Proceedings of IEEE Power Engineering Society General Meeting, Que-bec, Canada, 2006. 1–6.
    [58] Bell S, Cookson T J, Cope S A, et al. Experience with variable-frequency drives and motorbearing reliability. IEEE Transactions on industry applications, 2001, 37(5):1438– 1446.
    [59] Zitzelsberger J, Hofmann W, Wiese A, et al. Bearing currents in doubly-fed inductiongenerators. Proceedings of European Conference on Power Electronics and Applications,Dresden,Germany, 2005. 1–9.
    [60] Pena R, Clare J C, Asher G M. Doubly fed induction generator using back-to-back PWMconverters and its application to variable-speed wind-energy generation. IEE Proceedingsof Electric Power Applications, 1996, 143(3):231–241.
    [61]马洪飞,徐殿国,苗立杰.几种变速恒频风力发电系统控制方案的对比分析.电工技术杂志. 1–4.
    [62]耿华,杨耕,马小亮.并网型风力发电机组的控制技术综述.电力电子技术, 2006,40(6):33–36.
    [63]李晶.变速恒频双馈风电机组动态模型及并网控制策略的研究[博士学位论文].河北保定:华北电力大学, 2004.
    [64] Geng H, Yang G. A Novel Control Strategy of MPPT Taking Dynamics of Wind Turbineinto Account. Proceedings of the 37th IEEE Power Electronics Specialists Conference,Jeju, Korea, 2006.
    [65] Iov F, Hansen A D, Blaabjerg F, et al. Analysis of Reduced Order Models for Large Wound-Rotor Induction Generators in Wind Turbine Applications. Proceedings of Power Conver-sion and Intelligent Motion Conference, Nuremberg, Germany, 2003.
    [66] Petersson A. Analysis, Modeling and Control of Doubly-Fed Induction Generators for WindTurbines[D]. Sweden: Department of Electric Power Engineering, Chalmers University ofTechnology, May, 2003.
    [67]王承煦,张源.风力发电.北京:中国电力出版社, 2002.
    [68] Muller S. Doubly Fed Induction Generator System. IEEE Industry Applications Magazine,2002, 8(3):26–33.
    [69] Khalil H K. Nonlinear Systems (Third Edition). New Jersey, USA: Prentice-Hall, 2002.
    [70]郎永强,张学广,徐殿国,等.双馈电机风电场无功功率分析及控制策略.中国电机工程学报, 2007, 27(9):77–82.
    [71] Meditch J, Hostetter G. Observers for systems with unknown and inaccessible inputs. In-ternational Journal of Control, 1974, 19(3):473–480.
    [72] Iov F, Hansen A D, S?ensen P, et al. Wind Turbine Blockset in Matlab/Simulink–GeneralOverview and Description of the Models. Technical report, Institute of Energy Technology,Aalborg University, March, 2004. http://www.iet.aau.dk/.
    [73]吴麒,慕春棣.自动控制原理.北京:清华大学出版社, 1990.
    [74]郑大钟.线性系统理论.北京:清华大学出版社, 2002.
    [75]刘华平,孙富春,何克忠,等.奇异摄动控制系统:理论与应用.控制理论与应用, 2003,20(1):1–7.
    [76]李春文,冯元琨.多变量非线性控制的逆系统方法.北京:清华大学出版社, 1991.
    [77] S?rensen P, Hansen A D, Rosas P A C. Wind models for simulation of power ?uctuationsfrom wind farms. Journal of Wind Engineering, 2002, 90(12):1381–1402.
    [78] Millais C, Teske S. Wind Force 12. Technical report, Global Wind Energy Council, 2005.http://www.ewea.org.
    [79] Narendra K S, Annaswamy A M. Stable adaptive systems. New Jersey, USA: Prentice-Hall,1989.
    [80]刘其辉,贺益康,赵仁德.基于直流电动机的风力机特性模拟.中国电机工程学报,2006, 26(7):34–39.
    [81]乔明,林飞,孙湖,等.风机模拟实验平台的研究.电源技术学报, 2007, 5(2):96–99.
    [82] SteinW M, Manwell J F, McGowan J G. A power electronics based power shedding controlfor wind /diesel systems. International Journal of Ambient Energy, 1992, 13(2):65–74.
    [83] Battaiotto P E, Mantz R J, Puleston P F. A wind turbine emulator based on a dual DSPprocessor system. Control Engineering Practice, 1996, 4(9):1261–1266.
    [84] Nunes A A C, Cortizo P C, Menezes B R. Wind turbine simulator using a DC machineand a power reversible converter. Proceedings of International Conference on ElectricalMachines in Australia, Adelaide, Australia, 1993. 536–540.
    [85] Barrero F, Mora J L, Perales M, et al. A test-ring to evaluate a wind turbine generationcontrol system based on DSP. Proceedings of European Conference on Power Electronics,Trondheim, Norway, 1997. 2642–2645.
    [86]李伟伟,徐殿国,张学广.基于直流电机模拟风力机的静态和动态特性.电机与控制应用, 2007, 34(11):1–5.
    [87]黄海,康勇,柳彬.风力机特性的直流电机模拟.电机电器技术. 50–51.
    [88]吴捷,许燕灏.基于异步电动机的风力机风轮动态模拟方法.华南理工大学学报:自然科学版, 2005, 33(6):46–49.
    [89] Li H, Steurer M, Shi K L, et al. Development of a unified design, test, and research plat-form for wind energy systems based on hardware-in-the-loop real-time simulation. IEEETransactions on Industrial Electronics, 2006, 53(4):1144–1151.
    [90]世通科创扭矩传感器使用说明书.北京世通科创技术有限公司. 2007.
    [91] HTB系列脉冲编码器使用说明书.上海霍德光电科技有限公司. 2007.
    [92] ACS550-01变频器用户手册.北京ABB电气传动系统有限公司. 2007.
    [93] PCI-2756AL USER’S MANUAL. Interface Corperation. Japan, 2007.
    [94] PCI-3175 USER’S MANUAL. Interface Corperation. Japan, 2007.
    [95]宋坤,刘锐宁,李伟明. MFC程序开发参考大全.北京:人民邮电出版社, 2007.
    [96] Douglas E. Comer著,徐良贤,张声坚,吴海通,等译.计算机网络与互联网.北京:电子工业出版社, 2003.
    [97]黄永安,马路,刘慧敏. Matlab 7.0/Simulink 6.0建模仿真开发与高级工程应用.北京:清华大学出版社, 2005.
    [98]薛定宇,陈阳泉.基于MATLAB/Simulink的系统仿真技术与应用.北京:清华大学出版社, 2002.
    [99]戴余良,曾斌,曾晓华,等. MATLAB外部网络接口的实现.计算机仿真, 2004,21(4):159–161.
    [100]宋建强. Matlab环境下Socket网络功能的实现.电脑学习, 2003, 4(2):26–27.
    [101]张志涌等.精通MATLAB 6.5版.北京:北京航空航天大学出版社, 2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700