胺类固化环氧树脂的解聚机理及CFRP回收技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纤维增强复合材料(CFRP)具有高模量、耐热性能优良、质量轻、高强度等优异的性能,在航空航天、汽车、造船、体育休闲等制品中的应用日益广泛。随着需求量的增加,其废弃物也逐年增加,给环境造成了严重的负担。环氧树脂是CFRP制品中应用最多的基体,由于其固化后形成交联的三维网状结构,采用常规化学溶剂无法将其溶解或加热熔融,因此,采用合理的处理方法对CFRP制品废弃物进行回收已经成为一个重要的研究课题。
     本文在充分归纳目前国内外对CFRP制品废弃物回收的研究现状的基础上,制定了以硝酸为介质,采用常压溶剂法解聚胺类固化环氧树脂及其复合材料的研究方案。研究了不同解聚条件(反应温度、硝酸浓度、反应时间)对解聚效果的影响,并以解聚率和回收碳纤维的强度保留率为指标,确定了最佳的解聚条件;对解聚产物进行红外和SEM分析,揭示了解聚反应的机理;根据反应速率的测定方法,对其反应动力学进行了研究,建立了反应的动力学模型。
     研究结果表明,树脂的解聚率随着反应温度、硝酸浓度和反应时间的增加而增大,其中硝酸浓度是最重要的影响因素。在95℃8mol/L硝酸分解液的作用下,23h后复合材料中树脂的解聚率达99.18%,热重分析和扫描电子显微镜观察结果均表明回收碳纤维的表面附着的树脂很少、有轻微的氧化刻蚀;回收碳纤维的单丝强度有一定的损失,但是其保留率仍可达到80%以上,能够对其进行回收和再利用。
     测定了胺类固化环氧树脂在硝酸介质中的宏观反应速率和反应的活化能,建立了其反应的动力学模型。通过恒定硝酸浓度法可以显著提高树脂的解聚速率,5h树脂即可基本解聚完全。采用红外光谱仪对解聚产物进行了定性分析,提出了胺类固化环氧树脂在硝酸介质中的解聚机理。红外分析表明,1112cm-1处峰明显降低,同时在解聚产物中出现了1537cm-1的苯环硝基峰。这说明在硝酸介质中固化环氧树脂的网状结构遭到了破坏,C-N键断裂同时引起了苯环的硝化。
Carbon fiber reinforced composites (CFRP) have been widely applied in fields ofaerospace, automobile, shipbuilding, and sports due to their excellent properties suchas high modulus, good thermal resistance, lightweight and high-strength. However,the high output of CFRP to meet the rising market demands has produced a greatamount of CFRP wastes, which would bring serious burden to the environment.Epoxy resin (EP) are the greatest consumption in production of CFRP. But they weredifficult to be dissolved with conventional solvent or melted due to theirthree-dimensional network structure after cured. Therefore it has become animportant topic proposing a perfect recovery method to dispose the CFRP wastes.
     In this article, the existing and potential technologies used for the recycling ofCFRP wastes have been introduced fully. Based on this, the research program whichepoxy resin cured with amine and CFRP were degraded in nitric acid using solventrecovery method under atmospheric pressure was established. The effects ofdifferent decomposed conditions such as reaction time, the nitric acid concentrationand reaction temperature on degradation efficiency were discussed. The optimaldecomposed conditions were assessed with degradation rate and monofilamentstrength retention of recycling carbon fibers as indexes. Frontier Transform InfraredSpectroscopy (FTIR) and Scanning Electron Microscope (SEM) were employed toanalyze decomposition products and depolymerization mechanism was revealed.Based on the determination of reaction rate, the reaction kinetics was studied and thekinetic model was initially established.
     The results suggested that the degradation rate of resin was increased withreaction temperature, nitric acid concentration and reaction time increasing, of whichthe concentration was the most important factors. The degradation rate of resin inCFRP reached 99.18% after 23 hours in 8mol/L nitric acid at 95 degrees Celsius.Differential thermogravimetric (DTG) and Scanning Electron Microscope (SEM)analysis indicated that the surface of recycling carbon fibers were relatively pure, theresin content was little, and slight oxidation etching on the surface. Themonofilament strength of recycling carbon fiber was reduced to a certain extent, butthe retention was still up 80% which can be used for recycling and reuse.
     Macroscopic reaction rate and activation energy were determined and the kinetic model was established. The degradation rate increased obviously by controllingnitric acid concentration with constant and resin decomposed completely after 5hours. The degradation products were analyzed by FTIR and the depolymerizationmechanism of epoxy resin cured with amine in nitric acid was proposed. The resultsshowed that the peak of C-N bond (1112cm-1) reduced sharply and peak ofnitro-benzene (1537 cm-1) appeared in degradation products. This demonstrated thenetwork structure of cured epoxy resin was destroyed in nitric acid, C-N bonds werecleaved and the original resin was nitrated.
引文
1陈祥宝.先进树脂基复合材料的发展.航空材料学报. 2000, 20(001): 46-54.
    2张晓虎,孟宇,张炜.碳纤维增强复合材料技术发展现状及趋势.纤维复合材料. 2004, 21(001): 50-53.
    3潘玉琴.玻璃钢复合材料基体树脂的发展现状.纤维复合材料. 2006, 23(004):55-59.
    4饶兴鹤.全球碳纤维应用需求迅速增长.国外塑料. 2008, 26(012): 65-65.
    5张家杰.国内外碳纤维生产现状及发展趋势.化工技术经济. 2005, 23(004):12-15.
    6梁胜彪,王成忠,杨小平. T-800碳纤维湿法缠绕用环氧树脂基体研究.北京化工大学学报:自然科学版. 2005, 32(003): 69-72.
    7 N Destais-Orvon, G Durand, G Tersac. Glycolysis of epoxide-amine hardenednetworks II--aminoether model compound. Polymer. 2004, 45(16): 5473-5482.
    8杜善义.先进复合材料与航空航天.复合材料学报. 2007, 24(1): 1-12.
    9何东晓.先进复合材料在航空航天的应用综述.高科技纤维与应用. 2006,31(002): 9-11.
    10霍肖旭,刘红林.碳纤维复合材料在固体火箭上的应用.高科技纤维与应用.2000, 25(003): 1-7.
    11 J Aidoo, KA Harries, MF Petrou. Full-scale experimental investigation of repairof reinforced concrete interstate bridge using CFRP materials. Journal of BridgeEngineering. 2006, 11: 350-357.
    12颜子涵,佟晓利.碳纤维复合材料在工程加固中的应用.施工技术(北京).2001, 30(002): 3-5.
    13杨允表,石洞.复合材料在桥梁工程中的应用.桥梁建设. 1997, (004): 1-4.
    14陈开利. CFRP材料在桥梁加固工程中的应用.桥梁建设. 2001, 1: 3-5.
    15李金涛,宣昌茂.我国碳纤维增强复合材料的市场状况.现代企业文化.2008, (020): 6-7.
    16廉冬.碳纤维连续抽油杆的研究与应用.西部探矿工程. 2006, 18(B06):
    351-353.
    17刘建军,王延相.碳纤维/环氧树脂复合材料连续抽油杆的研制.工程塑料应用. 2002, 30(005): 32-34.
    18吴则中,张海宴.碳纤维复合材料连续抽油杆的特点及应用前景.石油机械.2002, 30(002): 53-56.
    19敖玉柱,张明毅.碳纤维抽油杆在大庆油田应用前景分析.油气田地面工程.2004, 23(001): 60-60.
    20张士诚,李亭,温庆志.我国连续抽油杆的研究现状.石油矿场机械. 2004,
    33(B08): 14-16.
    21陈厚,刘建军.新型碳纤维抽油杆的研制.化工科技. 2001, 9(002): 13-15.
    22 Ma Zhenji, Lin Yufeng. Applications and developments of composite materialsinwind electricity generation [J]. Hi-tech Fiber & Application. 2005, 4: 10-13.
    23 HR Meyer-Piening, M Farshad, B Geier. Buckling loads of CFRP compositecylinders under combined axial and torsion loading-experiments andcomputations. Composite Structures. 2001, 53(4): 427-435.
    24周海成,阮海东.纤维缠绕复合材料气瓶的发展及其标准情况.压力容器.2004, 21(009): 32-36.
    25解越美,谭轶谦.复合材料气瓶在美国的现状及发展.锅炉压力容器安全技术. 2002, 30(006): 15-17.
    26杜希岩,李炜.纤维增强复合材料在体育器材上的应用.纤维复合材料.2007, 24(001): 14-17.
    27曲凤祥,林匡平.我国玻璃钢船艇工业的发展现状和展望. 2008中国大连国际海事论坛论文集. 2008, 27(001): 20-23.
    28 K Shibata. FRP Recycling Technology. Journal of Network Ploymer Japan. 2007,28(4): 247.
    29 Hnagai, Jun Takahashi, Kenmochi. Life Cycle Assessment of CFRP Productionand Recycling. Nihon Kikai Gakkai Nenji Taikai Koen Ronbunshu. 2002, 2:283-284.
    30 K Nomaguchi, T Nakagawa. FRP Recycling in EU, NA and Pacific Rim Area.Journal society of automotive engineers of japan. 2007, 61(10): 102.
    31 K FUJITA. Trends in FRP recycling in Europe. Reinforced Plastics. 1999, 45(8):306-309.
    32 J Economy, AG Andreopoulos. A new concept for recycling of thermosettingresins I: The case of crosslinkable copolyesters. Polymers for AdvancedTechnologies. 1999, 7(7): 561-570.
    33 Jinglan. Thermoset composite recycling fiber reinforced plastics. Composite.1997: 346-351.
    34王翔.玻璃钢废弃物的处理与再利用.建材工业信息. 2002, (06): 19-21.
    35陈平,刘胜平.环氧树脂.化学工业出版社. 1999.
    36吕咏梅.国内外双酚A生产现状与市场分析.江苏化工. 2001, 29(003): 51-53.
    37王跃志. 2005年我国双酚A产品市场前景极为乐观.化工进展. 2000, 19(004):67-67.
    38周福根.国内外环氧树脂现状及需求预测.中国涂料. 2000, (002): 44-48.
    39王德中.环氧树脂生产与应用.化学工业出版社. 2001.
    40梁璀,钟宏. E-44型环氧树脂固化和应用的研究.中国胶粘剂. 2006, 15(003):26-28.
    41孙曼灵.环氧树脂应用原理与技术.机械工业出版社. 2002.
    42 J Guo, Z Xu. Recycling of non-metallic fractions from waste printed circuitboards: A review. Journal of hazardous materials. 2009, 168(2-3): 567-590.
    43白庆中,王晖,韩洁.世界废弃印刷电路板的机械处理技术现状.环境污染治理技术与设备. 2001, 2(001): 84-89.
    44徐佳,孙超明.树脂基复合材料废弃物的回收利用技术.玻璃钢/复合材料.2009, (004): 100-103.
    45 H Benninghoff. Particle Recycling of FRP Components. Technische Rundschau(Switzerland). 1992, 84(45): 80-82.
    46 Y Shoji. Recycling waste FRP- From pure research to practical use. Journal of theJapan Society for Composite Materials. 2003, 29(6): 210-216.
    47罗林,黄志雄,赵颖. SMC/BMC的回收与再利用.功能材料. 2007, 38(A09):3470-3472.
    48 AI Balabanovich, D Pospiech. Pyrolysis behavior of phosphorus polyesters.Journal of Analytical and Applied Pyrolysis. 2009, 86(1): 99-107.
    49安军.废树脂焚烧处理技术研究.浙江大学硕士论文. 2007.
    50 HT Chiu, SH Chiu, RE Jeng, et al. A study of the combustion and fire-retardancebehaviour of unsaturated polyester/phenolic resin blends. Polymer Degradationand Stability. 2000, 70(3): 505-514.
    51陈光.废弃物再资源化利用生产绿色生态水泥.中国水泥. 2006, 8: 31-34.
    52赵由才,龙燕.固体废物处理技术进展.有色冶金设计与研究. 2003, 24(003):10-14.
    53 SJ Pickering. Recycling technologies for thermoset composite materials--currentstatus. Composites Part A: Applied Science and Manufacturing. 2006, 37(8):1206-1215.
    54 H Jiang, J Wang, S Wu. Pyrolysis kinetics of phenol-formaldehyde resin bynon-isothermal thermogravimetry. Carbon. 2009: 2876-2880.
    55 HLH Yip, SJ Pickering, CD Rudd. Characterisation of carbon fibres recycledfrom scrap composites using fluidised bed process. Plastics, Rubber andComposites. 2002, 31(6): 278-282.
    56 Y Zheng, Z Shen, S Ma, et al. A novel approach to recycling of glass fibers fromnonmetal materials of waste printed circuit boards. Journal of hazardousmaterials. 2009: 25-29.
    57 SJ Pickering, RM Kelly, JR Kennerley, et al. A fluidised-bed process for therecovery of glass fibres from scrap thermoset composites. Composites Scienceand Technology. 2000, 60(4): 509-523.
    58 JR Kennerley, R Kelly, N Fenwick, et al. The re-use of glass fibres recoveredfrom scrap composites using a fluidised bed process. Composites, Part A.839-845.
    59 AM Cunliffe, PT Williams. Characterisation of products from the recycling ofglass fibre reinforced polyester waste by pyrolysis1. Fuel. 2003, 82(18):2223-2230.
    60刘红影,刘海鑫,徐佳.热固性复合材料热解工艺回收技术现状.第十七届玻璃钢/复合材料学术年会论文集. 2008: 372-379.
    61郝娟,王海锋,宋树磊,等.废线路板热解处理研究现状.中国资源综合利用. 2008, 26(006): 30-33.
    62 M Goto. Chemical recycling of plastics using sub-and supercritical fluids. TheJournal of Supercritical Fluids. 2009, 47(3): 500-507.
    63 G Jiang, SJ Pickering, EH Lester, et al. Decomposition of Epoxy Resin inSupercritical Isopropanol. Ind. Eng. Chem. Res. 2010, 49(10): 4535-4541.
    64 R Pi ero-Hernanz, C Dodds, J Hyde, et al. Chemical recycling of carbon fibrereinforced composites in nearcritical and supercritical water. Composites Part A:Applied Science and Manufacturing. 2008, 39(3): 454-461.
    65 Liu Yuyan, S Guohua, M Linghui. Recycling of carbon fibre reinforcedcomposites using water in subcritical conditions. Materials Science andEngineering: A. 2009: 367-371.
    66 A Kruse, E Dinjus. Hot compressed water as reaction medium and reactant::Properties and synthesis reactions. The Journal of Supercritical Fluids. 2007,39(3): 362-380.
    67孟令辉,黄玉东.超临界水对碳纤维/酚醛复合材料的分解作用.复合材料学报. 2002, 19(003): 37-41.
    68 Y Sato, Y Kondo, K Tsujita, et al. Degradation behaviour and recovery ofbisphenol-A from epoxy resin and polycarbonate resin by liquid-phase chemicalrecycling. Polymer Degradation and Stability. 2005, 89(2): 317-326.
    69 D Braun, W Von Gentzkow, AP Rudolf. Hydrogenolytic degradation ofthermosets. Polymer Degradation and Stability. 2001, 74(1): 25-32.
    70李健民.用常压溶解法回收再利用热固性树脂复合材料.粘接. 2006, 27(004):52-54.
    71 K El Gersifi, G Durand, G Tersac. Solvolysis of bisphenol A diglycidylether/anhydride model networks. Polymer Degradation and Stability. 2006, 91(4):690-702.
    72王宝庭,汤寄予,高丹盈. FRP再循环利用技术.纤维复合材料. 2009,26(003): 47-50.
    73 K Shibata. FRP recycling using depolymerization of unsaturated polyester underordinary pressure. Fain Kemikaru. 2006, 35: 14-20.
    74 M Negami, K Sano, M Yoshimura, et al. Degradation Method of UnsaturatedPolyester Polymer in Bean Oil (II). 2002. 9-12.
    75孙路石,陆继东,王世杰,等.溴化环氧树脂印刷线路板热解产物的分析.华中科技大学学报:自然科学版. 2003, 31(008): 50-52.
    76 XU Jia, Sun Chao-ming. Recycling Technoly of Composite Material. FiberReinforced Plastics. Composites. 2009: 167-171.
    77 A Kojima, S Furukawa. Recycling of resin matrix composite materials VII: futureperspective of FRP recycling. Advanced Composite Materials. 1997, 6(3):215-225.
    78 W Dang, M Kubouchi, H Sembokuya, et al. Chemical recycling of glass fiberreinforced epoxy resin cured with amine using nitric acid. Polymer. 2005, 46(6):1905-1912.
    79 W Dang, M Kubouchi, S Yamamoto, et al. An approach to chemical recycling ofJournal of Supercritical Fluids. 2009, 47(3): 500-507.
    63 G Jiang, SJ Pickering, EH Lester, et al. Decomposition of Epoxy Resin inSupercritical Isopropanol. Ind. Eng. Chem. Res. 2010, 49(10): 4535-4541.
    64 R Pi ero-Hernanz, C Dodds, J Hyde, et al. Chemical recycling of carbon fibrereinforced composites in nearcritical and supercritical water. Composites Part A:Applied Science and Manufacturing. 2008, 39(3): 454-461.
    65 Liu Yuyan, S Guohua, M Linghui. Recycling of carbon fibre reinforcedcomposites using water in subcritical conditions. Materials Science andEngineering: A. 2009: 367-371.
    66 A Kruse, E Dinjus. Hot compressed water as reaction medium and reactant::Properties and synthesis reactions. The Journal of Supercritical Fluids. 2007,39(3): 362-380.
    67孟令辉,黄玉东.超临界水对碳纤维/酚醛复合材料的分解作用.复合材料学报. 2002, 19(003): 37-41.
    68 Y Sato, Y Kondo, K Tsujita, et al. Degradation behaviour and recovery ofbisphenol-A from epoxy resin and polycarbonate resin by liquid-phase chemicalrecycling. Polymer Degradation and Stability. 2005, 89(2): 317-326.
    69 D Braun, W Von Gentzkow, AP Rudolf. Hydrogenolytic degradation ofthermosets. Polymer Degradation and Stability. 2001, 74(1): 25-32.
    70李健民.用常压溶解法回收再利用热固性树脂复合材料.粘接. 2006, 27(004):52-54.
    71 K El Gersifi, G Durand, G Tersac. Solvolysis of bisphenol A diglycidylether/anhydride model networks. Polymer Degradation and Stability. 2006, 91(4):690-702.
    72王宝庭,汤寄予,高丹盈. FRP再循环利用技术.纤维复合材料. 2009,26(003): 47-50.
    73 K Shibata. FRP recycling using depolymerization of unsaturated polyester underordinary pressure. Fain Kemikaru. 2006, 35: 14-20.
    74 M Negami, K Sano, M Yoshimura, et al. Degradation Method of UnsaturatedPolyester Polymer in Bean Oil (II). 2002. 9-12.
    75孙路石,陆继东,王世杰,等.溴化环氧树脂印刷线路板热解产物的分析.华中科技大学学报:自然科学版. 2003, 31(008): 50-52.
    76 XU Jia, Sun Chao-ming. Recycling Technoly of Composite Material. FiberReinforced Plastics. Composites. 2009: 167-171.
    77 A Kojima, S Furukawa. Recycling of resin matrix composite materials VII: futureperspective of FRP recycling. Advanced Composite Materials. 1997, 6(3):
    215-225.
    78 W Dang, M Kubouchi, H Sembokuya, et al. Chemical recycling of glass fiberreinforced epoxy resin cured with amine using nitric acid. Polymer. 2005, 46(6):1905-1912.
    79 W Dang, M Kubouchi, S Yamamoto, et al. An approach to chemical recycling of

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700