67LR介导的EGCG,YIGSR对前列腺癌细胞PC-3细胞毒性的影响及其分子机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
前列腺癌是严重威胁人类健康的疾病之一。在欧美国家,前列腺癌导致的死亡率仅次于肺癌,位居第二。我国前列腺癌的发病率虽然低于西方国家,但随着人口老龄化以及饮食习惯的改变,前列腺癌的发病率在我国呈逐年上升的趋势。表没食子儿茶素没食子酸酯(epigallocatechin gallate,EGCG)是绿茶儿茶素的主要组成成分。体外细胞实验研究表明无论是雄激素依赖型前列腺癌细胞还是非雄激素依赖型前列腺癌细胞,在EGCG处理后细胞数量都明显减少,并且呈剂量依赖效应关系。
     近年来,EGCG与金属离子的相互作用及其生物学效应开始成为国内外学者研究的热点。金属离子能够影响EGCG的生物学活性,使其生理功能发生改变。锌、镉离子是重要的环境因子,与前列腺癌发生密切相关,锌、镉离子的平衡在前列腺癌的发生和发展中起重要作用。本文利用前列腺癌细胞PC-3培养体系研究了EGCG与锌、镉离子相互作用对前列腺癌细胞PC-3生长的影响并探讨了其作用的分子机制。实验结果发现,EGCG,Zn~(2+),Cd~(2+)处理后PC-3细胞生长和转移受到抑制,同时80μmol/L Zn~(2+),20μmol/L Cd~(2+)可以增强EGCG的抗癌活性,80μmol/L EGCG+80μmol/L Zn~(2+),80μmol/L EGCG+20μmol/L Cd~(2+)处理后细胞的存活率均低于EGCG单独处理。67 kDa层粘连蛋白受体(67LR)是EGCG抗癌作用的直接受体,在EGCG抑制癌细胞生长中起重要作用。本文采用RT-PCR、免疫组化和免疫荧光方法研究不同处理对67LR表达的影响,结果表明Zn~(2+),Cd~(2+)处理后67LR的表达增加,因此我们推断Zn~(2+),Cd~(2+)可通过上调67LR的表达为EGCG提供更多作用的靶位点,从而增强EGCG对前列腺癌细胞PC-3的毒性作用。利用ESR检测不同处理对细胞膜蛋白结构的影响实验发现EGCG,Zn~(2+),Cd~(2+)处理后膜蛋白结构发生解聚,膜蛋白三级结构趋于松散,同时在Zn~(2+),Cd~(2+)存在下EGCG对细胞膜蛋白结构的损伤增强。此外,我们还研究了EGCG,Cd~(2+)对PC-3细胞线粒体功能的影响,结果发现EGCG、Cd~(2+)可以与PC-3细胞线粒体作用并影响线粒体功能,Cd~(2+)在抑制ATP合成、降低线粒体膜电位、激活Caspase-9等方面增强了EGCG的作用。
     层粘连蛋白中β1链Ⅱ功能区末端的酪氨酸-异亮氨酸-甘氨酸-丝氨酸-精氨酸YIGSR序列,是67LR特异性识别并结合的位点。本文研究发现YIGSR显著的抑制前列腺癌细胞PC-3的生长和转移,并呈剂量依赖性;YIGSR可与PC-3细胞线粒体作用并影响线粒体功能,50μg/mL YIGSR处理后,细胞线粒体功能发生改变,线粒体膜电位下降,细胞内ATP含量降低,Caspase-9活性显著增加。MTT和平板克隆实验发现,YIGSR和EGCG共同处理PC-3细胞24h,EGCG的抗癌活性降低,YIGSR和EGCG共同处理后细胞的存活率高于EGCG单独处理时的细胞的存活率。本文首次利用分子对接方法对EGCG、YIGSR与67LR作用位点进行模拟,结果表明YIGSR,EGCG与67LR识别位点相同,均位于67LR上3BCHB N末端的活性口袋,结合位点涉及的67LR分子内氨基酸有Thr188,Ser190,Glu192,His193,Ile189,同时EGCG、YIGSR可分别与Ser190和Ile189,Glu192形成氢键。因此YIGSR可通过竞争性结合67LR中EGCG作用的活性区域,减少细胞表面67LR数量,减少EGCG与其受体间的相互作用,从而降低了EGCG的抗癌活性。
Prostate cancer is one of the leading causes of death, killing about 200,000 menannually throughout the world. The major polyphenolic constituent presented in greentea, (-) epigallocatechin-3-gallate (EGCG), is believed to be the compound which ismost responsible for inhibiting prostate cancer cell growth both in cell culture systemsand tumor models.
     The interaction of EGCG with metal ions changes their bioactivities andmetabolisms, and this interaction may be an important way to prevent or cure prostatediseases. There are various kinds of heavy metals in prostate glands, such as zinc andcadmium, and they are partly secreted into semen during normal metabolism. Innormal prostate glands, the metabolisms of Zn~(2+) and Cd~(2+) are in a balance state, butprostate disease may occur when this balance is disturbed. In the present paper, effectsof EGCG, Zn~(2+), Cd~(2+) and their mixture (EGCG+Zn~(2+), EGCG+Cd~(2+)) onandrogen-insensitive prostate cancer cells PC-3 were estimated respectively, and theirmechanisms were thoroughly investigated. The results showed that EGCG, Zn~(2+) andCd~(2+) suppressed viability and migration ability of PC-3 cells, and the suppressioneffect was enhanced when EGCG added with 80μmol/L Zn~(2+) or 20μmol/L Cd~(2+). Ithas been reported that the inhibitory effect of EGCG on tumor cells proliferation isexerted by its binding to the 67kD laminin receptor (67LR), which is a high affinitynon-intergrin laminin receptor. Here we found that Zn~(2+) or Cd~(2+) significantlyenhanced the inhibitory effect of EGCG by up-regulating the 67LR expression, whichcould provide more binding sites of the cell surface for EGCG. Conformationalchanges in membrane proteins were determined using electron paramagneticresonance spin labeling. The results showed that the treatments of EGCG, Zn~(2+) andCd~(2+) disturbed membrane protein conformation, and S/W ratio decreased significantlywhen EGCG added with 80μmol/L Zn~(2+) or 20μmol/L Cd~(2+). In the meanwhile, wealso found that EGCG and Cd~(2+) directly interacted with mitochondrial, and themixture of EGCG and Cd~(2+) (80μmol/L EGCG+20μmol/L Cd~(2+)) significantly caused loss of the mitochondrial membrane potential, decrease of the ATP content andactivation of caspase-9 compared with EGCG treated alone.
     The laminin tyrosine-isoleucine-glycine-serine-arginine (YIGSR) peptide,corresponding to the 929-933 sequence ofβ1 chain, has been found to inhibit tumormetastasis and growth by competing with laminin for its receptor on tumor cells, andblocking the binding sites of these cells to basement membranes. In this paper, wefound that YIGSR inhibited the growth and migration ability of PC-3 cellsdose-dependently. Meanwhile, YIGSR caused the loss of mitochondrial membranepotential, decrease of the ATP content and activation of caspase-9, so PC-3 cellsdamage caused by YIGSR might be through a mitochondria-dependent mechanism.MTT and clonogenecity assay demonstrated that cytotoxicity of EGCG against PC-3cells was weakened in the presence of YIGSR. To elucidate the molecular mechanismby which the YIGSR and EGCG affects tumor growth, we investigated theinteractions of YIGSR, EGCG with 67LR by using MVD. The results showed thatYIGSR and EGCG have similar binding modes with 67LR. They recognized andbinded to the same sites of 67LR in the N-terminal of 3BCHB. YIGSR appears tohave potential interactions with Thr~(188), Ser~(190), Glu~(192), His~(193), Ile~(189), while EGCGinteracts with Leu~(183), Arg~(184), Thr~(188), Ile~(189), Ser~(190), Glu~(192), His~(193).
引文
1 Lambert J.D.,Yang C.S. Cancer chemopreverntive activity and bioavailability of tea and tea polyphels[J]. Muta Res,2003,523-524: 201-208.
    2 Doumerc N.,Bonhoure E.,Dayon A.,Rischmann P.,Malavaud B.,Cuvillier O. Green tea (EGCG) and prostate cancer: A new sphingosine kinase inhibitor[J]. Eur Urol,2006,5(2):168
    3 Yu H.N., Shen S.R., Xiong Y.K. Cytotoxicity of epigallocatechin-3-gallate to LNCaP cells in the presence of Cu2+[J]. J. Zhejiang Univ Sci B,2005,6(2): 125-131.
    4 张素梅,杨松,黄荣茂.茶提取物EGCG抗肿瘤活性及机理研究进展[J].贵州农业科学,2006,34(7):96-99.
    5 谭晓华,张亚历,周殿元.EGCG诱导胃癌和肝癌细胞凋亡及bcl-2表达下调的研究[J].癌症,2000,19(7):638-641.
    6 Terranova V.R,Rao C.N., Kalebic T.,Margulies l.M.,Liotta L.A. Laminin receptor on human breast carcinoma cells[J]. Proc Natl Acad Sci USA,1983,80(2):444.
    7 郑大利.67-kDa层粘连蛋白受体与肿瘤[J].福建医科大学学报,1983,35(4):415-418.
    8 Tcchibana H.,Koga K.,Fujimura Y., Yamada K.A receptor for greentea polyphenol EGCG[J].Nat Struct Mol Bio,2004, 11(4):380-381.
    9 Shammas M.A.,Neri P., Kolev H.,Batchu R.B.,Bertheau R.C.,Munshi V.,Prabhala R.,Fulciniti M., Fulciniti M.,Tai Y.T.,Treon S.P.,Goyal R.K.,Anderson K.C.,Munshi N.C. Specific killing of multiple myeloma cells by (-)-epigallo catechin-3-gallate extracted from green tea: biologic activity and therapeutic implications[J].Blood,2006, 108(8):2804-10.
    10 Umeda D., Tachibana H., Yamada K.Epigalocatechin-3-o-gallate disrupts stress fibers and the contractile ring by reducing myosin regulatory light chain phosphorylation mediated through the target molecule 67kDa laminin receptor[J]. Biochem biophys res commun,2005,333(12): 628-635.
    11 Fujimura Y, Umeda D., Kiyohara Y.,Sunada Y.,Yamada K.,Tachibana H. The involvement of the 67kDa laminin receptor-mediated modulation of cytoskeleton in the degranulation inhibition induced by epigallocate chin -3-o-gallate[J]. Biochem biophy res commun,2006,336(2):524-531.
    12 Shay J.W., Zou Y., Hiyama E.Telomerase and cancer[J].Hum Mole Gene,2001, 10(7):677.
    13 Naasani I., Oh-hashi F., Oh-hara T, Johnston J.,Chan K.,Tsuruo T. Blocking telemerase by dietary polyphenols is a major mechanism for limiting the growth of human cancer cells in vitro and in vivo[J].Cancer res,2003,63(4):824 -830.
    14 Hayakawa S., Sacki K., Sazuka M.,Suzuki Y.,Shoji Y.,Ohta T.,Kaji K.,You A.Isemura M. Apoptosis induction by epigallocatechin gallate involves its binding to Fas [J]. Biochem biophys res commun, 2001,285(5): 1102-1106.
    15 Chen C, Shen G.X., Hebbar V.,Hu R., Owuor E.D.,Kong A.N. Epigallocatechin-3-gallate induced stress signals in HT-29 human colon adennocarcinoma cell[J]. Carcinogenesis,2003,24(8):l369-1378.
    16 Lin Y.L., Lin J.K. (-)Epigallocatechin-3-gallate blocks the introduction of nitric oxide synthase by doun regulating lipopolysaccaride induceed activity of transcription factor nuclear factor kappa B[J].Mol Phai-macol, 1997,52(4):465-472.
    17 Tannenbanm S.R., Goldmann P. Nitrite synthesis in the germ free and conventional rat[J].science, 1981,212(1):56-58.
    18 Chan M.M., Fong D., Ho C. Inhibition of inducible nitric oxide synthase gene expression and enzyme activity by epigallocatechin gallate, anatural product from green tea[J]. Biochenm Pharmacol, 1997, 54(12):1281-1286.
    19 Dell'Aica I., Dona M, Sartor L., Pezzato E., Garbisa S. Epigallocatechin-3-gallate directly inhibits MT1-MMP activity, leading to accumulation of nonactivated MM-2 at the cell surface[J]. Lab Invest,2002,82(12):1685-1693.
    20 Hiipakka R.A., Zhang H.Z., Dai W.,Dai Q.,Liao S. Structure-activity relationships for inhibition of human 5alpha-reductases by polyphenols[J].Biochem pharmacol,2002,63(6):l 165-1176.
    21 Liao S., Hiipakka R.A. Selective inhibition of steriod 5 alphareductase isozymes by tea epicatechin-3-gallate and epigallocatechin-3-gallate[J]. Biochem biophys res commun,1995, 214(3):833-838.
    22 Koen B., Ellen D.E.S., Walter H., Guido V., Johannes V.S. Epigallocatechin-3-gallate is a potent natural inhibitor of fatty acid synthase in intact cells and selectively induces apoptosis in prostate cancells[J]. Int J Cancer,2003,106(6):856-862.
    23 Wang X., Tian W. Green tea epigallocatechin gallate:a naural inhibitor of fatty-acid synthase[J]. Biochem biophys res commun,2001, 228(5):1200-1206.
    24 Qanungo S., Das M., Haldar S.,Basu A. Epigallocatechin-3-gallate induces mitochondrial membrane depolarization and caspase-dependent apoptosis in pancreatic cancer cells[J]. Carcinogenesis,2005, 26(5): 958-967.
    25 Nihal M.M., Ahmad N., Mukhtar H., Wood G.S. Anti-proliferative and proapoptotic effects of epigallocatechin-3-gallate on human melanoma,possible implications for the chemoprevention of melanoma[J]. Int J Cancer,2005, 114(4):513-521.
    26 Roy A.M., Baliga M.S., Katiyar. S.K. Epigallocatechin-3-gallate induces apoptosis in estrogen receptor-negative human brease carcinoma cells via modulation in protein expression of p53 and Baxand caspase-3 activation[J]. Mole cancther,2005,4(l):81-90.
    27 Gupta S., Hastak K., Faq F.,Ahmad N.,Mukhtar H. Essential role of caspases in epigallocatechun-3-gallate mediated inhibition of nuclear factor kappa-B and induction of apoptosis[J].Oncogene,2004,24(14): 2507-2522.
    28 Shimizu M., Deguchi A., Joe A.K.,Mckoy J.F.,Moriwaki H., Weinstein I.B. EGCG inhibits activation of HER3 and expression of cyclooxygenase-2 in human colon cancer cells[J]. Exp Ther Oncol,2005,5(l):69-78.
    29 Shimizu M.,Deguchi A.,Hara Y.,Moriwaki H.,Weinstein I.B. EGCG inhibits activation of the insulin-like growth factor-1 receptor in human colon cancer cells[J]. Biochem biophys res commun,2005,334(3): 947-953.
    30 Ahmad N., Chen P.Y., Mukhtar H. Cell cycle dysregulation by green tea polyphenol epigallocatechin-3-gallate[J].Biochem biophys res commun,2000,275 (20):328-334.
    31 Gupta S., Hussain T., Mukhtar H. Molecular pathway of epigallocatechin-3-gallate- induced cell cycle arrest and apoptosis of human prostate carcinoma cells[J]. Arch biochem biophys,2003,410(1):177-185.
    32 Deguchi H., Fujii T., Nakagawa S., Koga T.,Shirouzu K. Analysis of cell growth inhibitory effects of catechin through MAPK in human breast cancer cell line T47 D[J].Int J oncol,2002,21 (6):1301-1305.
    33 Hee-Yul A., Kourosch R.H., Claudia S.,Yeo-Pyo Y., Hans V., Agapios S.Epigallocathechin-3-gallate selectively in hibits the PDGF-BB induced intracellular signaling tansduction pathway in vascular smooth muscle cells and inhibits transformation of sis-transfected NIH3T3 fibroblasts and human glioblastoma cells[J]. Mol biol cell, 1999,10(4): 1093-1104.
    34 Yu H.N., Yin J.J., Shen S.R. Growth inhibition of prostate cancer cells by epigallocateehin gallate in the presence of Cu~(2+)[J].J Agile Food Chem,2004,52(3): 462-466.
    35 郭远华,邹国林.儿茶素的抑菌作用及其与铁离子相互作用研究[J].氨基酸和生物资源,2002,(24):63-64.
    36 Mira L., Fernandez M.T., Santos M. Interactions of flavonoids with iron and copper ions: a mechanism for their antioxidant activity[J]. Free Radio Res,2002,(36): 1199-1208.
    37 umamoto M., Sonda T., Nagayama K., Tabata M. Effects of pH and metal ions on antioxidative activities of catechins[J]. Biosci Biotechnol Biochem,2001, 65(1):126-132.
    38 Zago M.P., Oteiza P.I.The antioxidant properties of zinc: interactions with iron and antioxidants[J]. Free Radio Biol Med, 2001,31(2): 266-274.
    39 Sakagami T., Satoh K., Ishihara M., Sakagami H., Takeda F., Kochi M., Takeda M. Effect of cobalt ion on radical intensity and cytotoxic activity of antioxidants[J].Anticancer Res,2000,20(5):3143-3150.
    40 Ishino A., Kusama K., Watanabe S., Sakagami H. Inhibition of epigallocatechin gallate-induced apoptosis by CoCl_2 in human oral tumor cell lines[J].Anticancer Res,1999,19(6):5197-5201.
    41 Yamanaka N., Oda O.. Nagao S. Green tea catechins such as (-)-epicatechin and (-)-epigaliocatechin accelerate Cu~(2+)-induced low density lipoprotein oxidation in propagation phase[J]. FEBS Lett, 1997,401 (2-3):230-234.
    42 Hu C., Kitts D.D. Evaluation of antioxidant activity of epigaliocatechin gallate in biphasic model systems in vitro[J]. Mol Cell Biochem,2001,218(1-2):147-155.
    43 Navarro R.E., Santacruz H., Inoue M. Complexation of epigallocatechin gallate (a green tea extract, egcg) with Mn~(2+): nuclear spin relaxation by the paramagnetic ion[J]. J Inorg Biochem,2005,99(2):584-588.
    44 Tang D.S., Shen S.R., Chen X., Zhang Y.Y., Xu C.Y. Interaction of catechins with aluminum in vitro[J]. J Zhejiang Univ Sci, 2004,5(6): 668-675.
    45 郭炳莹,程启坤.茶汤组分与金属离子的络合性能[J].茶叶科学,1991,(2):139-144.
    46 唐德松,沈生荣.儿茶素的碱缓冲能力及与Al~(3+)络合作用的研究[J].茶叶科学,2003,(23):66-70.
    47 Ohyoshi E., Sakata T., Kurihara M. Complexation of aluminium with (-)-epigallocathechin gallate studied by spectrophotometry[J]. J Inorg Biochem, 1999,73:31-34.
    48 Chen Y.M., Wang M.K., Huang P.M. Catechin transformation as influenced by aluminum[J].J Agric Food Chem,2006,54(1):212-218.
    49 Fernandez M.T., Mira M.L., Flor(?)ncio M.H., Jennings K,R. Iron and copper chelation by flavonoids: an electrospray mass spectrometry study[J].J Inorg Biochem,2002,92(2):105-111.
    50 Hynes M.J., Coinceanainn M.O. The kinetics and mechanisms of the reaction of iron(Ⅲ) with gallic acid, gallic acid methyl ester and catechin[J].J Inorg Biochem,2001,85(2-3): 131-142.
    51 沈生荣,赵玉芳,赵保路.铁存在下儿茶素的抗自由基效应[J].茶叶科学,1997,S1(40-44):119-123.
    52 戚向阳,谢笔钧.表没食子儿茶素没食子酸酯(EGCG)锗(Ⅳ)配合物的研究[J].天然产物研究与开发,1994,6(13):35-44.
    53 Coudray C., Bousset C., Tressol J.C., Pepin D., Rayssiguier Y. Short-term ingestion of chlorogenic or caffeic acids decreases zinc but not copper absorption in rats, utilization of stable isotopes and inductively-coupled plasma mass spectrometry technique[J]. Br J Nutr, 1998,80(6):575-584.
    54 Hynes M.J., Coinceanainn M.O. Investigation of the release of iron from ferritin by naturally occurring antioxidants[J]. J Inorg Biochem, 2002,90(1-2): 18-21.
    55 Brune M., Rossander L., Hallberg L. Iron absorption and phenolic compounds: importance of different phenolic structures[J].Eur J Clin Nutr, 1989,43(8):547-557.
    56 Chen C.Y., Su Y.J., Wu P.F., Shyu M.M. Nickel-induced plasma lipid peroxidation and effect of antioxidants in human blood: involvement hydroxyl radical formation and depletion of alpha-tocopherol[J]. J Toxicol Environ Health A,2002,65(12):843-852.
    57 Gorelik S., Kanner J. Oxymyoglobin oxidation and membrane lipid peroxidation initiated by iron redox cycle: prevention of oxidation by enzymic and nonenzymic antioxidants[J]. J Agric Food Chem,2001,49 (12):5945-5950.
    58 Miura S., Watanabe J., Sano M, Tomita T., Osawa T., Hara Y., Tomita I. Effects of various natural antioxidants on the Cu (2+)-mediated oxidative modification of low density lipoprotein[J]. Biol Pharm Bull, 1995,18(1): 1-4.
    59 李志南. 茶多酚与Pb~(+)络合反应机理及其应用研究[J].贵州科学,1996(14):41-47.
    60 Hoshino N., Kimura T., Hayakawa F. Bactericidal activity of catechin-copper(Ⅱ) complexes against Staphylococcus aureus compared with Escherichia coil [J]. Lett Appl Microbiol, 2000,31(3):213-217.
    61 Kumamoto M., Sonda T., Nagayama K., Tabata M.Effects of pH and metal ions on antioxidative activities of catechins[J].Biosci Biotechnol Biochem,2000, (65):126-132.
    62 Kagaya N., Tagawa Y., Nagashima H., Saijo R.,Kawase M., Yagi K. Suppression of cytotoxin-induced cell death in isolatedhepatocytes by tea catechins[J]. Euro J Pharmacol, 2002,450(3):231-236.
    63 Kostyuk V.A., Potapovich A.I., Vladykovskaya E.N., Korkina L.G., Afanas'ev I.B. Influence of Metal Ions on Flavonoid Protection against Asbestos-lnduced Cell Injury[J]. Arch Bioch Biophys,2001,385(1):129-137.
    64 陈勋,于海宁,沈生荣.EGCG与锌离子互作对前列腺癌细胞PC-3生长的影响[J].茶叶科学,2006,26(3):219-224.
    65 Yu H.N.. Yin J.J., Shen S.R. Effects of epi-gallocatechin gallate on PC-3 cell cytoplasmic membrane in the presence of cd~(2+)[J].Food Chem,2006,22(4): 108-115.
    66 Sun S.L., He G.Q., Yu H.N., Yang J.G., Borthakur D.,Zhang L.C., Shen S.R., Undurti N.D. Free Zn~(2+) enhances inhibitory effects of EGCG on the growth of PC-3 cells[J]. Mol Nutr Food Res,2008,52(4):465-471.
    67 陈凯先,蒋华良,嵇汝运.计算机辅助药物设计-原理方法及应用.上海科学技术出版社.2000.
    68 Veerapandian P.Structure-based drug design. New York: Marcel Dekker Inc,1997.
    69 Leff P.Receptor-based drug design. New York: Marcel Dekker Inc, 1997.
    70 Apostolakis J., Cafisch A.Computational ligand design[J]. Comb chen high throughput screen, 1999,2(2):91-104.
    71 Thaisrivongs S., Strohbach J.W.Structure-based discovery of tipranavir disodium: a potent, orally bioavailable, Nonpeptidic HIV protease inhibitor[J].Biopolymers, 1999,51(1):51-58.
    72 Amzel L.M.Structure-based drug design[J].Curr opin biotechnol,1998,9(4): 366-399.
    73 Marrone T.J., Briggs J.M.,Mccammon J.A. Structure-based drug design: computational advances[J]. Annu rev pharrnacol toxicol, 1997,37:71-90.
    74 徐筱杰,侯廷军,乔学斌,章威.计算机辅助药物分子设计.化学工业出版社,2004:326-327.
    75 俞庆森,邹建卫,胡艾希.药物设计.化学工业出版社,2005.
    76 Lengauer T., Raey M. Computational methods for biomolecular docking[J].Curr Opin Struet Biol, 1996,6(2):402-406.
    77 Kuntz I.D.Structure-based strategies for drug design and discovery[J]. Science, 1992,257:1078-1082.
    78 Goodshell D.S.,Olson A.J.Automated docking of substrates to protein by simulated annealing[J].Proteins:Struct,Funct, Genet, 1990,8:195- 202.
    79 Affinity user guide, MSI Inc..San Diego,2002,USA.
    80 赵丽琴,肖海军,李松.分子对接在基于结构药物设计中的应用.生物物理学报,2002,18(3):263-270.
    81 Kuntz I.D., Meng E.C., Shoiche B.K.Structure-based molecular design[J]. Acc chem res,1994,27(5):117-123.
    82 Kuntz I.D., Blaney J.M., Oatley S.J., Langridge R., Ferrin T.E.A geometric approach to macromolecule- ligand interactions.J Mol Biol,1982,161:269-288.
    83 Shoichet B.K.,Bodian D.L.,Kuntz I.D.Molecular docking using shape description [J].J Comp Chem,1992,13(3):380-397.
    84 Meng E.C.,Shoichet B.K.,Kuntz I.D.Automated docking with grid-based energy evaluation[J].J Comp Chem, 1992,12:505-524.
    85 Meng E.C.,Gschwend D.A.,Blaney JM, Kuntz I.D. Orientational sampling and rigid-body minimization in molecular docking.Proteins, 1993,17(3): 266-278.
    86 Gschwend D.A., Kuntz I.D.Orientational sampling and rigid-body mininmization in molecular docking revisited: On-the-fly optimization and degeneracy removal[J].J Comput Aided Mol Des, 1996,10:123.
    87 Allen F.H., Bellard S., Brice M.D., Cartwright B.A., Doubleday A., Higgs H, Hummelink T., Hummelink-Peters B.G., Kennard O., Motherwell W.D.S., Rodgers J.R., Watson D.G. The cambridge crystallographic data centre:computer-based search,retrieval,analysis and display of information.Acta cryst, 1979,B 35:2331-2339.
    88 Rusinko, A., Sheridan, R.P., Nilakatan, R., Haraki, K.S., Bauman, N., Venkataraghavan, R. Using concord to construct a large database of 3-dimensional coordinates from connection tables. J Chem Info Comput Sci,1989,29:251-255.
    89 Desjarlais R.L.,Dixon J.S. A shape and chemistry based docking method and its use in the design of HIV-1 prottese inhibitors[J].J Comput aided mol des, 1994,8:231-242.
    90 Ewing T.J.A.,Kuntz I.D.Critial evaluation of search algorithms used in automated molecular docking[J].J Comput Chem,l997,l8(9): 1175-1189.
    91 DOCK 4.0 Manual. Regent of the university of California, 1997.
    92 Desjarlais R.L.,Seibel G.L.,Kuntz I.D., Furth P.S., Alvarez J.C., Ortiz de Montellano P.R., DeCamp D.L., Babe L.M., Craik C.S. Structure-based design of nonpepetide inhibitors speific for the human immunodeficiency virus 1 protease. Proc Natl Acad Sci USA, 1990, 87(17):6644-6648.
    93 Li R., Chen X., Gong B.Structure-base desigh of parasitic protease inhibitors[J]. Bioorg Me Chem,l996,39:388-391.
    94 Shoichet B.k., Stroud R.M., Santi D.V, Kuntz I.D., Perry K.M. Structure-based discovety of inhibitors of thymidylate synthase. Science,1993,259:1445-1450.
    95 Goodshell D.S.,Olson A.J.Automated docking of substrates to proteins by simulated annealing[J]. Proteins. 1990,8(3): 195-202.
    96 Autodock 2.4 user gide. The scripps researh institute, department of molecular biology, mail drop MB-5, 10666 north torrey pines road, La Jolla, CA 92307-5025, USA.
    97 Morris G.M., Goodshell D.S., Halliday R.S., Huey R., Hart W.E., Belew R.K., Olson A.J. Automated docking using a lamarckian genetic algotithm and empirical binding free energy function.J Comput Chem,1998,19:1639-1662.
    98.洪渊. 基质金属蛋白酶及其抑制剂的分子对接研究,2007,吉林大学,硕士论文.
    99 Bernstein F.C., Koetzle T.F., Williams G.J.B., Meyer E.F., Brice M.D., Rodgers J.R., Kennard O., Shimanouchi T., Tasumi M.The protein data bank: a computer base arhivalle for macromolecular structures. J Mol Biol,1997,112:535-542. lOOGasteiger J., Rudolpy C, Sadowski J. Automatic generation of 3D-atomic coordinates for organic moleculers.Tetrahedrom compiler methodology, 1990,3: 537-547.
    101 Hoflack J., De Clerq P.J.The SCA program: an easy way for the conformational evaluation of polycyclic molecules[J].Tetrahedrom Comp Method, 1988,44: 6667-6676.
    102 Klebe G., Mietzner T.A fast and efficient method to generate biologically relvant conformatin[J].J Comput Aided Mol Des,1994, 8:583-606.
    103 Xu S., Xue J.H., Yu C.Y., Luo H.B., Qin L., Yu X.J., Chen J., Chen L.L., Xiong B., Yue L.D., Cai J.H., Shen J.H., Luo X.M.. Chen K.X., Shi T.L., Li Y.X. Hu G.X., Jiang H.L.Smali envelope protein E of SARS: cloning,expression, purification,CD determinatin, and bioinformatics analysis.Acta Pharmacol Sin, 2003,24(6):505-511.
    104 Qin L., Xiong B., Luo C., Guo Z.M., Hao P., Su J., Nan P., Feng Yo, Shi Y.X., Yu X.J., Luo X.M., Chen K.X., Shen X., Shen J.H., Zou J.P., Zhao G.P., Shi T.L., He W.Z., Zhong Y., Jiang H.L., Li Y.X.Identification of probable genomic packaging signal sequence from SARS-CoV genome by bioinformatics analysis. Acta pharmacol sin,2003, 24(6):489-496.
    105 李纯莲.药物设计中分子对接优化设计的算法和软件研究.2004,大连理工大学博士论文.
    106 张媛.几类蛋白的结构预测及分子对接的理论研究.2005,吉林大学博士论文.
    107 何谷,黄文才,郭丽.CCK受体的同源模拟和分子对接研究[J].化学学报,2008,66(1):97-100.
    108 Busam R.D., Thorsell A.G., Flores A., Hammarstrom M., Persson C., Hallberg B.M. First Structure of a Eukaryotic Phosphohistidine Phosphatase[J]. J Biol Chem,2006,281(45):33830-33834.
    109 Fogel G.B., Cheung M., Pittman E., Hecht D. In silico screening against wild-type and mutant Plasmodium falciparum dihydrofolate reductase[J]. J Mol Graph Model,2008,26:1145-1152.
    110 Fogel G.B., Cheung M., Pittman E., Hecht D. Modeling the inhibition of quadruple mutant Plasmodium falciparum dihydrofolate reductase by pyrimethamine derivatives[J]. J Comput Aided Mol Des,2008,22:29-38.
    111 Thomsen R., Mikael H. MolDock: A New Technique for High-Accuracy Molecular Docking[J].J Med Chem,2006,49:3315-3321.
    112 Hu Z.J., Ma Y.F., Southerland W. Computer modeling study of small molecule inhibitors of ubiquitin activating enzyme (El) [J]. Bioi Biom Engi,2007,25:84-85.
    113 Are Hugo Pripp. Docking and virtual screening of ACE inhibitory dipeptides[J].Eur Food ResTechnol,2007,225:589-592.
    1 Fujiki H., Suganuma M., Imai K., Nakachi K.Green tea: cancer preventive beverage and/or drug[J].Cancer Lett,2002,188( 1 -2):9-13.
    2 Lambert J.D., Yang C.S.Cancer chemopreverntive activity and bioavailability of tea and tea polyphenols[J]. Muta Res,2003,201(8): 523-524.
    3 Doumerc N., Bonhoure E., Dayon A., Rischmann P., Malavaud B., Cuvillier O.Green tea (EGCG) and prostate cancer: A new sphingosine kinase inhibitor[J].Eur Urol,2006,5(2):168.
    4 Yu H.N., Yin J.J., Shen S.R. Effects of epi-gallocatechin gallate on PC-3 cell cytoplasmic membrane in the presence of Cu~(2+)[J].Food Chem,2006,95(1):108-115.
    5 Koen B., Ellen D.E.S., Walter H., Guido V., Johannes V.S.Epigallocatechin-3-gallate is a potent natural inhibitor of fatty acid synthase in intact cells and selectively induces apoptosis in prostate cancer cells[J]. Int J Cancer, 2003,106:856-862.
    6 Zhang L.C., Yu H.N., Sun S.L., Yang J.G, He GQ., Ruan H., Shen S.R.Investigations of the Cytotoxicity of Epigallocatechin-3-gallate against PC-3 Cells in the Presence of Cd~(2+) in vitro[J]. Toxicol In Vitro, 2008,22(4):953-960.
    7 Furukawa A., Oikawa S., Murata M., Hiraku Y., Kawanishi S.(-)-Epigallocatechin gallate causes oxidative damage to isolated and cellular DNA[J]. Biochem Pharmacol,2003,66(9):1769-1778.
    8 Azam S., Hadi N. Khan N.U., Hadi S.M. Prooxidant property of green tea polyphenols epicatechin and epigallocatechin-3-gallate: implications for anticancer properties[J]. Toxicol In Vitro,2004, 18(5):555-561.
    9 Inoue M.B., Inoue M., Fernando Q., Valcic S.,Timmermann B.N. Potentiometric and (1)H NMR studies of complexation of Al(3+) with (-)-epigallocatechin gallate, a major active constituent of green tea[J]. J Inorg Biochem,2002,88(1):7-13.
    10 Costello L.C., Franklin R.B., Feng P. Mitochondrial function, zinc, and intermediary metabolism relationships in normal prostate and prostate cancer[J].Mitochondrion,2005,5(3):143-153.
    11 Huang L., Kirschke C.P., Zhang Y. Decreased intracellular zinc in human tumorigenic prostate epithelial cells: a possible role in prostate cancer progression [J]. Cancer Cell Int,2006,31(6):10.
    12 Tachibana H., Koga K., Fujimura Y., Yamada K. A receptor for green tea polyphenol EGCG[J]. Nat Struct Mol Bio,2004,11(4):380-381.
    13 Liao S., Umekita Y, Guo J., Kokontis J.M.,Hiipakka R.A. Growth inhibition and regression of human prostate and breast tumors in athymic mice by tea epigallocatechin gallate[J]. Cancer Lett, 1995, 96(2):239-243.
    14 Gupta S., Ahmad N., Nieminen A.L., Mukhtar H. Growth inhibition, cell-cycle dysregulation, and induction of apoptosis by green tea constituent (-)-epigallocatechin-3-gallate in androgen-sensitive and androgen-insensitive human prostate carcinoma cells[J]. Toxicol Appl Pharmacol,2000,164(1):82-90.
    15 Hayakawa F., Kimura T., Hoshino N., Ando T. DNA cleavage activities of (-)-epigallocatechin, (-)-epicatechin, (+)-catechin, and (-)-epigal locatechin gallate with various kinds of metal ions[J].Biosci Biotechnol Biochem,1999,63(9):1654-1656.
    16 Yu H.N., Shen S.R., Xiong Y.K.Cytotoxicity of epigallocatechin -3- gallate to LNCaP cells in the presence of Cu~(2+)[J].J Zhejiang Univ Sci B,2005,6(2):125-131.
    17 Yu H.N., Yin J.J., Shen S.R. Growth inhibition of prostate cancer cells by epigallocatechin gallate in the presence of Cu~(2+)[J]. J Agric Food Chem,2004,52 (3):462-466.
    18 Bataineh Z.M., Bani Hani I.H., Al-Alami J.R.Zinc in normal and pathological human prostate gland[J]. Saudi Med,2002, 23(2):218-220.
    19 Zaichick V.Y, Sviridova T.V., Zaichick S.V.Zinc concentration in human prostatic fluid: normal, chronic prostatitis, adenoma and cancer[J].Int Urol Nephrol,1996,28(5):687-694.
    20 Fujimura Y, Umeda D., Kiyohara Y, Sunada Y The involvement of the 67 kDa laminin receptor-mediated modulation of cytoskeleton in the degranulation inhibition induced by epigallocatechin-3-O-gallate[J].Biochem Biophys Res Commun,2006,348(2):524-531.
    21 Sun S.L., He G.Q., Yu H.N., Yang J.G., Borthakur D., Zhang L.C., Shen S.R., Das U.N. Free Zn(2+) enhances inhibitory effects of EGCG on the growth of PC-3 cells[J]. Mol Nutr Food Res,2008,52(4):465-471.
    22 Montuori N., M(u|¨)ller F., DeRiu S., Fenzi G., Sobel M.E., Rossi G., Vitale M. Laminin receptors in differentiated thyroid tumors: Restricted expression of the 67-kilodalton laminin receptor in follicular carcinoma cells[J]. J Clin Endorinol Metab, 1999, 84(6):2086-2092.
    23 Ozaki I., Yamamoto K., Mizuta T., Kajihara S., Fukushima N., Setoguchi Y., Morito F., Sakai T. Differential expression of laminin receptors in human hepatocellular carcinoma[J]. Gut, 1998,43(6):837-842.
    24 Zheng S., Ruan Y., Wu Z., Tang J. The relationship between 67kD laminin receptor expression and metastasis of hepatocellular carcinoma[J]. Tongji Med Univ, 1997,17(4):200-202.
    25 郑大利.67kDa层粘连蛋白受体与肿瘤[J].福建医科大学学报.2001,35(4):415-417.
    26 Ho Y.C., Yang S.F., Peng C.Y., Chou M.Y., Chang Y.C. Epigallocatechin-3-gallate inhibits the invasion of human oral cancer cells and decreases the productions of matrix metalloproteinases and urokinase-plasminogen activator[J]. J Oral Pathol Med,2007,36:588-593.
    27 Shammas M.A.,Neri P., Kolev H., Batchu R.B.,Bertheau R.C., Munshi V., Prabhala R., Fulciniti M., Fulciniti M., Tai Y.T.,Treon S.P., Goyal R.K., Anderson K.C., Munshi N.C. Specific killing of multiple myeloma cells by (-)-epigallo catechin-3-gallate extracted from green tea: biologic activity and therapeutic implications[J].Blood,2006, 108(8):2804-2810.
    28 Kugler A. Matrix metalloproteinases and their inhibitiors[J]. Anticancer Res,1999, 19(2):1589-1592.
    29 Freije J.M., Balb(?)n M., Pend(?)s A.M., S(?)nchez L.M., Puente X.S., L(?)pez-Ot(?)n C. Matrix metalloproteinases and tumor progression[J]. Adv Exp Med Biol,2003, 532:91-107.
    30 吴泽志,陈槐卿,薛振南,石红联,赵保路,忻文娟.用马来酰亚胺自旋标记研究库存血红细胞膜蛋白构象[J].生物物理学报,1992,8(4):731-734.
    31 王澎,孙存普.自旋标记ESR技术研究铁对受照射红细胞膜膜蛋白的影响[J].中国放射医学与防护杂志,1995,15(1):36-38.
    32 Dodge J.T., Mitchell C., Hanahan D.J. The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes[J]. Arch Biochem Biophys,1963,100:119-130.
    33 Alonso A., dos Santos W.P., Leonor S.J., dos Santos J.G. Stratum corneum protein dynamics as evaluated by a spin-label maleimide derivative:effect of urea[J]. Biophysical Journal, 2001, 81(6):3566-3576.
    1 Kinlen L.J., Willows A.N., Goldblatt P., Yudkin J. Tea consumption and cancer[J]. Brit J Cancer, 1988,58:397-401.
    2 Heilburn L. K., Nomura A., Stemmermann G.N. Black teaconsumption and cancer risk: A prospective study[J].Br J Cancer,1986,54:677-683.
    3 Wynder E.L., Rose D.P., Cohen L.A. Nutrition and prostate cancer: a proposal for dietary intervention[J]. Nutr Cancer, 1994,22:1-10.
    4 Gupta S., Ahmad N., Mukhtar H. Prostate cancer chemoprevention by green tea[J].Semin Urol Oncol,1999,17(2):70-76.
    5 Reznichenko L., Amit T., Zheng H., Avramovich-Tirosh Y., Youdim M.B.,Weinreb O., Mandel S. Reduction of iron-regulated amyloid precursor protein and beta-amyloid peptide by (-)-epigallocatechin-3-gallate in cell cultures:implications for iron chelation in Alzheimer's disease[J].J Neurochem,2006,97:527-536.
    6 Galati G., Lin A., Sultan A.M., O'Brien P.J. Cellular and in vivo hepatotoxicity caused by green tea phenolic acids and catechins[J]. Free Radic Biol Med,2006,40:570-580.
    7 Yu H.N., Yin J.J., Shen S.R. Growth inhibition of prostate cancer cells by epigallocatechin gallate in the presence of Cu~(2+)[J]. J Agric Food Chem,2004,52:462-466.
    8 Chen Y.M., Wang M.K., Huang P.M. Catechin transformation as influenced by aluminum[J].J Agric Food Chem,2006,54:212-218.
    9 Ullmann U., Haller J., Bakker G.C., Brink E.J., Weber P. Epigallocatechin gallate (EGCG) (TEAVIGO) does not impair nonhaem-iron absorption in man[J].Phytomedicine,2005,12:410-415.
    10 Navarro R.E., Santacruz H., Inoue M. Complexation of epigallocatechin gallate (a green tea extract, egcg) with Mn~(2+): nuclear spin relaxation by the paramagneticion[J]. J Inorg Biochem,2005,99:584-588.
    11 Esparza I., Salinas I., Santamaria C, Garcia-Mina J.M., Fernandez J.M.Electrochemical and theoretical complexationstudies for Zn and Cu with individul polyphenols[J]. Analytica Chimica Acta, 2005,543: 267-274.
    12 Mandel S., Amit T., Reznichenko L., Weinreb O., Youdim M.B. Green tea catechins as brain-permeable, natural iron chelators-antioxidants for the treatment of neurodegenerative disorders[J]. Mol Nutr Food Res,2006,50:229-234.
    13 Chen Y.M., Wang M.K., Huang P.M. Catechin transformation as influenced by aluminum[J].J Agric Food Chem,2006,54:212-218.
    14 Masaru H., Kazuhiro S., Hiroshi M., Hidekazu K., Kazuto I., Hidetoshi Y.Regulation of metallothionein and zinc transporter expression in human prostate cancer cells and tissues[J].Cancer Lett, 2003,200: 187-195.
    15 Detmar B., Stefan H. Cadmium, gene regulation, and cellular signalling in mammalian cells[J]. Toxicology and Applied Pharmacology, 1997,144: 247-261.
    16 Marina V.M., Neil A.L., Bruce S.H., Lionel A.P., Ming W.C. Cadmium-induced 8-hydroxydeoxyguanosine formation, DNA strand breaks and antioxidant enzyme activities in lymphoblastoid cells[J]. Cancer Letters, 1997,115:141-148.
    17 William E.A., Karen B.A., James G.L., Mukta M.W., Michael P.W., Cadmium induces c-myc, p53, and c-jun expression in normal human prostate epithelial cells as a prelude to apoptosis[J].Toxicology and Applied Pharmacology,2000,164:291-300.
    18 Ezdihar A.H., Sidney J.S. Cadmium-induced production of superoxide anion and nitric oxide, DNA single strand breaks and lactate dehydrogenase leakage in J774A.1 cell cultures[J].Toxicology, 1996,112:219-226.
    19 Tcchibana H., Koga K., Fujimura Y., Yamada K. A receptor for green tea polyphenol EGCG[J]. Nat Struct Mol Bio,2004,l l(4):380-381.
    20 Chen Y.M., Wang M.K., Huang P.M. Catechin transformation as influenced by aluminum[J]. J Agric Food Chem,2006, 54(1) : 212-218.
    21 Hoshino N., Kimura T., Hayakawa F., Yamaji A., Ando T. Bactericidal activity of catechin-copper (II) complexes against Staphylococcus aureus compared with Escherichia coli[J]. Lett Appl Microbiol, 2000, 31(3): 213-217.
    22 Bhatia N., Agarwal R. Detrimental effect of cancer preventive phytochemicals silymarin, genistein and epigallocatechin-3-gallate on epigenetic events in human prostate carcinoma DU145 cells[J]. Prostate,2001,46:98-107.
    23 Esparza I., Salinas I., Santamara C, Garcia-Mina J.M., Fernandez J.M..Electrochemical and theoretical complexation studies for Zn and Cu with individual polyphenols[J]. Analytica chimica acta.2005,543: 267-274.
    24 Yu H.N., Shen S.R., Xiong Y.K. Cytotoxicity of epigallocatechin-3- gallate to LNCaP cells in the presence of Cu~(2+).Journal of Zhejiang Univ Sci B,2005,6:125-131.
    25 Yu H.N., Yin J.J., Shen S.R. Effects of epigallocatechin gallate on PC-3 cell cytoplasmic membrane in the presence of Cu~(2+).Food Chem,2006,95: 108-115 .
    26 Kumamoto M., Sonda T., Nagayama K., Tabata M. Effects of pH and metal ions on antioxidative activity of catechins [J].Biosci Biotechnol Biochem,2001,65(1):126-132.
    27 Hayakawa F., Ishizu Y., Hoshino N., Yamaji A., Ando T., Kimura T.Prooxidative activities of tea catechins in the presence of Cu~(2+). Biosci Biotechnol Biochem,2004,68:1825-1830.
    28 Klaunig J.E., Xu Y., Isenberg J.S., Bachowski S., Kolaja K.L., Jiang J.,Stevenson D.E., Walborg E.F. The role of oxidative stress in chemical carcinogenesis[J].Environ Health Perspect,1998,106:289- 295.
    29 Misra, U.K., Gawdi, G., Pizzo, S.V. Induction of mitogenic signalling in the 1LN prostate cell line on exposure to submicromolar concentrations of cadmium[J].Cell signal,2003,15:1059-1070.
    30 Zhao R., Domann F.E., Zhong W. Apoptosis induced by selenomethionine and methioninase is superoxide mediated and p53 dependent in human prostate cancer cells[J]. Mol Cancer Ther,2006,5:3275-3284.
    31 Yamanaka K., Rocchi P., Miyake H., Fazli L., Vessella B., Zangemeister-Wittke U., Gleave M.E. A novel antisense oligonucleotide inhibiting several antiapoptotic Bcl-2 family members induces apoptosis and enhances chemosensitivity in androgen-independent human prostate cancer PC3 cells[J].Mol Cancer Ther,2005,4: 1689-1698.
    32 Qanungo S., Das M., Haldar S., Basu A. Epigallocatechin-3-gallate induces mitochondrial membrane depolarization and caspase-dependent apoptosis in pancreatic cancer cells[J]. Carcinogenesis,2005, 26(5):958-967.
    33 Chen C, Shen G., Hebbar V., Hu R., Owuor E.D., Kong A.N.Epigallocatechin-3-gallate-induced stress signals in HT-29 human colon adenocarcinoma cells[J]. Carcinogenesis,2003,24:1369-1378.
    34 Zhao Y., Yang L.F., Ye M., Gu H.H., Cao Y. Induction of apoptosis by epigallocatechin-3-gallate via mitochondrial signal transduction pathway[J]. Prev Med,2004,39(6):1172-1179.
    35 Das A., Banik N.L., Ray S.K. Mechanism of apoptosis with the involvement of calpain and caspase cascades in human malignant neuroblastoma SH-SY5Y cells exposed to flavonoids[J].Int J Cancer, 2006,119(11 ):2575-2585.
    36 Roy A.M., Baliga M.S., Katiyar S.K. Epigallocatechin-3-gallate induces apoptosis in estrogen receptor-negative human breast carcinoma cells via modulation in protein expression of p53 and Bax and caspase-3 activation[J]. Mol Cancer Ther,2005,4:81-90.
    37 Sun S.L., He G.Q., Yu H.N., Yang J.G., Borthakur D.,Zhang L.C., Shen S.R.,Undurti N.D. Free Zn~(2+) enhances inhibitory effects of EGCG on the growth of PC-3 cells[J]. Mol Nutr Food Res,2008,52(4):465-471.
    38 Shammas M.A.,Neri P., Kolev H., Batchu R.B.,Bertheau R.C., Munshi V.,Prabhala R., Fulciniti M., Fulciniti M., Tai Y.T.Treon S.P., Goyal R.K., Anderson K.C., Munshi N.C. Specific killing of multiple myeloma cells by (-)-epigallocatechin-3-gallate extracted from green tea: biologic activity and therapeutic implications[J].Blood,2006, 108(8):2804-2810.
    39 Fujimura Y, Umeda D., Kiyohara Y.,Sunada Y.,Yamada K.,Tachibana H. The involvement of the 67kDa laminin receptor-mediated modulation of cytoskeleton in the degranulation inhibition induced by epigallocatechin-3-o-gallate[J].Biochem Biophys Res Commun.2006,336(2):524-531.
    40 Ho Y.C., Yang S.F., Peng C.Y., Chou M.Y., Chang Y.C. Epigallocatechin-3- gallate inhibits the invasion of human oral cancer cells and decreases the productions of matrix metalloproteinases and urokinaseplasminogen activator[J].J Oral Pathol Med,2007,36:588-593.
    41 张清俊,吴可.生物领域自由基检测技术的研究进展及其应用[J].航天医学与医学工程,2003,16(4):309-312.
    42 李曦,葛志强.电子顺磁共振技术在细胞膜研究中的应用[J].细胞生物学杂志,2007,29:365-368.
    43 Dodge J.T., Mitchell C., Hanahan D.J. The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes[J]. Arch Biochem Biophys,1963,100:119-130.
    44 Alonso A., dos Santos W.P., Leonor S.J., dos Santos J.G. Stratum corneum protein dynamics as evaluated by a spin-label maleimide derivative:effect of urea[J]. Biophys J, 2001, 81(6):3566-3576.
    45 Yi-Mei Wang, Shuang-Qing Peng,Qi Zhou ,Min-Wei Wang,Chang-Hui Yan, Guo-Qiang Wang,Hai-Ying Yang. The oxidative damage of butenolide to isolated erythrocyte membranes[J]. Toxicology in Vitro, 21(5):2007,863-869.
    1 Timpl R., Rohde H., Gehron-Robey P., Rennard S.I., Foidart J.M., Martin G.R. Laminin, a glycoprotein from basement membranes[J].J Biol Chem 1979,254: 9933-9937.
    2 Martin G.R., Timpl R. Laminin and other basement membrane components[J]. Annu Rev Cell Biol,1987,3:57-85.
    3 济木育夫.细胞接着の机御と转移の阻止[J].癌と化学疗法,1993,20:363-372.
    4 #12
    5 苏玲,周柔丽.层粘连蛋白受体的研究进展[J].中华医学杂志,1984,74(11):705-707.
    6 Mercurio A.M.,Shaw L.M.Laminin binding protein[J].BioEssays,1991, 13:469-473.
    7 Graf J., Iwamoto Y., Sasaki M., Martin G.R., Kleinman H.K., Robey F.A., Yamada Y. Identification of an amino acid sequence in laminin mediating cell attachment,chemotaxis andreceptor binding[J].Cell, 1987,48:989- 996.
    8 Iwamoto Y., Nomizu M.,Yamada Y., Ito Y., Tanaka K., Sugiokay. Inhibition of angiogenesis, tumour growth and experimental metastasis of human fibrosarcoma cells HT1080 by a multimeric form of the laminin sequence Tyr-Ile-Gly-Ser-Arg (YIGSR) [J].Br J Cancer, 1996,73:589-595.
    9 IwamotoY., Robey F.A., Graf J., Sasaki M., Kleinman H.K., Yamada Y., Martin G.R. YIGSR, a pentapeptide from B1 chain of laminin inhibits tumor cell metastases[J].Science, 1987,238:1132-1134.
    10 Graf J., Ogle R.C., Robey F.A., Sasaki M., Martin G.R.,Yamada Y., Kleinman H.K. A pentapeptide from the Iaminin B1 chain mediates cell adhesion and binds 67000 laminin receptor[J].Biochemistry, 1989,26:6896-6900.
    11 Zhao M., Kleinman H.K., Mokotoff M. Syntheticlaminin-like peptides and pseudopeptides as potential antimetastatic agents[J].J Med Chem,1994,37: 3383-3388.
    12 Murata J., Saiki I., Azuma I., Nishi N. Inhibitory effect of a synthetic polypeptide, poly(Tyr-Ile-Gly-Ser-Arg) on the metastasis formation of malignant tumor cells[J].Int J Biol Macromol,1989,11:97-99.
    13 赵铁华,邓淑华,杨鹤松,高巍,施波.抗黏附肽YIGSR的衍生物对Lewis肺癌侵袭、转移能力的抑制作用[J].上海免疫学杂志,2000,20(4):207-210.
    14 王艳红,刘银坤,李文昌,叶胜龙,汤钊猷.抗黏附多肽对人肝癌高转移细胞系MHCC97侵袭转移的抑制作用[J].中华实验外科杂志,2004,21(10):1168-1169.
    15 宋登新,陈安民,郭风劲,雷鸣,王江.YIGSR五肽对骨肉瘤细胞分泌VEGF和MMP-3的抑制作用[J].华中医学杂志,2005,29(1):43-45.
    16 Cohen G.M. Caspase: the executioners of apoptosis[J]. Biochemical Journal, 1997, 326(Pt):1-16.
    17 葛轶群,俞建瑛.生物活性肽的研究进展[J].中圈生物药物杂志,1998,19(6):404-406.
    18 苏秀兰.生物活性肽的研究进展[J].内蒙古医学院学报,2006,28(5):471-473.
    19 王克夷.开发小肽筛选新药[J].中国生化药物杂志,2003,24(I):48-50.
    20 Femandes M.O., Smith V.J. A novel antimicrobi function for a ribosomal peptide from rainbo trout skin[J]. Bioch Biophysi Res Communic,2002, 296(1):167-170.
    21 Sakamoto N.,Iwahana M.,Tahaka N.G.,Osada Y.Inhibition of angiogenesis and tumor growth by synthetic laminin peptide CDPYIGSR-NH2[J].Canc Res,1991, 51:903-906.
    22 Kleinman H.K., Graf J., Iwamoto Y., Sasaki M., Schasteen C.S., Yamada Y., Martin G.R., Robey F.A. Identification of a second site in laminin for promotion of cell adhesion and migration of in vivo melanomalung colonization[J].Arch Biochem Biophys,1989,272:39-45.
    23 Saiki I., Murata J., Iida J., Nishi N., Sigimura K., Azuma I. The inhibition of murine lung metastasis by synthetic polypeptides [poly (Arg-Gly-Asp) and poly (Tyr-Ile-Gly-Arg)] with a core sequence of cell adhesion molecules[J]. Br J Cancer, 1989,59:194-197.
    24 Kawasaki K., Murakami T., Namikawa M., Mizuta T., Iwai Y., Yamashiro Y., Hama T., Yamamoto S., Mayumi T.Amino acids and peptides. XXI.Laminin-related peptide analogs including poly(ethylene glycol) hybrids and their inhibitory effect on experimental metastasis[J].Chem Pharm Bull, 1994,42:917-921.
    25 Sivanaridaiah K.M., Suresh Babu V.V., Shankaramma S.C. Synthetic peptides related to laminin pentapeptide (YIGSR) fragment[J].Indian J Exp Biol, 1996,34:658-662.
    26 Kawasaki K., Namikawa M., Murakami T., Mizuta T.,Iwai Y, Hama T., Mayumi T.Laminin related peptides and their inhibitory effect on experimental metastasis formation[J].Biochem Biophys Res Commun,1991, 174:1159-1162
    27 Nomizu M., Yamamura K., Kleinman H.K., Yamada Y.Multimeric forms of Tyr-Ile-Gly-Ser-Arg (YIGSR) peptide enhance the inhibition of tumor growth and metastasis[J].Cancer Res, 1993,53:3459-3461.
    28 SongC.K., Zhao H.I.R., Tie H. A prospective study of tumo prevention: effects of synthetic peptides in vitro invasivability of hi Lly metastatic human lung giant-cell carcinoma cell line[J].Chin J Clin Rehabilitation,2005,9(6):200-201.
    29 Yan T., Oberley L.W., Zhong W.X., Clair D.K.St.Manganese-containing super-Oxidedismutase overexpression causes phenotypic reversion in SV40 stransformed human lung fibroblasts[J].Cancer Res, 1996,56:2864- 2871.
    30 Guo L., Guo Y, Cao C.A.Expression and significance of human leukocytecommon antigen and apoptosis-associated genes Fas, bcl-2 and bax in hepatocellula carecinoma[J]. Zhongliu Fangzhi yanjiu.1999, 26(2):94-95.
    31 Dseagher S., Martinou J.. Mitochondria as the central control point of apoptosis[J].Trends Cell Biol, 2000,10(9):369-377.
    32 Ashkenazi A., Dixit V.M. Death receptors: signaling and modulation[J]. Science,1998,281(5381):1305-1308.
    33 Nakamura K., Bossy-Wetzel E., Burns K., Fadel M.P., Lozyk M., Goping I.S.,Opas M., Bleackley R.C., Green D.R., Michalak. Changes in endoplasmic reticulum luminal environment affect cell sensitivity to apoptosis[J].J Cell Biol,2000,150(4):731-740.
    34 Zou H., Henzel W.J., Liu X., Lutschg A., Wang X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3 [J].Cell, 1997,90(3):405-413.
    35 Li P., Nijhawan D., Budihardjo I., Srinivasula S.M., Ahmad M., Alnemri E.S., Wang X.Cytochrome C and dATP dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease caspase[J]. Cell, 1997,91 (4):479-489.
    36 Bianchi K., Rimessi A., Prandini A., Szabadkai G., Rizzuto R. Calcium and mitochondria: mechanisms and functions of a troubled relationship [J]. Biochim Biophys Acta,2004,1742(1-3):119-131.
    37 Salido M., Gonzalez J.L., Vilches J. Loss of mitochondrial membrane potential is inhibited by bombesin in etoposide-induced apoptosis in PC-3 prostate carcinoma cells[J]. Mol Cancer Ther, 2007,6:1292-1299.
    38 Zamzami N., Kroemer G. Methods to measure membrane potential and permeability transition in the mitochondria during apoptosis[J]. Methods Mol Biol,2004,282:103-115.
    39 郑大利.67kDa层粘连蛋白受体与肿瘤[J].福建医科大学学报,2001,35(4):415-417.
    40 邓淑华,赵铁华,杨鹤松,高巍,杨鹤松,石艳华,曹凯.抗粘附肽RGD和YIGSR对肿瘤侵袭、转移能力的抑制作用[J].江苏医药杂志,2001,22(7):529-530.
    41 Kugler A. Matrix, metalloproteinascs and their inhibitiors[J]. Anticancer Res,1999, 19(2):1589-1592.
    42 Freije J.M., Balb(?)n M., Pend(?)s A.M., S(?)nchez L.M., Puente X.S., L(?)pez-Ot(?)n C. Matrix metalloproteinases and tumor progression[J]. Adv Exp Med Bio,2003,532: 91-107.
    43 Tachibana H.,Koga K.,Fujimura Y.,Yamada K. A receptor for green tea polypheno EGCG[J]. Nat Struct Mol Bio,2004,11(4):380-381.
    1 Terranova V.P., Rao C.N., Kalebic T., Margulies I.M., Liotta L.A. Laminin receptor on human breast carcinoma cells[J]. Proc Natl Acad Sci SA, 1983,80(2):444-448.
    2 Zheng D.L.67-kDa laminin receptor and cancer[J].Journal of Fujian M edical University,35(4):415-418.
    3 Montuori N., M(u|¨)ller F., De Riu S., Fenzi G., Sobel M.E., Rossi G., Vitale M. Laminin receptors in differentiated thyroid tumors: Restricted expression of the 67 kilodalton laminin receptor in follicular carcinoma cells[J].J Ciin Endocrinol Metab, 1999,84(6): 2086-2092.
    4 Ozkai I.,Yamamoto K.,Mizuta T., Kajihara S., Fukushima N., Setoguchi Y., Morito F., Sakai T. Differential expression of laminin receptors in human hepatocellular carcinoma[J].Gut, 1998,43(6):837-842.
    5 Zheng S.X., Ruan Y.B. ,Wu Z.B., Tang J. The relationship between 67 kD laminin receptor expression and metastasis of hepatocellula carcinoma[J].J Tongji Meal Univ, 1997,17(4):200-202.
    6 But(?)S., Tagliabue E., Ardini E., Magnifico A., Ghirelli C., van den Br le F., Castronovo V., Colnaghi M.I., Sobel M.E., M(?)nard S. Formation of the 67kD laminin receptor by acylation of the precursor. J Cell Biochem,1998, 9(3): 44-251.
    7 Givan t-Horwitz V., Davidsen B., Reich R. Laminin-induced signaling in tumor cells[J]Cancer Lett.,2005,223(1):1-10.
    8 Vans K., Weiss S. A trans-dominant negative 37kD/67kD laminin receptor mutant impairs PrP(sc) propagation in scrapie-infected neuronal ceHs[J]. J Mol Biol,2006,358(1):57-66.
    9 苏玲,周柔丽.层粘连蛋白受体的研究进展[J].中华医学杂志,1984,74(11):705-707.
    10 Mercurio A.M., Shaw L.M.Laminin binding protein[J].BioEssays,1991,13: 469-473.
    11 Graf J., Iwamoto Y., Sasaki M., Martin G.R., Kleinman H.K., Robey F.A., Yamada Y. Identification of an amino acid sequence in laminin mediating cell attachment,chemotaxis andreceptor binding[J].Cell, 1987, 48:989-996.
    12 Tcchibana H., Koga K., Fujimura Y., Yamada K.A receptor for green tea polyphenol EGCG[J]. Nat Struct Mol Bio,2004,11 (4):380-381.
    13 Pripp A.H. Docking and virtualscreening of ACE inhibitory dipeptides[J]. Eur Food Res Technol,2007,225:589-592.
    14 Jamieson K.V., Wu J., Hubbard S.R., Meruelo D.Crystal structure of the human laminin receptor precursor[J].Jouranl of biological chemistry,2008,283(6):3002-3005.
    15 连继勤,戴旭芳,甘立霞,何凤田.人67kD层粘连蛋白受体在毕赤酵母中的表达及活性分析[J].生物工程学报,23(4):602-606.
    16 LeffP.Receptor-based drug design. New York:Marcel Dekker Inc,1997.
    17 Apostolakis J.,Cafisch A.Computational ligand design[J].Comb chen high through put screen, 1999,2(2):91-104.
    18 Thaisrivongs S., Strohbach J.W.Structure-based discovery of tipranavir disodium: a potent,orally bioavailable,Nonpeptidic HIV protease inhibitor[J]. Biopolymers, 1999,51 (1):51-58.
    19 Amzel L.M.Structure-based drug design[J].Curr opin biotechnol,1998,9(4): 366-369.
    20 Marrone T.J., Briggs J.M., McCammon J.A. Structure-base drug design: computational advances[J]. Annu rev pharmacol toxicol, 1997,37:71-90.
    21 徐筱杰,侯廷军,乔学斌,章威.计算机辅助药物分子设计.化学工业出版社,2004:326-327.
    22 Thomsen R., Mikael H. MolDock: A New Technique for High-Accuracy Molecular Docking[J].J Meal Chem,2006,49:3315-3321.
    23 Hu Z.J., Ma Y.F., Southerland W. Computer modeling study of small molecule inhibitors of ubiquitin activating enzyme (El) [J].Bioinformatics and Biomedical Engineering, 2007:84-85.
    24 Iwamoto Y., Nomizu M., Yamada Y., Ito Y., Tanaka K., Sugioka Y.Inhibition of angiogenesis, tumour growth and experimental metastasis of human fibrosarcoma cells HT1080 by a multimeric form of the laminin sequence Tyr-lle-Gly-Ser-Arg (YIGSR).Br J Cancer, 1996,73: 589-595.
    25 IwamotoY., Robey F.A., GrafJ., Sasaki M., Kleinman H.K.,Yamada Y., Martin G.R.YIGSR, a pentapeptide from Bl chain of laminin inhibits tumor cell metastases[J].Science,l987,238:1132-1134.
    26 Graf J., Ogle R.C., Robey F.A., Sasaki M., Martin GR.,Yamada Y., Kleinman H.K.A pentapeptide from the laminin B1 chain mediates cell adhesion and binds 67000 laminin receptor[J].Biochemistry,1989, 26:6896-6900.
    27 Zhao M, Kleinman H.K., Mokotoff M. Synthetic laminin-like peptides and pseudopeptides as potential antimetastatic agents[J].J Med Chem,1994,37:3383-3388.
    28 Castronovo V., Taraboletti G, Sobel M.E. Laminin receptor complementary DNA-deduced synthetic peptide inhibits cancer cell attachment to endothelium[J].Cancer Res, 1991,51 (20):5672-5678.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700