含树枝状大分子体系的自组装及基于包结络合作用的超分子多嵌段聚合物研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分子自组装是当今最活跃的科学领域之一,它是实现具有功能单元的多层次有序结构的有效途径,对于揭示生命过程中的各种机制和获得先进功能材料都有着重要的理论意义及应用价值。自上世纪80年代以来,科学家们发现嵌段共聚物在选择性溶剂中的自组装可以形成形态和结构多样的胶束或胶束状聚集体,包括球形、棒状、囊泡状、管状以及复合胶束等。随着研究的不断深入,许多有着复杂结构的大分子被引入到自组装领域研究中。大量的实验事实都证明,组装单元的分子构筑对于自组装过程及其结果都有着巨大的影响。在这些新型的构筑单元中,树枝状大分子,因其具有非常规整、精致的结构且其分子体积、形状和功能可以精确控制,在自组装领域的研究中受到特别的注意。越来越多的实验表明,树枝状大分子在自组装过程中表现出来的行为的确与线性高分子存在着很大的差异。
     近年来,我们课题组提出,高分子与高分子之间依靠氢键作用可以形成具有核-壳结构的非共价键合胶束(Non-Covalently Connected Micelle,NCCM)。然而,过去的工作中所选用的组装单元都是线形结构的高分子。考虑到组装单元的构筑上的不同会导致组装行为和组装体形貌及结构的明显差别,本论文的工作致力于应用树枝状大分子作为构筑单元的自组装构建NCCM。论文中,首先,我们将利用Frechet-type扇形树枝状大分子dendron引入到溶液中自组装体系,研究了它与线形高分子在溶液中基于氢键相互作用的自组装行为。然后,又利用液晶树枝状大分子作为结构导向成分,尝试制备了C60的“纳米导线”。最后,我们将研究延伸至基于环糊精和金刚烷之间的包结络合作用获得超分子聚合物的领域。
     具体开展了以下几方面的研究工作:
     1.)通过收敛法的合成策略,分别合成了焦点具有一个羧基的从一代到四代的Frechet苄醚型dendron,并对其进行了详细的结构表征。另外利用RAFT的方法合成了分子量大约3.6万,且分子量分布很窄(PDI=1.06)的聚4乙烯基吡啶(P4VP)。利用羧基和吡啶基团之间的氢键相互作用,我们实现了该类Dendron和P4VP在共同溶剂(氯仿)中的自组装。发现了组装体的形貌和结构依赖于组装单元的组成。通过调节两种构筑单元的比例,我们分别得到了“西瓜胶束”、大薄壁囊泡和小厚壁囊泡。这些结构和形态是通过SEM,TEM,AFM以及DLS和SLS的研究而确定的。交联薄壁囊泡会提高其强度,可避免其在TEM和SEM制样时的变形和坍塌,从而得到真实的图像。由于两构筑单元之间结构的不对称,使得囊泡的壁内部形成了微相分离的结构,致使该囊泡较之以前所得到的囊泡具有更高级的有序结构。
     2.)合成了三代苄醚型dendrimer,并通过傅—克反应和氧化两步反应将其改性为羧基修饰的dendrimer。又用RAFT的方法合成了线形高分子链P2VP。通过羧基和吡啶基之间的氢键相互作用,实现了该改性dendrimer和线形高分子P2VP在选择性溶剂中的自组装。通过调节树枝状大分子和线形高分子的比例,我们不但可以得到典型实心胶束,还可以得到“钵形”胶束。推测该胶束是由于线形高分子P2VP主链塌缩诱导接枝dendrimer进行规则排列形成的。该dendrimer及其组装体可在表面进一步实现多方面的功能化,这将有助于开发出具有应用价值的功能化胶束。
     3.)通过Percec扇形树枝分子作为液晶结构导向成分,尝试实现C60的一维规则排列,目的就是想得到具有良好电导性能的C60纳米导线。为此,我们合成了两个Percec扇形树枝分子连接的C60分子。可是由于C60分子的空间位阻的原因,该目标化合物没能具有液晶性质。但有趣的是,将该化合物在HOPG上成膜后却可以得到C60一维排列的规则条纹。经过分析我们判断该条纹结构就是C60纳米导线。在此工作的基础上,我们又设计了以树枝化大分子(Denpol)液晶作为C60载体的策略。这样利用共价键连接的方法克服C60分子位阻效应,从而更有利于实现含C60的液晶。
     4.)超分子聚合物是分子组装领域里的重要的研究方向。然而,迄今几乎还没有关于以分子量较小的高分子作为构筑单元合成超分子聚合物的报道。本章中我们首先通过ATRP和click reaction合成了超分子聚合物的组装单元,即含包结络合的主体(环糊精,CD)或客体(金刚烷,Ad)端基的低分子量的Ad-PNIPAm-CD,CD-PNIPAm-CD及Ad-PEG-Ad。通过光散射,NOSEY,荧光光谱表征了超分子的形成。我们还利用了时间停留光谱仪对CD-PNIPAm-CD和Ad-PEG-Ad形成超分子聚合物的过程进行了动力学的研究。发现上述基于端基间的包结络合形成超分子的过程中包含两个阶段,第一个阶段瞬时发生,形成分子量较小的超分子,第二阶段进行较慢,是该分子量较小超分子进一步相互连接为高分子量的超分子的过程。该发现不仅仅对于理解超分子形成的物理过程具有一定理论意义,同时它还将为超分子研究中的高分子合成的分子设计提供指导。
Molecular self-assembly is one of the most active areas in current scientific research. It is a very important and effective way to realize the multi-scale ordered structures containing functional units. Therefore, studies on self-assembly possess tremendous values in both theory and practice in exploring the mechanisms in life processes and preparing advanced functional materials. Since 1980s, scientists have found that block copolymers could self-assemble to micelle or micelle-like aggregates in selective solvents with diverse morphologies such as spheres, rods, vesicles, tubes and compounded micelles etc. Along with the rapid progress of the research, a plenty of new macromolecular building-blocks with sophisticated structures are introduced into the studies of self-assembly. Abundant experimental results concluded that the architecture of the building blocks has obvious impact on the processes and resultant objects of the self-assembly. Among such new-type building blocks, macromolecular dendrimers have drawn special attention since they have regular and diaphanous structures and their molecular volume, shape and functions can be accurately controlled. In fact, more and more experiments reveal that the dendrimers distinguish themselves significantly from the corresponding linear polymers in the self-assembly processes.
     In the long-term research of our group on macromolecular self-assembly to construct non-covalent connected micelle (NCCM) via hydrogen bonding, only linear macromolecules as building blocks were used in the past. On the view that molecular architecture of the building blocks could intensively affect the self-assembly behavior and the morphology of the resultant micelles, in this thesis, efforts have been made to use dendrimers and its derivatives as building blocks to construct our NCCM. In the thesis, firstly, we investigated the self-assembly of Frechet-type dendron and linear polymers in solution driven by hydrogen bonding. Afterwards, we tried to acquire C60 "Nanowire" by using liquid crystals of Perece-type dendrons as structural director component. Finally, the research was extended to the field of constructing supramolecular polymers by the inclusion complexion between cyclodextrin and admantane.
     This thesis focuses on the following four parts:
     1.) The Frechet-type dendrons (G1-G4) with single carboxylic focus were synthesized through the convergent method and characterized in details. Through RAFT method, we acquired P4VP (Mn=36K) with a narrow molecular weight distribution. Self-assembly of the dendrons and P4VP in their common solvent chloroform was realized due to hydrogen-bonding interaction between the carboxyl and pyridine groups. We found that the structure and morphology of the assemblies relied on the composition of the building blocks. By changing the molar ratio of the two building blocks, "watermelon micellers", large thin-shell vesicles and small thick-shell vesicles were attained. Such morphologies were explored and confirmed by SEM, TEM, AFM, DLS and SLS studies. For the thin-shell vesicles, crosslinking the shell could improve the strength and then prevent deformation and collapse of the vesicles during the TEM and SEM sample preparation. Therefore reliable images of the vesicles could be attained. Due to the structural asymmetry of two building blocks, phase separation takes place forming layers in the vesicles shell, thus such vesicles may possess more ordered structure compared to the previously acquired ones.
     2.) The third generation dendrimer were synthesized and modified with carboxyl on the surface by means of F-C reaction and oxygenation. Meanwhile, liner polymer P2VP was synthesized by RAFT method. Self-assembly of this modified dendrimer and P2VP in selective solvents due to hydrogen bonding between the carboxyl and pyridine groups were completed. Adjusting the proportion of the dendrimer and liner polymer, we gained typical solid micelles as well as "bowl" micelles. The latter was supposed to form as the collapse of the liner P2VP chains induced grafted dendrimers to take an ordered arrangement. Such assemblies provide broad possibilities for further functionalization on the surface to meet different requirements in a variety of applications.
     3.) Taking Percec-type dendron as a liquid-crystal director component, we tried to realize one-dimension regular arrangement of C60 to acquire C60 "Nanowire" with good conductance properties. For this purpose, we synthesized a new compound of C60 connected with two Percec dendrons. But probably due to the steric hindrance of C60, the target compound did not form liquid crystal phase. However, It is interesting that the compound formed long stripes in ordered arrangement on HOPG These stripes can be regarded as C60 nanowires. Based on this work, we designed a new strategy of taking liquid-crystal denpols (dendronazed polymer) as C60 vehicle, i.e. C60 is chemically attached to the denpol chains so that the steric effect could be prevented.
     4.) Supramolecular polymers (SupP) have been intensively studied as an important field in molecular assembly. However, few reports on using low-molecular weight polymers as building blocks to construct SupPs. In this chapter we synthesized low-molecular-weight polymers, i.e. Ad-PNIPAm-CD, CD-PNIPAm-CD and Ad-PEG-Ad with end groups of host (CD) and guest (Ad), via ATRP and click reaction. They are used as building blocks to form SupPs driven by the inclusion complexation between the host and guest. The formation of SupPs in solution was studies and characterized by LS, NOSEY, fluorescence spectrum. Particularly, we carried out the kinetic study on the SupP formation from CD-PNIPAm-CD and Ad-PEG-Ad by Stopped-Flow spectroscopy. We found that there are two steps in the formation of the SupPs. In the first step which occurs instantly, relatively low-molecular-weight SupPs formed. Then, in the second step, such formed SupPs connected each other to form much longer SupPs. This finding not only has theoretical significance in understanding the physical process of the formation of SupPs but also provide a guide for designing polymers used for supramolecular studies.
引文
[1] Philip D, Stoddart J. F., Self-assembly in natural and unnatural systems. Angew. Chem. Int. Ed. 1996, 35, 1155-1196
    [2] Ball P., The Self-Made Tapestry: Pattern Formation in Nature (Oxford Univ. Press, Oxford, 1999)
    [3] 张金中,王中林,刘俊,陈少伟,刘刚玉等著,曹茂盛,曹传宝译 纳米结构材料 化学工业出版社 北京 2005,1-5
    [4] Forster S., Plantenberg T., From self-organizing polymers to nanohybrid and biomaterials, Angew. Chem. Int. Ed. 2002, 41,688-714
    [5] a)Whitesides G. M., Mathias J. P., Seto C. T., Molecular Self-Assembly And Nanochemistry-A Chemical Strategy For The Synthesis Of Nanostructures Science 1991, 254, 1312;
    b) Whitesides G. M., Grzybowski B., Self-assembly at all scales Science 2002, 295, 2418;
    [6] Singh R., Maru V. M., Moharir P. S., Complex Chaotic Systems And Emergent Phenomena. J. Nonlinear Sci. 1998, 8, 235
    [7] Iijima, S., Helical Microtubules of Graphitic Carbon. Nature 1991, 354, (6348), 56-58.
    [8] Gulik-Krzywicki T., Fouquei C., Lehn J. M., Electron Microscopic Study of Supramolecular Liquid Crystalline Polymers Formed by Molecular-Recognition-Directed Self-Assembly from Complementary Chiral Components. Proc. Natl. Acad. Sci. U.S.A. 1993, 90, 163-167
    [9] Jonkheijm, P.; Schoot, P.V.D.; Schenning A.P.H.; Meijer E.W. Probing the solvent-assisted nucleation pathway in chemical self-assembly. Science 2006, 313, 80-83
    [10] Drexler, K. E., Molecular engineering: An approach to the development of general capabilities for molecular manipulation. Proceedings of the National Academy of Sciences USA 1981, 78, (9), 5275-5278.
    [11] Matsen M. W. The standard Gaussian model for block copolymer melts. J. Phys.: Condens. Matter, 2002, 14:R21
    [12] Matsen, M. W.; Bates, F. S., Unifying weak- and strong-segregation block copolymer theories. Macromolecules 1996, 29, (4), 1091-1098.
    [13] Matsen, M. W.; Schick, M., Stable and unstable phases of a linear multiblock copolymer melt. Macromolecules 1994, 27, (24), 7157-7163.
    [14] Matsen, M. W.; Schick, M., Stable and unstable phases of a diblock copolymer melt. Physical Review Letters 1994, 72, (16), 2660-2663.
    [15] Goldacker, T.; Abetz, V., Core-shell cylinders and core-shell gyroid morphologies via blending of lamellar ABC triblock and BC diblock copolymers. Macromolecules 1999, 32, (15), 5165-5167.
    [16] Breiner, U.; Krappe, U.; Stadler, R., Evolution of the "knitting pattern" morphology in ABC triblock copolymers. Macromolecular Rapid Communications 1996, 17, (8), 567-575.
    [17] Breiner, U.; Krappe, U.; Thomas, E. L.; Stadler, R., Structural characterization of the "knitting pattern" in polystyrene-block-poly(ethylene-co-butylene)-block-poly(methylmethacrylate) triblock copolymers. Macromolecules 1998, 31, (1), 135-141.
    [18] Goldacker, T.; Abetz, V., A new way to the "knitting pattern" via blending of ABC triblock copolymers. Macromolecular Rapid Communications 1999, 20, (8), 415-418.
    [19] Lee, M.; Cho, B. K.; Zin, W. C., Supramolecular structures from rod-coil block copolymers. Chemical Reviews 2001, 101, (12), 3869-3892.
    [20] Park, J. W.; Thomas, E. L., Multiple ordering transitions: Hierarchical selfassembly of rod-coil block copolymers. Advanced Materials 2003, 15, (7-8), 585-588.
    [21] Grayer, V.; Dormidontova, E. E.; Hadziioannou, G.; Tsitsilianis, C., A comparative experimental and theoretical study between heteroarm star and diblock copolymers in the microphase separated state. Macromolecules 2000, 33, (17), 6330-6339.
    [22] Cho B. K., Jain A., Gruner S. M., Wiesner U., Mesophase Structure-Mechanical and Ionic Transport Correlations in Extended Amphiphilic Dendrons. Science 2004, 10 September (305), 1598-1601
    [23] Johnson, M. A.; Iyer, J.; Hammond, P. T., Microphase segregation of PEO-PAMAM linear-dendritic diblock copolymers. Macromolecules 2004, 37, (7), 2490-2501.
    [24] Roman, C.; Fischer, H. R.; Meijer, E. W., Microphase separation of diblock copolymers consisting of polystyrene and acid-functionalized poly(propylene imine) dendrimers. Macromolecules 1999, 32, (17), 5525-5531.
    [25] Mackay, M. E.; Hong, Y.; Jeong, M.; Tande, B. M.; Wagner, N. J.; Hong, S.; Gido, S. P.; Vestberg, R.; Hawker, C. J., Microphase separation of hybrid dendronlinear diblock copolymers into ordered structures. Macromolecules 2002, 35, (22), 8391-8399.
    [26] Lecommandoux, S.; Klok, H. A.; Sayar, M.; Stupp, S. I., Synthesis and selforganization of rod-dendron and dendron-rod-dendron molecules. Journal Of Polymer Science Part A-Polymer Chemistry 2003, 41, (22), 3501-3518.
    [27] Kim, J. K.; Hong, M. K.; Ahn, J. H.; Lee, M., Liquid-crystalline assembly from rigid wedge-flexible coil diblock molecules. Angew. Chem. Int. Ed. 2005, 44, 328-332
    [28] Lecommandoux, S.; Klok, H. A.; Sayar, M.; Stupp, S. I., Synthesis and selforganization of rod-dendron and dendron-rod-dendron molecules. Journal Of Polymer Science Part A-Polymer Chemistry 2003, 41, (22), 3501-3518.
    [29] Pochan, D. J.; Pakstis, L.; Huang, E.; Hawker, C.; Vestberg, R.; Pople, J., Architectural disparity effects in the morphology of dendrimer-linear coil diblock copolymers. Macromolecules 2002, 35, (24), 9239-9242.
    [30] Tande, B. M.; Wagner, N. J.; Mackay, M. E., Phase behavior of hybrid dendronlinear copolymers and blends with linear homopolymer. Comptes Rendus Chimie 2003, 6, (8-10), 853-864.
    [31] Mackay, M. E., Dendrimers, nanodevices to create unique phenomena. Comptes Rendus Chimie 2003, 6, (8-10), 747-754.
    [32] Santini, C. M. B.; Johnson, M. A.; Boedicker, J. Q.; Hatton, T. A.; Hammond, P. T., Synthesis and bulk assembly behavior of linear-dendritic rod diblock copolymers. Journal of Polymer Science Part A-Polymer Chemistry 2004, 42, (11), 2784-2814.
    [33] Duan, X. X.; Yuan, F.; Wen, X. J.; Yang, M.; He, B. L.; Wang, W., Alternating crystalline-amorphous layers in hybrid block copolymers of linear poly(ethylene glycol) and dendritic poly(benzyl ether). Macromolecular Chemistry And Physics 2004, 205, (10), 1410-1417.
    [34] Cho, B. K.; Jain, A.; Gruner, S. M.; Wiesner, U., Mesophase structuremechanical and ionic transport correlations in extended amphiphilic dendrons. Science 2004, 305, (5690), 1598-1601.
    [35] Pyun, J.; Tang, C. B.; Kowalewski, T.; Frechet, J. M. J.; Hawker, C. J., Synthesis and direct visualization of block copolymers composed of different macromolecular architectures. Macromolecules 2005, 38, (7), 2674-2685.
    [36] Cho, B. K.; Jain, A.; Gruner, S. M.; Wiesner, U., Generation dependent mesophase behavior in extended amphiphilic dendrons in the shape of macromolecular dumbbells. Chemical Communications 2005, (16), 2143-2145.
    [37] Yah XH, Liu GJ, Liu FT, Tang BZ, Peng H, Pakhomov AB, Wong CY. Superparamagnetic triblock copolymer/Fe2O3 hybrid nanofibers. Angew Chem Int Edit, 2001, 40: 3593.
    [38] Stewart S, Liu G. Block copolymer nanotubes. Angew Chem-Int Edit, 2000, 39: 340.
    [39] Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev 2001, 47: 113.
    [40] Hadjichristidis, N.; Pispas, S.; Fludas, G. A., Block copolymers: Synthetic Strategies, Physical Properties, and Applications. John Wiley & Sons, Inc.: Hoboken, 2003; 383-408.
    [41] Riess, G., Micellization of block copolymers. Progress in Polymer Science 2003, 28, (7), 1107-1170.
    [42] Deng Y., Price C., Booth C., Preparation and properties of block copolymer with two stat-copoly(oxyethylene/oxypropylene) blocks. Euro. Polym. J. 1994, 30, (1), 103-107.
    [43] Alexandridis P., Holzwarth J. F., Hatton T. A., Micellization of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer in aqueous solutions: thermodynamics of copolymer association. Macromolecules 1994, 27, (9), 2414-2419.
    [44] Cao T, Munk, P, Ramireddy, C,Tuzar, Z, Webber, SE. Fluorescence studies of amphiphilic poly(methacrylic acid)-block-polystyrene-block-poly(methacrylic acid) micelles. Macromolecules, 1991, 24, (23), 6300-6305.
    [45] Zhang, L. F.; Eisenberg, A., Multiple morphologies and characteristic of crew-cut micelle-like aggregates of polystyrene-b-poly(acrylic acid) diblock copolymers in aqueous solutions. Science, 1995, 268, (5218), 1728-1730
    [46] Zhang, L. F.; Eisenberg, A., Morphogenic effect of added ions on crew-cut aggregates of polystyrene-b-poly(acrylic acid) block copolymers in solutions. Macromolecules 1996, 29, (27), 8805-8815.
    [47] Zhang, L. F.; Eisenberg, A., Multiple morphologies and characteristics of "crewcut" micelle-like aggregates of polystyrene-b-poly(acrylic acid) diblock copolymers in aqueous solutions. Journal of the American Chemical Society 1996, 118, (13), 3168-3181.
    [48] Yu, K.; Zhang, L. F.; Eisenberg, A., Novel morphologies of "crew-cut" aggregates of amphiphilic diblock copolymers in dilute solution. Langmuir 1996, 12, (25), 5980-5984.
    [49] Riegel, I. C.; Eisenberg, A.; Petzhold, C. L.; Samios, D., Novel bowl-shaped morphology of crew-cut aggregates from Amphiphilic block copolymers of styrene and 5-(N,N-diethylamino)isoprene. Langmuir 2002, 18, (8), 3358-3363
    [50] Shen, H. W.; Eisenberg, A., Control of architecture in block-copolymer vesicles. Angewandte Chemie-International Edition 2000, 39, (18), 3310-+.
    [51] Zhang, L. F.; Bartels, C.; Yu, Y. S.; Shen, H. W.; Eisenberg, A., Mesosized crystal-like structure of hexagonally packed hollow hoops by solution self-assembly of diblock copolymers. Physical Review Letters 1997, 79, (25), 5034-5037.
    [52] Yan, D. Y., Zhou, Y.F. Hou, J., Supramolecular self-assembly of macroscopic tubes. Science, 2004, 303, 65-67.
    [53] Ebara. M. Yamato M. Hirose M, Aoyagi T, Kikuchi A, Sakai K, Okano T. Copolymerization of 2-carboxyisopropylacrylamide with N-isopropylacrylamide accelerates cell detachment from grafted surfaces by reducing temperature. Biomacromolecules, 2003, 4:344-349.
    [54] Nakajima K, Honda S, Nakamura Y, et al. Intact microglia are cultured and non-invasively harvested without pathological activation using a novel cultured cell recovery method. Biomaterials, 2001, 22(11): 1213-1223.
    [55] Yamato M, Konno C, Kushida A, et al. Release of adsorbed fibronectin from temperature-responsive culture surfaces requires cellular activity. Biomaterials, 2000, 21 (10): 981-986.
    [56] Nandkumar MA, Yamato M, Kushida A, et al. Two-dimensional cell sheet manipulation of heterotypically co-cultured lung cells utilizing temperature-responsive culture dishes results in long-term maintenance of differentiated epithelial cell functions. Biomaterials, 2002, 23 (4): 1121-1130.
    [57] Uchida K, Sakai K, Ito E, et al. Temperature-dependent modulation of blood platelet movement and morphology on poly(N-isopropylacrylamide)-grafted surfaces. Biomaterials, 2000, 21(9): 923-929.
    [58] Topp M. D. C., Dijkstra P. J., Talsma H., Feijen J., Thermosensitive Micelle-Forming Block Copolymers of Poly(ethylene glycol) and Poly(N-isopropylacrylamide). Macromolecules, 1997, 30, (26): 8518-8520.
    [59] Motokawa R., Morishita K., Koizumi S., Nakahira T., Annaka M., Thermosensitive diblock copolymer of poly (N-isopropylacrylamide) and poly (ethylene glycol) in water: polymer preparation and solution behavior. Macromolecules, 2005, 38 (13):5748-5760.
    [60] Arotcarena M., Heise B., Ishaya S., Laschewsky A., Switching the inside and the outside of aggregates of water-soluble block copolymers with double thermoresponsivity. Journal of the American Chemical Society, 2002, 124 (14), 3787-3793.
    [61] Martin T. J., Prochazka K., Munk P., Webber S. E., pH-dependent micellization of poly(2-vinylpyridine)-block-poly(ethylene oxide), Macromolecules 1996, 29, (18), 6071-6073.
    [62] Butun V., Billingham N. C., Armes S. P., Unusual aggregation behavior of a novel tertiary amine methacrylate-based diblock copolymer: Formation of micelles and reverse micelles in aqueous solution. Journal of the American Chemical Society 1998, 120, (45), 11818-11819.
    [63] Yao X. M., Chen D. Y., Jiang M., Formation of PS-b-P4VP/formic acid coreshell micelles in chloroform with different core densities. Journal of Physical Chemistry B 2004, 108, (17), 5225-5229.
    [64] Peng H. S., Chen D. Y., Jiang M., Self-assembly of formic acid/polystyreneblock-poly(4-vinylpyridine) complexes into vesicles in a low-polar organic solvent chloroform. Langmuir 2003, 19, (26), 10989-10992.
    [65] Peng H. S., Chen D. Y., Jiang M., Self-assembly of perfluorooctanoic acid (PFOA) and PS-b-P4VP in chloroform and the encapsulation of PFOA in the formed aggregates as the nanocrystallites. Journal of Physical Chemistry B 2003, 107, (45), 12461-12464.
    [66] Kataoka K., Togawa H., Harada A., Yasug K., Matsumoto T., Katayose S., Spontaneous formation of polyiom complex micelles with narrow distribution from antisense oligonucleotide and cationic block copolymer in physiological saline. Macromolecules, 1996, 29, 8556-8561
    [67] Liu S. Y., Zhu H., Zhao H. Y., Jiang M., Wu C., Interpolymer hydrogenbonding complexation induced micellization from polystyrene-b-poly(methylmethacrylate) and PS(OH) in toluene. Langmuir 2000, 16, (8), 3712-3717.
    [68] Bronich T. K., Kabanov A. V., Novel block ionomer micelles with cross-linked ionic cores. Polymer Preprints, 2004, 45, (2), 384-
    [69] Jia X., Chen D.Y., Jiang M, Preparation of PEO-b-P2VPH~+-S_2O_8~(2-) micelles in water and their reversible UCST and redox-responsive behavior Chem. Commun., 2006, 1736-1738
    [70] Wang G, Tong X., Zhao Y., Preparation of azobenzene-containing amphiphilic diblock copolymers for light-responsive micellar aggregates. Macromolecules, 2004, 37, (24), 8911-8917.
    [71] Liu X. K., Jiang M., Optical switching of self-assembly: micellization and micelle-hollow-sphere transition of hydrogen-bonded polymers. Angew Chem Int Ed, 2006, 45, 3846-3850.
    [72] Wu C., Niu A. Z., Leung L. M., Lam T. S., Preparation of narrowly distributed stable and soluble polyacetylene block copolymer nanoparticles. J. Am. Chem. Soc. 1999, 121, (9), 1954-1955.
    [73] Chen D.Y., Peng H.S., Jiang M., A novel one-step approach to core-stabilized nanoparticles at high solid contents, Macromolecules 2003, 36, 2576.
    [74] Peng H.S., Chen D.Y., Jiang M., A One-Pot Approach to the Preparation of Organic Core-Shell Nanoobjects with Different Morphologies. Macromolecules 2005, 38, 3550.
    [75] Chen D.Y., Jiang M., Strategies for Constructing Polymeric Micelles and Hollow Spheres in Solution via Specific Intermolecular Interactions. Acc. Chem. Res. 2005, 38, 499-507
    [76] Liu S.Y., Pan Q. M., Xie J. W., Jiang M., Intermacromoleclar complexs due to specific interactions graft-like hydrogen bonding complex based on pyridyl-containing polymers and end-functionlized polystyrene oligomers. Polymer, 2000, 41, 6919-6917
    [77] Liu S. Y., Jiang M., Liang H. J., Wu C., Intermacromoleclar complexs due to specific interactions Formation of micellelike structure from hydrogen bonding graft-like complex in seledctive solvent. Polymer 2000, 41, 8697-8702
    [78] Wang M., Zhang G. Z., Chen D. Y., Jiang M., Liu S. Y., Noncovalently connected polymeric micelles based on a homoolymer pair in solutions. Macromolecules, 1999, 34, 7172-7178.
    [79] Duan H., Chen D., Jiang M., Gan W., Li S., Wang M., Gong J., Self-Assembly of Unlike Homopolymers into Hollow Spheres in Nonselective Solvent. J. Am. Chem. Soc. 2001, 123, (48), 12097-12098.
    [80] Kuang M., Duan H. W., Wang J., Chen D. Y., Jiang M., A novel approach to polymeric hollow nanospheres with stabilized structure. Chem Commun. 2003, (4), 496-497.
    [81] Zhang Y.W., Jiang M., Zhao J. X., Zhou J., Chen D. Y., Hollow spheres from shell cross-linked, noncovalently connected micelies of carboxyl-terminated polybutadiene and poly(vinyl alcohol) in water. Macromolecules 2004, 37, 1537-1543
    [82] Wang J., Jiang M., Polymeric self-assembly into micelles and hollow spheres with multiscale cavities driven by inclusion complexation. J. Am. Chem. Soc., 2006,128 (11): 3703-3708.
    [83] Won Y.-Y., Davis H.T., Bates F.S., Giant wormlike rubber micelles. Science, 1999, 283, 960;
    [84] 刘国军,王国昌著 何天白编 海外高分子科学的新进展 北京:化学工出版社 39;
    [85] Tao J., Liu G. J., Ding J. F. et al. Cross-linked nanospheres of poly(2-cinnamoylethyl methacrylate) with immediately attached surface functional groups. Macromolecules 1997, 30, 4084;
    [86] Guo A., Liu G. J., Tao J. Star polymers and nanospheres from cross-linkable diblock copolymers. Macromolecules 1996, 29, 2487;
    [87] Thurmond K. B., Kowalewski T., Wooley, K. L. Water-soluble knedel-like structures: The preparation of shell-cross-linked small particles. J. Am. Chem. Soc. 1996, 118, 7239;
    [88] Thurmond K. B., Kowalewski T., Wooley, K. L. Shell cross-linked knedels: A synthetic study of the factors affecting the dimensions and properties of amphiphilic core-shell nanospheres. J. Am. Chem. Soc. 1997, 119, 6656;
    [89] Remsen E. E., Thurmond K. B. Ⅱ, Wooley, K. L. Solution and surface charge properties of shell cross-linked knedel nanoparticles. Macromolecules 1999, 32, 3685;
    [90] Huang H. Y., Remsen E. E., Wooley, K. L. Amphiphilic core-shell nanospheres obtained by intramicellar shell crosslinking of polymer micelles with poly(ethylene oxide) linkers. Chem. Commun.. 1998, 1415;
    [91] Huang H. Y., Kowalewski T., Remsen E. E., Wooley, K. L. Hydrogel-coated glassy nanospheres: A novel method for the synthesis of shell cross-linked knedels. J. Am. Chem. Soc. 1997, 119, 11653;
    [92] Huang H. Y., Remsen E. E., Kowalewski T., Wooley, K. L. Nanocages derived from shell cross-linked micelle templates. J. Am. Chem. Soc. 1999, 121, 3805;
    [93] Ding J. F.; Liu G. J. Polystyrene block poly(2-cinnamoylethyl methacrylate) nanospheres with cross-linked shells. Macromolecules 1998, 31, 6554;
    [94] Ding J. F.; Liu G. J. Water-soluble hollow nanospheres as potential drug carriers. J. Phys. Chem. B 1998, 102, 6107;
    [95] Steward S.; Liu G. J. Hollow nanospheres from polyisoprene-block-poly(2-cinnamoylethyl methacrylate)-block-poly(tert-butyl acrylate). Chem. Mater 1999, 11, 1048;
    [96] Bütün V., Billingham N. C., Armes S. P. Synthesis of shell cross-linked micelles with tunable hydrophilic/hydrophobic cores. J. Am. Chem. Soc. 1998, 120, 12135;
    [97] Bütün V., Wang X.-S, Banez M. V., de Paz et al. Synthesis of shell cross-linked micelles at high solids in aqueous media. Macromolecules 2000, 33, 1;
    [98] Bütün V., Lowe A. B., Billingham N. C., Armes S. P. Synthesis of zwitterionic shell cross-linked micelles. J. Am. Chem. Soc. 1999, 121, 4288;
    [99] Liu S. Y., Armes S. P. The facile one-pot synthesis of shell cross-linked micelles in aqueous solution at high solids. J. Am. Chem.Soc. 2001, 123, 9910;
    [100] Astafieva I., Zhong X. F., Eisenberg A. Critical micellization phenomena in block polyelectrolyte solutions. Macromolecules 1993, 26, 7339;
    [101] Turro N. J., Chung C. J. Photoluminescent probes for water soluble polymers. Pressure and temperature effects on a polyol surfactant. Macromolecules 1984, 17, 2123;
    [102] Wilhelm M., Zhao C. L., Wang Y., Xu R., Winnik M. A., Mura J. L., Riess G., Croucher M. D. Poly(styrene-ethylene oxide) block copolymer micelle formation in water: a fluorescence probe study. Macromolecules 1991, 24, 1033;
    [103] Kalyanasundaram K., Thomas J. K. Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems. J. Am. Chem. Soc. 1977, 99, 2039;
    [104] Winnik F. M., Davidson A. R., Hamer G. K., Kitano H. Amphiphilic poly(N-isopropylacrylamides) prepared by using a lipophilic radical initiator: synthesis and solution properties in water. Macromolecules 1992, 25, 1876-1880;
    [105] Kwon G., Naito M., Yokoyama M., Okano T., Sakurai Y., Kataoka K. Micelles based on AB block copolymers of poly(ethylene oxide) and poly(beta-benzyl 1-aspartate). Langmuir 1993, 9, 945;
    [106] Nakamura K., Endo R., Takeda M. Study Of Molecular-Motion Of Block Copolymers In Solution By High-Resolution Proton Magnetic-Resonance. J. Polym. Sci. Polym. Phys. Ed. 1977, 15, 2095;
    [107] Kataoka K., Togawa H., Harada A., Yasugi K., Matsumoto T., Katayose S. Spontaneous formation of polyion complex micelles with narrow distribution from antisense oligonucleotide and cationic block copolymer in physiological saline. Macromolecules 1996, 29, 8556;
    [108] Nagasaki Y., Okada T., Scholz C., Iijima M., Kato M., Kataoka K. The reactive polymeric micelle based on an aldehyde-ended poly(ethylene glycol)/poly(lactide) block copolymer. Macromolecules 1998, 31, 1473;
    [109] Allemann E., Leroux J. C., Gurny R. Biodegradable nanoparticles of poly(lactic acid) and poly(lactic-co-glycolic acid) for parenteral administration, in: Lieberman H., Rieger M., Banker G. (Eds.), Pharmaceutical Dosage Forms: Disperse Systems, Vol. 3, Marcel Dekker, New York, 1998, pp. 163-193;
    [110] Buhleier E., Wehner W., Vogetle F., "Cascade" and "nonskid-chain-like" synthesis of molecular cavity topologies. Synthesis, 1978, 2, 155-158,
    [111] Tomalia D. A., Baker H., Dewald J, A new class of polymer:starburst-dendritic macromolecules. Polym. J. 1985, 17, 117.
    [112] Tomalia D. A., Baker H., Dewald J, Dendritic macromolecules: synthesis of starburst dendrimer. Macromolecules 1986, 19, 2466-
    [113] Tomalia D. A., Hall M., Hedstrand D., Starburst dendrimers. Ⅲ. The importance of branch junction symmetry in the development of topological shell molecules. J. Am. Chem. Soc. 1987, 109, 1601-
    [114] Tomalia D. A., Berry V., Hall M., Starburst dendrimers. 4. Covalently fixed unimolecular assemblages reiminiscent of spheroidal micelles. Macromolecules 1987, 20, 1164-
    [115] Newkome G. R., Yao Z., Baker G. R., Micelles. Part 1. Cascade molecules: a new approach to micelles. A [27]-arborol. J. Org. Chem. 1985, 50, 2003-4.
    [116] Newkome G. R., Baker G. R., Sanuder M. J.; J. Chem. Soc., Chem. Commum., 1986, 752-
    [117] Newkome G. R., Yao Z., Baker G. R., Chemistry of micelles series. Part 2. Cascade molecules. Synthesis and characterization of a benzene[9]3-arborol. J. Am. Chem. Soc. 1986, 108, 849-
    [118] Hawker C. J., Frechet J. M. J., Preparation of polymers with controlled molecular architecture, a new convergent approach to dendritic macromolecules, J. Am. Chem. SOC., 1990, 112, 21, 7638-7647;
    [119] Hawker C. J., Frechet J. M. J., A new convergent approach to monodisperse dendritic macromolecules, J. Chem. Soc., Chem. Commun. 1990,1010-1013
    [120] Joan W. J. Knapen, Alexander W. van der Made, Janine C. de Wilde, Piet W. N. M. van Leeuwen, Peter Wijkens, David M. Grove & Gerard van Koten, Homogeneous catalysts based on silane dendrimers functionalized with arylnickel(Ⅱ) complexes. Nature, 1994, 372, 659-661.
    [121] Astruc D., et al. Dendritic Catalysts and Dendrimers in Catalysis. Chem. Rev. 2001, 101, 2991-3023
    [122] Reek J. N. H., et al. Dendrimers as Support for Recoverable Catalysts and Reagents. Chem. Rev. 2002, 102, 3717-3756
    [123] G. Eric Oosterom, Joost N. H. Reek, Paul C. J. Kamer, Piet W. N. M. van Leeuwen. Transition Metal Catalysis Using Functionalized Dendrimers. Angew. Chem. Int. Ed. 2001, 40, 1828-1849
    [124] Hoover N. N., Auten B. J., Chandler B. D., Tuning supported catalyst reactivity with dendrimer-templated Pt-Cu nanoparticles, J. Phys. Chem. B., 2006, 110,(17), 8606-8612.
    [125] Janson et al.; Encapsulation Of Guest Molecules Into A Dendritic Box. Science 1994, 266, 1226
    [126] Janson et al. The Dendritic Box: Shape-Selective Liberation of Encapsulated Guests. J. Am. Chem. Soc. 1995, 117, 4417
    [127] Frankamp B. L., Boal A. K., Rotello V. M., Controlled interparticle spacing through self-assembly of Au nanoparticles and poly(amidoamine) dendrimers, J. Am. Chem. Soc.; 2002; 124, (51); 15146-15147
    [128] Frankamp B. L., Boal A. K., Tuominen M. T., Rotello V. M., Direct control of the magnetic interaction between iron oxide nanoparticles through dendrimer-mediated self-assembly, J. Am. Chem. Soc. 2005, 127, (27); 9731-9735.
    [129] Knecht M. R., Garcia-Martinez J. C., Crooks R. M., Synthesis, characterization, and magnetic properties of dendrimer-encapsulated nickel nanoparticles containing <150 Atoms, Chem. Mater., 2006, 18, (21); 5039-5044.
    [130] Lesniak W., Bielinska A. U., Sun K., Janczak K. W., Shi X., Silver/dendrimer nanocomposites as biomarkers: fabrication, characterization, in vitro toxicity, and intracellular detection, Nano Lett., 2005, 5, (11), 2123-2130
    [131] Vijayalakshmi N., Maitra U., Multiple chromophore labeled novel bile acid dendrimers for light harvesting, Macromolecule, 2006, 39, (23), 7931-7940
    [132] Shi Z.-F., Wang L.-J., Wang H., Cao X.-P., Zhang H.-L., Synthesis of oligo(phenylene ethynylene)s with dendrimer "shells" for molecular electronics Org. Lett., 2007, 9, (4), 595-598.
    [133] Alan T. S., Thompson A. L., Bharathi P., Mueller A., Bardeen C. J., Light-harvesting in carbonyl-terminated phenylacetylene dendrimers: the role of delocalized excited states and the scaling of light-harvesting efficiency with dendrimer size, J. Phys. Chem. B., 2006, 110,(40), 19810-19819
    [134] Cifuentes M. P., Powell C. E., Morrall J. P., McDonagh A. M., Lucas N. T., Humphrey M. G., Electrochemical, spectroelectrochemical, and molecular quadratic and cubic nonlinear optical properties of alkynylruthenium dendrimers, J. Am. Chem. Soc., 2006, 128,(33),10819-10832.
    [135] Gilmartin B. P., McLaughlin R. L., Williams M. E., Artificial tripeptide scaffolds for self-assembly of heteromultimetallic structures with tunable electronic and magnetic properties, Chem. Mater., 2005, 17, (22), 5446-5454.
    [136] Imaoka T., Tanaka R., Arimoto S., Sakai M., Fujii M., Yamamoto K., Probing stepwise complexation in phenylazomethine dendrimers by a metallo-porphyrin core, J. Am. Chem. Soc., 2005, 127,(40), 13896-13905
    [137] Kihara E, Arima H., Tsutsumi T., Hirayama E, Uekama K., In vitro and in vivo gene transfer by an optimized a-cyclodextrin conjugate with polyamidoamine dendrimer, Bioconjugate Chem., 2003, 14, (2), 342-350.
    [138] Paleos C. M., Tsiourvas D., Sideratou Z., Molecular engineering of dendritic polymers and their application as drug and gene delivery systems, Molecular Pharmaceutics, 2007, ASAPArticle.
    [139] KukowskaLatallo JF, Bielinska AU, Johnson J, et al. Efficient transfer of genetic material into mammalian cells using Starburst polyamidoamine dendrimers. Proc. Natl. Acad. Sci. USA 1996, 93, 4897
    [140] Won B.Y., Choi H. G., Kim K. H., et al., Bioelectrocatalytic signaling from immunosensors with back-filling immobilization of glucose oxidase on biorecognition surfaces, Biotechnology and Bioengineering 2005, 89, (7), 815-821
    [141] Lee S.C., Parthasarathy R., Botwin K..,et al., Biochemical and immunological properties of cytokines conjugated to dendritic polymers, Biomedical Microdevices 2004, 6, (3), 191-202
    [142] C. B. Gorman, J. C.Smith, Structure-property rRelationships in dendritic encapsulation", Ace. Chem. Res. 2001, 34, 60-71.
    [143] Lue L., Volumetric behavior of athermal dendritic polymers: monte carlo simulation", Macromolecules, 2000, 33, 2266-2272
    [144] Burchard W., Kajiwara K., Nerger D., Static and dynamic scattering behavior of regularly branched chains: a model of soft-sphere microgels, Polym. Sci., Polym. Phys. Ed. 1982, 20, 157-171
    [145] Diudea M. V., Katona G., Molecular topology of dendrimers in advances in dendritic macromolecules, JAIPress, Inc., Stamford, CN, 1999, pp. 135-201
    [146] Cai C., Chen Z. Y., Rouse dynamics of a dendrimer model in the θ condition, Macromolecules 1997, 30, 5104-5117
    [147] Lehn J.M., Perspectives in supramolecular chemistry-from molecular recognition toward molecular information processing and self-organization, Angew. Chem. Int. Ed. 1990, 29, 1304-1319.
    [148] Tande B. M., Wagner N. J., Mackay M. E., Phase behavior of hybrid dendron-linear copolymers and blends with linear homopolymer, C. R. Chimie, 2005, 6, 853-864
    [149] Cho B.-K., Jain A., Gruner S. M., Wiesner U., Mesophase structure mechanical and ionic transport correlations in extended amphiphilic dendrons, Science, 2004, 10, 305, 1598-1601
    [150] Gitsov I., Frechet J. M. J., Solution and solid-state properties of hybrid linear-dendritic block copolymers, Macromolecules, 1993, 26, 6536-6546
    [151] Gitsov I., Frechet J. M. J., Wooley K. L., Hawker C. J., Synthesie and properties of novel linear-dendritic block copolymer. Reactivity of dendritic macromolecules toward linear polymers, Macromolecules, 1993, 26, 5621-5627
    [152] Shenhar R., Xu H., Frankamp B. L., Mates T. E., Rotello V., Molecular recognition in structure matrixes: control of guest localization in block copolymer films, J. Am. Chem. Soc. 2005, 127, 16318-16324
    [153] Balagurusamy V. S. K., Ungar G., Percec V., Johansson G., Rational design of the first spherical supramolecular dendrimers self-organized in a novel thermotropic cubicLiquid-crystalline phase and the determination of their shape by X-ray analysis, J. Am. Chem. Soc. 1997, 119, 1539-1555
    [154] Percec V., Glodde M., Bera T. K., Miura Y., Shiyanovskaya 1., Singer K. D., Balagurusamy V. S. K., Self-organization of supramolecular helical dendrimers into complex electronic materials, Nature, 2002, 419, 26, 384-387
    [155] Percec V., Dulcey A. E., Balagurusamy V. S. K., Miura Y., Smidrkal J., Self-assembly of amphiphilic dendritic dipeptides into helical pores, Nature, 2004, 430, 12, 764-768
    [156] Ungar G., Liu Y., Zeng X. B., Percec V., Cho W.-D., Giant supramolecular liquid crystal lattice, Science 2003, 299, 21, 1208-1211
    [157] Hudson S. D., Jung H.-T., Percec V., Cho W.-D., Johansson G., Ungar G., Balagurusamy V. S. K., Direct visualization of individual cylindrical and spherical supramolecular dendrimers, Science 1997, 278, 17, 449-452
    [158] Percec V., Mitchell C. M., Cho W.-D., Uchida S., Glodde M., Ungar G., Zeng X. B., Liu Y. S., Balagurusamy V. S. K., Designing libraries of first generation AB3 and AB2 self-assembling dendrons via the primary structure generated from combinations of (AB)_y-AB3 and (AB)_y-AB2 building blocks, J. Am. Chem. Soc. 2004, 126, 6078-6094
    [159] Percec V., Peterca M., Sienkowska M. J., Ilies M. A., Aqad E., Smidrkal J., Heiney P. A., Synthesis and retrostructural analysis of libraries of AB3 and constitutional isomeric AB2 phenylpropyl ether-based supramolecular dendrimers, J. Am. Chem. Soc. 2006, 128, 3324-3334
    [160] Percec V., Peterca M., Ilies M. A., Sienkowska M. J., Heiney P. A., Programming the internal structure and stability of helical pores self-assembled from dendritic dipeptides via the protective droups of the peptide, J. Am. Chem. Soc. 2005, 127, 17902-17909
    [161] Percec V., Imam M. R., Beta T.. K., Balagurusamy V. S. K., Peterca M., Heiney P. A., Self-assembly of semifluorinated janus-dendritic benzamides into bilayered pyramidal columns, Angew. Chem. Int. Ed. 2005, 44, 4739-4745
    [162] Percec V., Ahn C. H., Ungar G., Yeardley D. J. P., Moller M., Sheiko S. S., Controlling polymer shape through the self-assembly of dendritic side-groups, Nature, 1998, 391, 8, 161-162
    [163] Gillies E. R., Jonsson T. B., Frechet J. M. J., Stimuli-responsive supramolecular assemblies of linear-dendritic copolymers, J. Am. Chem. Soc., 2004, 126, 11936-11943
    [164] Chapman, T. M., Hillyer, G. L., Mahan, E. J., Shaffer, K. A., Hydraamphiphiles: Novel Linear Dendritic Block Copolymer Surfactants. J. Am. Chem. Soc., 1994, 116, 11195-11196.
    [165] van Hest J. C. M., Delnoye D. A. E, Baars M. W. P. L., van Genderen M. H. P., Meijer E. W., Polystyrene-Dendrimer Amphiphilic Block-Copolymers With A Generation-Dependent Aggregation. Science, 1995, 268, 1592-1595.
    [166] van Hest J. C. M., Delnoye D. A. P., Baars M. W. P. L., Elissen-Roman C., van Genderen M. H. P., Meijer E. W., Polystyrene-poly(propylene imine) dendrimers: Synthesis, characterization, and association behavior of a new class of amphiphiles. Chem. Eur. J., 1996, 2, 1616-1626.
    [167] Hill J. P., Jin W. S., Kosaka A., Fukushima T., lchihara H., Shimomura T., Ito K., Hashizume T., Ishii N., Aida T., Self-assembled hexa-perihexabenzocoronene graphitic nanotube. Science 2004, 304, 5676, 1481-1483.
    [168] Jin W., Fukushima T., Kosaka A., Niki M., Ishii N., Aida T., Controlled selfassembly triggered by olefin metathesis: cross-linked graphitic nanotubes from an amphiphilic hexa-peri-hexabenzocoronene, J. Am. Chem. Soc., 2005, 127, 23, 8284-8285.
    [169] Wang Z. H., Dotz F., Enkelmann V., Mullen K., "Double-concave" graphene: pennethoxylated hexa-peri-hexabenzocoronene and its cocrystals with hexafluorobenzene and fullerene, Angew. Chem. In. Ed. 2005, 44, 8, 1247-1250.
    [170] Wu J. S., Qu J. Q., Tchebotareva N., Mullen K., Hexa-perihexa benzocoronene/perylenedicarboxymonoimide and diimide dyads as models to study intramolecular energy transfer. Tetrahedron Letters, 2005, 46, 9, 1565-1568
    [171] Cao X. Y., Zi H., Zhang W., Lu H., Pei J., Star-shaped and linear nanosized molecules functionalized with hexa-peri-hexabenzocoronene: Synthesis and optical properties. J. Org. Chem., 2005, 70, 9, 3645-3653
    [172] Gross L., Moresco F., Ruffieux P., Gourdon A., Joachim C., Rieder K. H., Tailoring molecular self-organization by chemical synthesis: Hexaphenylbenzene, hexa-peri-hexabenzocoronene, and derivatives on Cu(111). Physical Review B 2005, 71, 16,
    [173] Wu J. S., El Hamaoui B., Li J. X., Zhi L. J., Kolb U., Mullen K., Solid-state synthesis of "bamboo-like" and straight carbon nanotubes by thermolysis of hexaperi-hexabenzocoronene-cobalt complexes. Small, 2005, 1, 2, 210-212.
    [174] de Gans B. J., Wiegand S., Zubarev E. R., Stupp S. I., A light scattering study of the self-assembly of dendron rod-coll molecules. Journal of Physical Chemistry B, 2002, 106, 38, 9730-9736.
    [175] Zubarev E. R., Pralle M. U., Sone E. D., Stupp S. I., Self-assembly of dendronrodcoil molecules into nanoribbons. J. Am. Chem. Soc., 2001, 123, 17, 4105-4106.
    [176] Yang M., Wang W., Yuan E, Zhang X.W.,. Li J. Y, Liang F. X., He B. L., Minch B., Wegner G., Soft vesicles formed by diblock codendrimers of poly(benzylether) and poly(methallyl dichloride), J. Am. Chem. Soc. 2005, 127, 15107-15111
    [177] Hawker C. J., Wooley K. L., Frechet J. M. J., Unimolecular micelles and globular amphiphiles: dendritic macromolecules as novel recyclable solublilization agents, J. Chem. Soc. Perkin Trans I, 1993, 1287-1297
    [178] Cheng C. X., Huang Y., Tang R. P., Chen E. Q., Xi F., Molecular architecture effect on self-assembled nanostructures of a linear-dendritic rod triblock copolymer in solution, Macromolecules, 2005, 38, 3044-3047.
    [179] Cheng C. X.; Jiao T. F.; Tang R. P.; Chen E. Q.; Liu M. H.; Xi F.; Compression-induced hierarchical nanostructures of a poly(ethylene oxide)-block-dendronized polymethacrylate copolymer at the air/water interface, Macromolecules, 2006, 39, 6327-6330.
    [180] Hawker C. J.; Frechet J. M. J.; Unusual macromolecular architectures: the convergent growth approach to dendritic polyesters and novel block copolymers. J. Am. Chem. Soc., 1992, 114, 8405-8413.
    [181] Frechet J. M. J.; Hawker C. J.; Wooley K. L.; The Convergent Route To Globular Dendritic Macromolecules-A Versatile Approach To Precisely Functionalized 3-Dimensional Polymers Amd Novel Block-Copolymers. J.M.S.— Pure Appl. Chem., 1994, A31, 1627-1645.
    [182] Hawker C. J.; Wooley K. L.; Frechet J. M. J.; Novel Macromolecular Architectures-Globular Block-Copolymers Containing Dendritic Components. Macromol. Symp., 1994, 77, 11—20
    [183] Percec, V.; Ungar, G.; Peterca M.; Self-Assembly in Action. Science 2006, 313, 55-56
    1, Hawker C. J., Frechet J. M. J., Preparation of polymers with controlled molecular architecture, a new convergent approach to dendritic macromolecules, J. Am. Chem. Soc., 1990, 112, 21, 7638-7647;
    2, Hawker C. J., Frechet J. M. J., A new convergent approach to monodisperse dendritic macromolecules, J. Chem. Soc., Chem. Commun. 1990,1010-1013.
    3, Percec, V.; Ahn, C. H.; Cho, W. D.; Jamieson, A. M.; Kim, J.; Leman, T.; Schmidt, M.; Gerle, M.; Moeller, M.; Prokhorova, S. A.; Sheiko, S. S.; Cheng, S. Z. D.; Zhang, A.; Ungar, G.; Yeardley, D. J. P. Visualizable Cylindrical Macromolecules with Controlled Stiffness from Backbones Containing Libraries of Self-Assembling Dendritic Side Groups. J. Am. Chem. Soc. 1998, 120, 8619-8631.
    4, Gillies E. R., Jonsson T. B., Frechet J. M. J., Stimuli-Responsive Supramolecular Assemblies of Linear-Dendritic Copolymers. J. Am. Chem. Soc. 2004, 126, 11936-11943;
    5, Cho B. K., Jain A., Gruner S. M., Wiesner U., Mesophase structure-mechanical and ionic transport correlations in extended amphiphilic dendrons. Science 2004, 305, 1598-1601.
    6, Schluter A. D., Rabe J. P. Dendronized polymers: Synthesis, characterization, assembly at interfaces, and manipulation. Angew. Chem., Int. Ed. 2000, 39, 864-883.
    7, Zhang, A.; Shu L., Bo Z., Schluter A. D. Dendronized Polymers: Recent Progress in Synthesis. Macromol. Chem. Phys. 2003, 204, 328-339. Frauenrath H. Dendronized polymers—building a new bridge from molecules to nanoscopic objects. Prog. Polym. Sci. 2005, 30, 325-384.
    8, Schluter A. D. A covalent chemistry approach to giant macromolecules with cylindrical shape and an engineerable interior and surface. Top. Curr. Chem. 2005, 245, 151-191.
    9, Welch P. M.; Welch C. F.; The Effects of crowding in dendronized polymers NL061036D
    10, Ecker C., Severin N., Shu L.J., Schlulter A. D., Rabe J. P. Glassy state of single dendronized polymer chains Macromolecules 2004, 37, 2484-2489
    11, Newkome G. R., Moorefield C. N., Baker G. R., Behera R. K., Escamillia G. H., Saunders M. J., Supramolecular Self-Assemblies of Two-Directional Cascade Molecules: Automorphogenesis. Angew. Chem. Int. Ed. 1992, 31, 917-919.
    12, Gillies E. R., Jonsson T. B., Frechet J. M. J., Stimuli-responsive supramolecular assemblies of linear-dendritic copolymers, J. Am. Chem. Soc., 2004, 126, 11936-11943
    13, Gisto I., Frechet J. M. J., Solution and solid-state properties of hybrid linear-dendritic block copolymers. Macromolecules 1993, 26, 6536-6546.
    14. Jiang M., Li M., Xiang M. L., Zhou H. Interpolymer complexation and miscibility enhancement by hydrogen bonding. Adv. Polym. Sci. 1999, 146, 122
    15. Liu S. Y., Zhu H., Zhao H. Y., Jiang M., Wu C. Interpolymer hydrogen-bonding complexation induced micellization from polystyrene-b-poly(methyl methacrylate) and PS(OH) in toluene. Langmuir 2000, 16, 3712
    16. Liu S. Y., Zhang G. Z., Jiang M. Soluble graft-like complexes based on poly(4-vinyl pyridine) and carboxy-terminated polystyrene oligomers due to hydrogen bonding. Polymer 1999, 40, 5499;
    17. Liu S. Y., Jiang M., Liang H. J., Wu C. Intermacromolecular complexes due to specific interactions. 13. Formation of micelle-like structure from hydrogen-bonding graft-like complexes in selective solvents. Polymer 2000, 41, 8697;
    18. Wang M., Zhang G. Z., Chen D. Y., Jiang M., Liu S. Y. Noncovalently connected polymeric miceiles based on a homopolymer pair in solutions. Macromolecules 2001, 34, 7172;
    19. Zhao H. Y., Gong J., Jiang M., An Y. L. A new approach to self-assembly of polymer blends in solution. Polymer 1999, 40, 4521;
    20.王敏 高分子自组装新途径:非共价键接胶束及中空球的制备、结构和性质 复旦大学博士论文 2001
    21. Wang M., Jiang M., Ning F. L., Chen D. Y., Liu S. Y., Duan H. W. Block-copolymer-free strategy for preparing micelles and hollow spheres: Self-assembly of poly(4-vinylpyridine) and modified polystyrene. Macromolecules 2002, 35, 5980;
    22.袁晓凤,赵汉英,江明,安英丽.具有特殊相互作用的聚合物共混物在选择性溶剂中的自组装行为.化学学报 2000,58,118;
    23. Yuan X. F., Jiang M., Zhao H. Y., Wang M., Zhao Y., Wu C. Noncovalently connected polymeric micelles in aqueous medium. Langmuir 2001, 17, 6122;
    24. Duan H. W., Chen D. Y., Jiang M., Gan W.J., Li S. J., Wang M., Gong J., Self-assembly of unlike homopolymers into hollow spheres in nonselective solvent. J. Am. Chem. Soc. 2001, 123, 12097-12098.
    25. Jenekhe, S. A. Chen, X. L. Self-assembled aggregates of rod-coil block copolymers and their solubilization and encapsulation of fullerenes. Science 1998, 279, 1903-1907.
    26. Jenekhe, S.A. Chen, X. L., Self-Assembly of ordered microporous materials from rod-coil block copolymers. Science 1999, 283, 372-375.
    27. Deyue Yan, Yongfeng Zhou, Jian Hou, Supramolecular self-assembly of macroscopic tubes. Science 2004, 303, 65-66.
    28. Hawker C. J., Frechet J.M.J., Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. J. Am. Chem. Soc. 1990, 112, 7638-7647.
    29. Convertine A.J., Sumerlin R.S., Thomas D.B., et al. Synthesis of Block Copolymers of 2- and 4-Vinylpyridine by RAFT Polymerization. Macromolecules 2003, 36, 4679-4681.
    30. Hansma H. G., Atomic force microscopy of biomolecules. J. Vac. Sci. Technol., 1996, 14 1390-1394;
    31. Tamayo J., Garacia R., Deformation, Contact Time, and Phase Contrast in Tapping Mode Scanning Force Microscopy. Langmuir 1996, 12, 4430-4435.
    32. Yang M., Wang W., Yuan F., Zhang X., Soft Vesicles Formed by Diblock Codendrimers of Poly(benzyl ether) and Poly(methallyl dichloride). J. Am. Chem. Soc. 2005, 127, 15107-15111.
    33. Gennes P. G. de., Scaling Concepts in Polymer Physics, Cornell University Press, Ithaca and London, 1985, p43.
    34. Jeong M., Mackay M. E., Vestberg R., Hawker C. J., Intrinsic viscosity variation in different solvents for dendrimers and their hybrid copolymers with linear polymers. Macromolecules 2001, 34, 4927-4936.
    35. Mackay M. E, Hong Y., Jeong M., Tande B. M., Wagner N. J., Hong S., Gido S. P., Vestberg R., Hawker C. J., Microphase separation of hybrid dendron-linear diblock copolymers into ordered structures. Macromolecules 2002, 35, 8391-8399.
    36. Helms B., Mynar J. L., Hawker C. J., Frechet J. M. J., Dendronized linear polymers via "click chemistry J. Am. Chem. Soc. 2004, 126, 15020-15021.
    37. Percec V., Ahn C. H., Ungar G., et al. Controlling polymer shape through the self-assembly of dendritic side-groups. Nature 1998, 391(8), 161; Ungar G., Liu Y., Zeng X.B., Percec V., et al. Giant supramolecular liquid crystal lattice. Science 2003, 299, 1208; Percec V., Imam M. R., Bera T. K., et al. Self-Assembly of Semifluorinated Janus-Dendritic Benzamides into Bilayered Pyramidal Columns. Angew. Chem. Int. Ed. 2005, 44, 4739-4745; Percec V., Mitchell C. M., et al. Designing Libraries of First Generation AB3 and AB2 Self-Assembling Dendrons via the Primary Structure Generated from Combinations of (AB)y-AB3 and (AB)y-AB2 Building Blocks. J. Am. Chem. Soc. 2004, 126, 6078.
    38. Wu, C., Zhou, S.Q. First observation of the molten globule state of a single homopolymer chain. Phys.Rev. Lett. 1996, 77, 3053.
    1. Wooley, K. L.; Frechet, J. M. J.; Hawker, C. J. Influence of shape on the reactivity and properties of dendritic, hyperbranched and linear aromatic polyesters. Polymer 1994, 35, 4489-4495.
    2. Hawker, C. J.; Malmstrom, E.; Frank, C. W.; Kampf, J. P. Exact Linear Analogs of Dendritic Polyether Macromolecules: Design, Synthesis, and Unique Properties. J. Am. Chem. Soc. 1997, 119, 9903-9904.
    3. Grayson, S. M.; Frechet, J. M. J. Synthesis and Surface Functionalization of Aliphatic Polyether Dendrons. J. Am. Chem. Soc. 2000, 122, 10335-10344.
    4. Mourey, T. H.; Turner, S. R.; Rubinstein, M.; Fre chet, J. M. J.; Hawker, C. J.; Wooley, K. L. Macromolecules 1992, 25, 2401-2406.
    5. Tomalia, D. A.; Naylor, A. M.; Goddard, W. A., Ⅲ. Tetrachlorovinylcarbene from Tetrachlorocyclopropene; Facile Synthesis of Vinylcyclopropanes. Angew. Chem. Int. Ed. 1990, 29, 138-175.
    6. Piotti, M. E.; Rivera, F.; Bond, R.; Hawker, C. J.; Frechet, J. M. J. Synthesis and Catalytic Activity of Unimolecular Dendritic Reverse Micelles with "Internal" Functional Groups. J. Am. Chem. Soc. 1999, 121, 9471-9472.
    7. Hecht, S.; Frechet, J. M. J. Dendritic Encapsulation of Function: Applying Nature's Site Isolation Principle from Biomimetics to Materials Science. Angew. Chem., Int. Ed. 2001, 40, 74-91.
    8. Adronov, A.; Frechet, J. M. J. Light-harvesting dendrimers. Chem. Commun. 2000, (issue 18), 1701-1710.
    9. Liu, M.; Kono, K.; Fre chet, J. M. J. Water-soluble dendritic unimolecular micelles:: Their potential as drug delivery agents. J. Controlled Release 2000, 65, 121-131.
    10. Haensler, J.; Szoka, F. C. Jr. Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconjugate Chem. 1993, 4, 372-379.
    11. Tang, M.; Redemann, C. T.; Szoka, F. C. Jr. In Vitro Gene Delivery by Degraded Polyamidoamine Dendrimers. Bioconjugate Chem. 1996, 7, 703-714.
    12. Tang, M. X.; Szoka, F. C. The influence of polymer structure on the interactions of cationic polymers with DNA and morphology of the resulting complexes. Gene Ther. 1997, 4, 823-832.
    13. Bielinska, A.; Kukowska-Latallo, J. F., Johnson, J.; Tomalia, D. A.; Baker, J. R. Jr. Regulation of in vitro gene expression using antisense oligonucleotides or antisense expression plasmids transfected using starburst PAMAM dendrimers. Nucleic Acids Res. 1996, 24, 2176-2182.
    14. Reuter, J. D.; Myc, A.; Hayes, M. M.; Gan, Z.; Roy, R.; Qin, D.; Yin, R.; Piehler, L. T.; Esfand, R.; Tomalia, D. A.; Baker, J. R. Jr. Inhibition of Viral Adhesion and Infection by Sialic-Acid-Conjugated Dendritic Polymers. Bioconjugate Chem. 1999, 10, 271-278.
    15. Malik, N.; Wiwattanapatapee, R.; Klopsch, R.; Lorenz, K.; Frey, H.; Weener, J. W.; Meijer, E. W.; Paulus, W.; Duncan, R. Dendrimers:: Relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of 125I-labelled polyamidoamine dendrimers in vivo. J. Controlled Release 2000, 65, 133-148.
    16. Liu, M.; Frechet, J. M.; Designing dendrimers for drug delivery. J. Pharm. Sci. Technol. Today 1999, 2, 393-401.
    17. Wiwattanapatapee, R.; Carreno-Gomez, B.; Malik, N.; Duncan, R.; Anionic PAMAM Dendrimers Rapidly Cross Adult Rat Intestine In Vitro: A Potential Oral Delivery System. Pharm. Res. 2000, 17, 991-998.
    18. Chen, D.; Jiang, M.; Strategies for constructing polymeric micelles and hollow spheres in solution via specific intermolecular interactions. Acc. Chem. Res. 2005, 38,494
    19. Orfanou K.; Topouza D.; Pispas S.; et al. J. Poly. Sci: PartA. 2003, 41, 2454
    20. Duan, H.; Chen, D.; Jiang, M.; et al. Self-Assembly of Unlike Homopolymers into Hollow Spheres in Nonselective Solvent. J. Am. Chem. Soc. 2001, 123, 12097
    21. Yan, D.; Zhou, Y.; Hou, J.; Supramolecular self-assembly of macroscopic tubes. Science 2004, 303, 65
    22. Wang j.; Kuang M.; Duan H.W.; Chen D.Y.; Jiang M.; PH-dependent multiple morphologies of novel aggregates of carboxyl-terminated polymide in water. European Physical Journal E., 2004, 5, 211.
    23. Riegel I.C.; Eisenberg A., Novel Bowl-Shaped Morphology of Crew-Cut Aggregates from Amphiphilic Block Copolymers of Styrene and 5-(N,N-Diethylamino)isoprene. Langmuir 2002, 18, 3358-3363.
    1. Hawker C. J.; Frechet J. M. J. Preparation of polymers with controlled molecular architecture, a new convergent approach to dendritic macromolecules, J. Am. Chem. Soc., 1990, 112, 21, 7638-7647;
    2. Percec, V.; Alan, C. H.; Cho, W. D.; Jamieson, A. M.; Kim, J.; Leman, T.; Schmidt, M.; Gerle, M.; Moeller, M.; Prokhorova, S. A.; Sheiko, S. S.; Cheng, S. Z. D.; Zhang, A.; Ungar, G.; Yeardley, D. J. P. Visualizable cylindrical macromolecules with controlled stiffness from backbones containing libraries of self-assembling dendritic side groups. J. Am. Chem. Soc. 1998, 120, 8619-8631.
    3. Percec, V.; Cho, W. D.; Ungar, G. Increasing the diameter of cylindrical and spherical supramolecular dendrimers by decreasing the solid angle of their monodendrons via periphery functionalization. J. Am. Chem. Soc. 2000, 122, 10273-10281.
    4. Percec, V.; Cho, W. D.; Mosier, P. E.; Ungar, G.; Yeardley, D. J. P. Structural analysis of cylindrical and spherical supramolecular dendrimers quantifies the concept of monodendron shape control by generation number. J. Am. Chem. Soc. 1998, 120, 11061-11070.
    5. Percec, V.; Ahn, C. H.; Ungar, G.; Yeardley, D. J. P.; Moiler, M.; Sheiko, S. S. Controlling polymer shape through the self-assembly of dendritic side-groups. Nature 1998, 391, 161-164.
    6. Ungar, G.; Percec, V.; Holerca, M. N., Johansson, G.; Heck, J. A. Heat-shrinking spherical and columnar supramolecular dendrimers: Their interconversion and dependence of their shape on molecular taper angle. Chemistry-A European Journal 2000, 6, 1258-1266.
    7. Percec, V.; Cho, W. D.; Ungar, G.; Yeardley, D. J. P. Synthesis and structural analysis of two constitutional isomeric libraries of AB(2)-based monodendrons and supramolecular dendrimers. J. Am. Chem. Soc. 2001, 123, 1302-1315.
    8. Percec, V.; Cho, W. D.; Moeller, M., Prokhorova, S. A.; Ungar, G.; Yeardley, D. J. P. Design and structural analysis of the first spherical monodendron self-organizable in a cubic lattice. J. Am. Chem. Soc. 2000, 122, 4249-4250.
    9. Hudson, S. D.; Jung, H. T., Percec, V., Cho, W. D.; Johansson, G.; Ungar, G.; Balagurusamy, V. S. K. Direct visualization of individual cylindrical and spherical supramolecular dendrimers. Science 1997, 278, 449-452.
    10. Balagurusamy, V. S. K.; Ungar, G.; Percec, V.; Johansson, G. Rational design of the first spherical supramolecular dendrimers self-organized in a novel thermotropic cubic liquid-crystalline phase and the determination of their shape by X-ray analysis. J. Am. Chem. Soc. 1997, 119, 1539-1555.
    11. Percec, V.; Cho, W. D.; Ungar, G.; Yeardley, D. J. P. From Molecular Flat Tapers, Discs, and Cones to Supramolecular Cylinders and Spheres using Frechet-Type Monodendrons Modified on their Periphery. Angew. Chem., Int. Ed. 2000, 39, 1597-1602.
    12. Service R. F. Solid-state physics-Nanotube 'peapods' show electrifying promise. Science 2001, 292, 5514, 45
    13. Khlobystov A. N.; Britz D. A.; Briggs G. A. D. Molecules in carbon nanotubes, Acc. Chem. Res. 2005, 38, 901-909
    14. M Sawamura.; Kawai K.; Matsuo Y.; Kanie K.; Kato T.; Nakamura E.I. Stacking of conical molecules with a fullerene apex into polar columns in crystals and liquid crystals Nature 2002, 419, 702-705
    15. Jonkheijm P.; Schoot P.; Schenning A. P. H. J.; Meijer E. W. Probing the solvent-assisted nucleation pathway in chemical self-assembly Science 2006, 313, 80-83.
    16. Rabe, J. P.; Buchholz, S. Commensurability and mobility in 2-dimensional molecular-patterns on graphite. Science 1991, 253, 424.
    17. Xu, S. L.; Zeng, O. D.; Wu, P.; Qiao, Y. H.; Wang, C.; Bai, C. L. Ordered thin films of alkyloxy-substituted benzaldehydes on a graphite surface studied by scanning tunneling microscopy. Applied Physics A-Materials Science & Processing 2003, 76, 209.
    18. Mamdouh W.; Uji-I H.; Dulcey A. E.; Percec V.; Feyter S. D.; Schryver F. C. D. Expression of molecular chirality and two-dimensional supramolecular self-assembly of chiral, racemic, and achiral monodendrons at the liquid-solid interface Langmuir 2004, 20, 7678-7685
    19. Nakanishi T.; Miyashita N.; Michinobu T.; Wakayama Y.; Tsuruoka T.; Ariga K.; KurthPerfectly D. G. Straight nanowires of fullerenes bearing long alkyl chains on graphite J. Am. Chem. Soc. 2006, 128, 6328-6329
    20. Schlüter A. D.; Rabe J. P. Dendronized pPolymers: synthesis, characterization, assembly at interfaces, and manipulation Angew. Chem. Int. Ed. 2000, 39, 864-883
    21. Prokhorova S. A.; Sheiko S. S.; Ahn C.-H.; Percec V.; Molller M. Molecular Conformations of Monodendron-Jacketed Polymers by Scanning Force Microscopy Macromolecules 1999, 32, 2653-2660
    22. Zhang Y. H.; Huang J.; Chen Y. M. Reactive dendronized copolymer of styryl dendron and maleic anhydride - A single molecular scaffold Macromolecules 2005, 38, 5069-5077
    1 Lehn, J-M.; Supramolecular chemistry; 1995, VCH, Weinheim.
    2 Ciferri, A.; Supramolecular polymers, 2000, Marcel Dekker, New York.
    3 Lehn, J-M.; Meyer, W. H.; Polymeric materials: a review of progress in 1992, Advanced Materials, 1995, 5, 254-259,
    4. Lehn, J-M.; Supramolecular chemistry-molecular information and the design of supramolecular materials. Makromol Chem Macromol Syrup 1993, 69, 1-17.
    5. Betze, C.; Saenger, T. W.; Hingerty, B. E.; Browns, G. M.; Circular and flip-flop hydrogen bonding in β-cyclodextrin undecahydrate: a neutron diffraction study J. Am. Chem. Soc. 1984, 106, 7545-7557
    6. Engeldinger, E; Armspach, D.; Mat,t D.; Capped cyclodextrins. Chemical Reviews 2003, 103 (11): 4147-4173
    7. Szejtli, J.; Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 1998, 98 1743
    8. Lehn, J-M; Meyer, W. H.; Polymeric materials: A review of progress in 1992, Advanced Materials, 1995, 5, 254-259,
    9. Gulik-Krzywicki, T.; Fouquey, C.; Lehn, J-M.; Electron-microscopic study of supramolecular liquid-crystalline polymers formed by molecular-recognition- directed self-assembly from complementary chiral components. Proc Natl Acad Sci USA 1993, 90: 163.
    10. Lehn, J-M.; Supramolecular chemistry-molecular information and the design of supramolecular materials. Makromol Chem Macromol Syrup 1993, 69, 1-17.
    11 Sijbesma R P; Beijer F H; Brunsveld L; Folmer B J B; Hirschberg J H K K; Lange R F M; Lowe J K L; Meijer E W.; Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding. Science 1997, 278: 1601.
    12 Hirschberg J. H. K. K.; Brunsveld L.; Ramzi A.; Vekemans J. A. J. M.; Sijbesma R. P.; Meijer E. W.; Helical self-assembled polymers from cooperative stacking of hydrogen-bonded pairs. Nature 2000, 407: 167.
    13 Brunsveld L, Folmer B J B, Meijer E W, Sijbesma R E Supramolecular polymers. Chem Rev 2001, 101: 4071.
    14 Castellano R K, Rudkevich D M, Rebek J Jr. Polycaps: Reversibly formed polymeric capsules. Proc NatIAcad Sci USA 1997, 94: 7132.
    15 Castellano R K, Rebek J Jr. Formation of discrete, functional assemblies and informational polymers through the hydrogen-bonding preferences of calixarene aryl and sulfonyl tetraureas. J Am Chem Soc 1998, 120: 3657.
    16 Castellano R K, Clark R, Craig S L, Nuckolls C, Rebek J Jr Emergent mechanical properties of self-assembled polymeric capsules. Proc Natl Acad Sci USA 2000, 97: 12418.
    17 Castellano R K, Nuckolls C, Eichhorn S H, Wood M R, Lovinger A J, Rebek J Jr Hierarchy of order in liquid crystalline polycaps. Angew Chem Int Ed 1999, 38, 2603-6.
    18 Knapp R, Schott A, Rehahn M. A Novel Synthetic Strategy toward Soluble, Well-Defined Ruthenium(Ⅱ) Coordination Polymers. Macromolecules 1996, 29, 478.
    19 Hamasaki K, Ikeda H, Nakamura A, Ueno A, Toda F, Suzuki I, Osa T. Fluorescent sensors of molecular recognition. Modified cyclodextrins capable of exhibiting guest-responsive twisted intramolecular charge transfer fluorescence. J Am Chem Soc 1993, 115: 5035.
    20 Ueno A, Minato S, Suzuki I, Fukushima M, Ohkubo M, Osa T, Hamada F, Murai K. Host Guest Sensory System Of Dansyl-Modified Beta-Cyclodextrin For Detecting Steroidal Compounds By Dansyl Fluorescence. Chem Lett 1990 (4) 605-608.
    21 Wang Y, Ikeda T, Ikeda H, Ueno A, Toda F (1994). Dansyl-beta-cyclodextrins as fluorescent sensors responsive to organic-compounds. Bull Chem Soc Jpn 67: 1598.
    22 Corradini R, Dossena A, Marchelli R, Panagia A, Sartor G, Saviano M, Lombardi A, Pavone V. A modified cyclodextrin with a fully encapsulated dansyl group: Self-inclusion in the solid state and in solution. Chemistry-A European Journal, 1996 2, 373.
    23 Corradini R, Dossena A, Galaverna G, Marchelli R, Panagia A, Sartor G, Fluorescent chemosensor for organic guests and copper(Ⅱ) ion based on dansyldiethylenetriamine-modified beta-cyclodextrin. J Org Chem 1997, 62, 6283.
    24 Takahashi K, Imohori K, Kitsuka M. Formation of superstructure composed of modified cyclodextrins as molecular "blocks" in aqueous solution with host-guest complexation. Correlation of chemical structure of modified group with complexation. Polym J 2001, 33, 242.
    25 Inoue Y, Wada T, Sugahara N, Yamamoto K, Kimura K, Tong L-H, Gao X-M, Hou Z-J, Liu Y. Supramolecular Photochirogenesis. 2. Enantiodifferentiating Photoisomerization of Cyclooctene Included and Sensitized by 6-O-Modified Cyclodextrins. J Org Chem 2000, 65, 8041.
    26 Yamada T, Fukuhara G, Kaneda T. "Molecular magic". Formation of a self-inclusion complex from a dumbbell-shaped permethylated beta-cyclodextrin derivative. Chem Lett 2003, 32, 534.
    27 Fukuhara G, Fujimoto T, Kaneda T, Synthesis and characterization of the first pair of an unlocked and a locked self-inclusion complex from a permethylated alpha-cyclodextrin derivative. Chem Lett 2003, 32, 536.
    28 McAipine S R, Garcia Garibay M A. Inside-Outside Isomerism of -Cyclodextrin Covalently Linked with a Naphthyl Group. J Am Chem Soc 1996 118: 2750.
    29 Zanotti-Gerosa A, Solari E, Giannini L, Floriani C, Chiesi- Villa A, Rizzoli C. Self-assembling of p-tert-butylcalix[4]arene into supramolecular structures using transition-metal derivatization. Chem Commun 1996 119.
    30 Yamaguchi N, Nagvekar D S, Gibson H W. Self-organization of a heteroditopic molecule to linear polymolecular arrays in solution. Angew Chem Int Ed 1998 37:2361.
    31 Bugler J, Sommerdik N A J M, Visser A J W G, van Hoek A, Nolte R J M, Engbersen J F J, Reinhoudt D N. Interconnective Host-Guest Complexation of -Cyclodextrin-Calix[4]arene Couples. JAm Chem Soc 1999 121: 28.
    32 Tong L-H, Hou Z-J, Inoue Y, Tai A. Molecular Recognition By Modified Cyclodextrins-Inclusion Complexation Of Beta-Cyclodextrin 6-O-Monobenzoate With Acyclic And Cyclic Hydrocarbons. J Chem Soc Perkin Trans 1992, 2, 1253-1257.
    33 McAipine S R, Garcia-Garibay M A Studies of Naphthyl-Substituted-Cyclodextrins. Self-Aggregation and Inclusion of External Guests. J Am Chem Soc 1998 120: 4269.
    34 Mirzoian A, Kaifer A E. Electrochemically controlled self-complexation of cyclodextrin-viologen conjugates. Chem Commun 1999 1603.
    35 Harada A, Miyauchi M, Hoshino T. Supramolecular polymers formed by cinnamoyl cyclodextrins. J Polym Sci Part A Polymer Chemistry 2003 41: 3519.
    36 Hoshino T, Miyauchi M, Kawaguchi Y, Yamaguchi H, Harada A Daisy Chain Necklace: Tri[2]rotaxane Containing Cyclodextrins. JAm Chem Soc 122: 9876.
    37 Fujimoto T, Uejima Y, Imaki H, Kawarabayashi N, Jung J H, Sakata Y, Kaneda T. The first lipophilic face-to-face dimers of permethylated alpha-cyclodextrin-azobenzene dyads through a p-xylylene spacer. Chem Lett 2000 564.
    38 Fujimoto T, Sakata Y, Kaneda T. The first competitive formation of [4] and [2]supercyclodextrins by self-association of an alpha-cyclodextrin bearing a bisazophenol group. Chem Lett 2000 764.
    39 Liu Y, You C-C, Zhang M, Weng L-H, Wada T, Inoue Y Molecular interpenetration within the columnar structure of crystalline anilino-beta-cyclodextrin. Org Lett 2000)2: 2761.
    40 Liu Y, Fan Z, Zhang H-Y, Yang Y-W, Liu S-X, Wu X, Wada T, Inoue Y Supramolecular self-assemblies of, beta-cyclodextrins with aromatic tethers: Factors governing the helical columnar versus linear channel superstructures. J Org Chem 2003 68: 8345.
    41 Park J W, Song H E, Lee S Y Facile dimerization and circular dichroism characteristics of 6-O-(2-sulfonato-6-naphthyl)-beta-cyclodextrin. J Phys Chem B 2002 106: 5177.
    42 Gao X M, Zhang Y L, Tong L H, Ye Y H, Ma X Y, Liu W S, Inoue Y. Exciton coupling and complexation behaviour of beta-cyclodextrin naphthoate. J Inclusion Phenom Macrocyclic Chem 2001, 39: 77.
    43 Fujimoto, T.; Sakata, Y.;Kaneda, T.; The first Janus [2]rotaxane. Chem Commun 2000 2143.
    44 Onagi H, Easton CJ, Lincoln S F. An hermaphrodite [2]rotaxane: Preparation and analysis of structure. Org Lett 2001, 3, 1041.
    45 Kaneda T, Yamada T, Fujimoto T, Sakata Y. The first [5]supercyclodextrin whose cyclopentameric array is held only by a mechanical bond. Chem Lett 2001 1264.
    46 Harada A, Kawaguchi Y, Hoshino T. Supramolecular polymers formed by modified cyclodextrins. J Inclusion Phenom. Macromol Chem 2001 41: 115.
    47 Harada A.; Cyclodextrin-based molecular Machines. Acc Chem Res 200134: 456.
    48 Miyauchi M, Kawaguchi Y, Harada A Formation of supramolecular polymers constructed by cyclodextrins with cinnamamide. J Inclusion Phenom. Macromol Chem 2004 50: 57.
    49 Miyauchi M, Hoshino T, Yamaguchi H, Kamitori S, Harada A.; A [2]rotaxane capped by a cyclodextrin and a guest: Formation of supramolecular [2]rotaxane polymer. J Am Chem Soc 2005 127: 2034.
    50 Miyauchi M, Harada A.; A helical supramolecular polymer formed by host-guest interactions. Chem Lett 2005 34: 104.
    51 Miyauchi M, Takashima Y, Yamaguchi H, Harada A.; Chiral supramolecular polymers formed by host-guest interactions. J Am Chem Soc 2005 127: 2984.
    52 Miyauchi, M.; Harada, A.; Construction of Supramolecular Polymers with Alternating-, -Cyclodextrin Units Using Conformational Change Induced by Competitive Guests. J Am Chem Soc 2004 126: 11418.
    53 Harada A.; Fume M.; Nozakura S-i.; Cyclodextrin-Containing Polymers. 1. Preparation of Polymers. Macromolecules 1976 9:701.
    54 Liu Y-Y.; Fan X-D.; Synthesis and characterization of pH[hyphen] and temperature[hyphen]sensitive hydrogel of N[hyphen]isopropylacrylamide/cyclodextrin based copolymer. Polymer 2002 43:4997.
    55 Harada A, Fume M, Nozakura S-i.; Interaction of Cyclodextrin-Containing Polymers with Fluorescent Compounds. Macromolecules 1977 10:676.
    56 Weickenmeier M, Wenz G. Cyclodextrin sidechain polyesters-Synthesis and inclusion of adamantan derivatives. Macromol Rapid Commun 1996 17:731.
    57 Galant C, Amiel C, Wintgens V, Se'bille B, Auvray L.; Ternary complexes with poly(beta-cyclodextrin), cationic surfactant, and polyanion in dilute aqueous solution: A viscometric and small-angle neutron scattering study. Langmuir 2002 18:9687.
    58 Galant C, Amiel C, Auvray L.; Tailorable polyelectrolyte complexes using cyclodextrin polymers. J Phys Chem B 2004 108:19218.
    59 Galant C, Wintgens V, Amiel C, Auvray L.; A reversible polyelectrolyte involving a beta-cyclodextrin polymer and a cationic surfactant. Macromolecules 2005 38:5243.
    60 Yashima E, Maeda K, Sato O.; Switching of a macromolecular helicity for visual distinction of molecular recognition events. J Am Chem Soc 2001 123:8159.
    61 Harada A, Fume M, Nozakura S-i.; Cyclodextrin-Containing Polymers. 2. Cooperative Effects in Catalysis and Binding. Macromolecules 1976 9:705.
    62 Suh J, Lee SH, Zoh KD.; A novel host containing both binding site and nucleophile prepared by attachment of. beta.-cyclodextrin to poly(ethylenimine). J Am Chem Soc 1992 114:7916.
    63 Suh J, Hah SS, Lee SH.; Dendrimer poly(ethylenimine)s linked to beta-cyclodextrin. Bioorganic Chemistry 1997 25:63.
    64 Suh J.; Kwon W.J.; Artificial metalloesterases constructed by site-directed attachment of oximinato metal centers to poly(ethylenimine) containing beta-cyclodextrin. Bioorganic Chemistry 1998 26:103.
    65 Hishiya T.; Shibata M.; Kakazu M.; Asanuma H.; Komiyama M.; Molecularly Imprinted Cyclodextrins as Selective Receptors for Steroids. Macromolecules 1999 32:2265.
    66 Hasegawa, Y.; Miyauchi, M.; Takashima, Y.; Yamaguchi, H.; Harada, A. Supramoleuclar polymers formed form β-cyclodextrins dimer linked by poly(ethylene glycol) and guest dimers Macromolecules 2005, 38, 3724-3730
    67 Gelb, R. I.; Schwartz, L. M.; Laufer, D. A. J. Chem. Soc., Perkin Trans. 2 1984, 15-21.
    68 Petter R. C.; Salek J. S.; Sikorski C. T.; Kumaravel G.; Lin E-T. Cooperative binding by aggregated mono-6-(alkylamino)-β-cyctodextrins J. Am. Chem. Soc. 1990, 112, 3860-3868
    69 Teodorescu M.; Matyjaszewski K. Atom transfer radical polymerization of (meth)acrylamides Macromolecules, 1999, 32, 15,
    70 Hidenori Ohashi, Yoshie Hiraoka, and Takeo Yamaguchi An autonomous phase transition-complexation/decomplexation polymer system with a molecular recognition property Macromolecules 2006, 39, 2614-2620
    71 Rekharsky M.V.; Inoue Y. Complexation thermodynamics of cyclodextrins Chem. Rev. 1998, 98, 1875-1917

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700