乳酸共聚物与壳聚糖衍生物的有序簇集与组装
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
壳聚糖及其衍生物具有极好的生物特性,如生物降解性、无免疫原性、抗菌性和创口治疗活性等,已被广泛用作药物载体、抗菌剂、细胞培养载体及其它医用材料。另外通过与其它材料共混可以进一步改善壳聚糖的性能,尤其是力学性能;聚乳酸及其共聚物具有生物降解性和生物相容性,其嵌段共聚物可以自组装成纳米颗粒,已被用在组织工程、医疗装置和人工器官的培植、骨骼修复等各式各样的生物医用领域。将壳聚糖及其衍生物与乳酸共聚物进行有效复合可以制备出兼有二者优点的复合材料,而通过材料的简单混合很难实现这一目的。我们利用特定的单体制备出各种类型的乳酸共聚物和壳聚糖衍生物,通过它们之间的有序簇集与组装来制备这类纳米复合材料。主要结果如下:
     乳酸共聚物分子中的PLA链段的长短、侧链取代基团的亲水性或疏水性决定着分子的亲水-疏水平衡。PLA链段的疏水性决定了星形(star-shaped)乳酸共聚物(包括PLA-PTOL、PLA-GLU、PLA-LYS)的疏水性质;而PEG-2000链段的加入使乳酸-丁二酸-聚乙二醇-2000分子具有两亲性,成为典型的两亲嵌段共聚物;侧链含磺酸基团和季铵基团的乳酸共聚物(PLA-BDA-DTMPDOL、PLA-BDA-DTEAMPDOL)是典型的聚电解质;乳酸-丁二酸酐-2,2-二亚油酰基-1,3-丙二醇共聚物则是一种疏水性的梳形(combed)聚合物;壳聚糖改性后增加了分子的功能性。在2位氨基上离子化后,大大提高了分子的极性,使其溶于多种极性溶剂;在壳聚糖的2位氨基上接枝亚油酰基生成了疏水性的梳状聚合物,提高了其在非极性溶剂中的溶解性。
     通过选择不同的溶剂采用慢蒸发溶剂法制备出了以下三种有序簇集体:季戊四醇-乳酸四臂星形共聚物(PLA-PTOL)/壳聚糖(CS)、谷氨酸-乳酸三臂星形共聚物(PLA-GLU)/壳聚糖(CS)、赖氨酸-乳酸三臂星形共聚物(PLA-LYS)/壳聚糖(CS)。在不同溶剂中(三氯甲烷/甲醇-乙酸、三氯甲烷/二氯甲烷-三氯乙酸)生成的有序簇集体的形貌和尺寸差异较大;另外,随着星形分子的分子量的增加,三种超分子簇集体的尺寸都增大,但溶液的浓度对超分子簇集体的尺寸没有影响;IR结果表明,PLA-PTOL/CS超分子簇集体中的PLA-PTOL分子的C=O基与CS分子的OH基形成极强的氢键。三种星形分子与壳聚糖组装时放出的热量大约分别为8.6千焦/摩尔、5.6千焦/摩尔和5.6千焦/摩尔。
     两亲嵌段共聚物PLA-BDA-PEG-2000在极性溶剂如水、THF、乙醇和DMF中能够自组装成直径为几十个纳米到几个微米的聚合物实心球和空心球;球体尺寸随着分子中PLA聚合度的增大而增大;虽然溶液浓度对球径没有太大影响,但浓度过低时,球体形状变得不规则;自组装过程是一种自发的放热过程,每摩尔分子放出的热量大约为20.666千焦。
     梳形聚合物分子PLA-BDA-DLPDOL、(N-亚油酰基)壳聚糖、(N-亚油酰基,N-丁二酰基)壳聚糖在特定的溶剂中可以自身自发组装成有序簇集体,并且相互之间亦能自发组装成有序簇集体;亚油酰基的接枝率对簇集体的形貌有一定影响,同时溶剂类型对形貌也有较大影响,而溶液浓度对其却无影响;组装过程的热分析表明,梳形聚合物组装过程是放热的,并且(N-亚油酰基, N-丁二酰基)壳聚糖分子组装后存在蓝移现象。
     采用分子沉积法制备出了以下几种聚电解质自组膜:PLA-BDA-DTMPDOL/ N-(1-羟基-3-三甲胺)丙基壳聚糖,PLA-BDA-DTEAMPDOL/(N-丁二酰基)壳聚糖,PLA-BDA-DTEAMPDOL/ N-(2-羟基,3-磺酸)丙基壳聚糖。膜表面形貌与分子的离子度、溶解浓度有很大关系。离子度大,浓度适中可以得到表面较为致密的膜;切面形貌分析表明,自组膜的形成过程是一种不同电性聚合物分子有序的层-层组装过程。另外,组装成膜过程的热分析表明,成膜过程是放热的,自组膜是热力学稳定性体系;组装成膜后存在蓝移现象。
     不同类型的乳酸共聚物及壳聚糖衍生物尽管分子结构不同,但在一定的条件下均能自发进行分子的有序簇集和组装。产生组装的驱动力主要包括氢键、疏水-亲脂相互作用、静电相互作用等。有序簇集体的形貌随分子类型、外界条件等的不同而有差别。另外各种超分子簇集体都表现出良好的可降解性和较快的降解速度。
Chitosan and its derivatives, showing excellent biological properties such as biodegradation in the human body, immunological, antibacterial, and wound-healing activity, are useful as carriers in drug delivery systems, as antibacterial agents, cell culture, and in other medical applications. Meanwhile, properties especially in strength could be improved through being mingled with other biomaterials. Poly(lactic acid) or its copolymers with other oligomers have been being used in such diverse biomedical fields as tissue engineering, implantation of medical devices and artifical organs, bone repair, et al, because of their biodegradable, biocompatible and self-assembling when the block copolymers are used for the prepration of nanoparticles. New muti-biomaterials nanoparticles with better biological properties can obtained throught the complexing of chitosan or its derivates with poly(lactic acid) or its copolymers, but we could not bring about the aim just throught simple complexing. So we have synthesized some peculiar structure derivates of chitosan and poly(lactic acid) in order to prepare muti-biomaterials nano-objects throught the ordered aggregating and self-assembling of these molecules. The main results are as follows:
     The length of the block PLA(hydrophilic) and the hydrophilic or hydrophobic property make the copolymers amphiphilic or not. Star-shaped polymers including PLA-PTOL(Poly[(lactic acd)-co-(pentaerythritol)]),PLA- GLU(Poly[(lactic acid)-co-(glutamic acid)]), and PLA-LYS(Poly[(lactic acid)- co-(lysine)]), show hydrophobic attribute to the block PLA; Poly[(lactic acid)-co-(butanedioic anhydridel))-co-(polyethylene glycol-2000l)](PLA-BDC- PEG-2000)as a typical block copolymer shows amphiphilic attribute to the block PLA and PEG-2000(hydrophilic); copolymers with taurinic or triethylaminic functional groups at side chains including Poly[(lactic acid)-co-(butanedioic anhydridel))-co-(2,2-ditaurinic-Methyl-1,3-propanediol)] (PLA-BDA-DTMPDOL) and Poly[(lactic acid)-co-(butanedioic anhydridel))- co- (2,2-ditriethylaminic-methyl-1,3-propanediol)](PLA-BDA-DTEAMPDOL) are typic- al polyelectrolyte; Poly[(lactic acid)-co-(butanedioic anhydridel))-co- (2,2- dilinoleonyl-1,3-propanediol)](PLA-BDA-DLPDOL) with linoleonyl fun- ctional groups at side chains is a hydrophobic combed polymer. Chitosan derivates modified by taurinic or triethylaminic functional groups at the C2 position show better polar than chitosan and can be dissolved in many polar solvents; chitosan derivates modified by linoleonyl functional groups at the C2 position called as combed polymer show better hydrophobic than chitosan and can be dissolved in many nonpolar solvents.
     The ordered molecular aggregates with different sorts of image and size, including PLA-PTOL/CS, PLA-GLU/CS, and PLA-LYS/CS have been prepared by slow evaporation of solvent in different sorts of solvents, such as CHCl3/CH3OH-AcOH, and CHCl3/CH2Cl2-CCl3CO2H. There are big differences in image and size because of solvents and molecular weight of these star-shaped polymers; but the density of polymers could not impact on the size of these ordered molecular aggregates; the aggregates grows larger with the increasing of molecular weight. It states that there are strong hydrogen bonds between C=O of PLA-PTOL and H-O of CS from FT-IR spectrums. The thermopositive values are 8.6kj/mol, 5.6kJ/mol, and 5.6kJ/mol in the self-assembling process of these three ordered molecular aggregates.
     Amphiphilic block copolymer (PLA-BDA-PEG-2000) can self-assemble and becomes solid and hollow balls in polar solvents such as H2O, THF, EtOH, and DMF. The size of balls grows larger with the increasing of the length of arms (PLA); density could not impact on the size of balls, but balls grow more irregular when density turns lower. The auto process of self-assembly is thermopositive and the value is 20.666kJ/mol.
     The ordered molecular aggregates can be obtained by self-assembly of combed polymers themselves and each other including PLA-BDA-DLPDOL, (N-linoleonyl)CS, and (N-butanoyl,N-linoleonyl ) CS. The graft ratio of linoleonyl to combed polymers and the types of solvents have effects on the images of ordered molecular aggregates, and density does not. The process is thermopositive and there are blue-shifts of covalent bond in FT-IR spectrums after self-assembling.
     Three polyelectrolyte membranes, including PLA-BDA-DTMPDOL/(N-(2- Hydroxyl-3-Trimethylamino)Propanyl)CS,PLA-BDA-DTEAMPDOL/(N-butanedioic)CS, and PLA-BDA-DTEAMPDOL/2-Hydroxyl-3-SulfoPropanyl)CS, have been prepared by molecular deposition. The surface images of these membranes have some changers with the changers of ion ratios and densities of polyelectrolyte molecules. Tight membranes can be obtained by increasing ion ratios and adjusting densities; the self-assembly process of these membranes is a lay-lay molecular self-assembly of polyelectrolytes with contrary electric charges. The process is thermopositive and there are blue-shifts of covalent bond in FT-IR spectrums after self-assembling.
     In a word, these different types of the derivatives of chitosan and poly(lactic acid), despite there are different molecular structures, all can do ordered gather and self-assemble automatically at a special condition. The forces of self-assembly include hydrogen bond, hydrophobic-lipophilic interaction, static electricity interaction, and et al. The images of the ordered aggregates differ from one another attributing to the type of polymer molecules and solvent, and et al. At same time, the ordered aggregates are biodegradable and have a fast biodegradation rate.
引文
[1] Bazile D,Bassoullet M T,et a1.PEG-PLA nanoparticles avoid uptake by the mononuclear phagocytes sys- tem [J]. J Pharm Sci,1995,84940:493~498
    [2] Xiong C D,Deng X M. Synthesis and characterization of block copolymers from D,L-lactide and poly(te-tramethylene ether glycol)[J]. J Appl Polym Sci,1995,55(6):86~869
    [3] Deng X M,Xiong C D,et a1.Studies on the block copolymerization of D,L-lactide and poly(ethyle glycol) with aluminium complex catalyst[J]. J Appl Polym Sci,1995,55(8):1193~1196
    [4] Zhu Z X Deng X M, et al. Synthesis and characterization of biodegradable block copolymers of -cap- rolactone and D,L-lactide initiated by potassium. J Polym Sci, Polym Chem,1997,35:703~709
    [5] Elrsseeff J.Anseth K,Langer R.Synthesis and characterization of photo-cross-linked polymers based on poly(L-LACTIC ACID-CO-L-aspartic acid)[J]. Macromolecules,1997,30(7):2182~2184
    [6] Iwamura H. Ronald D. et a1.Functional derivatives of the poly(phenylacetylenes)[J]. Macromolecules,1988,21(12):3386~3388
    [7] Hubbell J A,Palsson B O,Papoutsakis E T,Preface. Tissue engineering and cell therapies [J]. Biotechnol Bioeng,1994,43,541~682
    [8] Barrer A,Zylstra E,Lansbury P T,Langer R.Synthesis and RGD peptide modification of a new biodegra- dable copolymer: poly(lactic acid-co-lysine)[J]. J Am Chem Soc,1993,115(23):11010~11011
    [9] Allan G G, Altman L C , Bensinger R E , et al . Zikakis J P , In chitosan and related enzymes. Orland , FL : Academi press. 1984 :119~133
    [10] Okamota Y, Kawakami K, Miyatake K, et al . Analgesic effects of chitosan and chitosan[J]. Carbohydr Polym, 2002 ,49(3) : 249~252
    [11] Mori T , Okumura M, Matsuura M, et al . Effects of chitosan and its derivatives on the proliferation and cytokine production of fibroblasts in vitro[J]. Biomaterials , 1997 ,18(13) : 947~951
    [12] Okamoto Y, Southwood L , Stashak T S , et al . Effect of chitosan on nonwoven fabric implant in tendon healing[J]. Carbohydr Polym, 1997 ,33 (1): 33~38
    [13] Usami Y, Okamoto Y, Takayama T , et al . Chitosan and chitosan stimulate canine polymorphonuclearcells to release leukotriene B4 and prostaglandin E2 [J]. J. Biomed Mater Res , 1998 ,42(4) : 517~522
    [14] Ishihara M, Nakanishi K, Ono K. Photocrosslinkable chitosan as a dressing for wound occlusion and accelerator in healing process[J]. Biomaterials , 2002 ,23(3): 833~840
    [15] Allen G G, Altanan L C , Bensinger R E , et al . In chitosan and related enzymes. Academic Press , 1984 , New York , pp119
    [16] Muzzarelli R A A. In chitosan in nature and technology. Plenum Press : New York,1986,p:206
    [17] Tanabe T , Okitsu N , Tachibane A. Preparation and characterization of keratin–chitosan composite film [J]. Biomaterials , 2002 ,23(3): 817~825
    [18] Hirano S , Zhang M, Nakagana M. Release of glycosaminoglycans in physiological saline and water by wet-spun chitosan-acid glycosaminoglycan fibers[J]. J Biomed Mater Res , 2001 ,56 (4): 556~561
    [19] Cho Y W, Cho YN , Chuna S H , et al . Water-soluble chitosan as a wound healing accelerator[J]. Bio- materials , 1999 ,20(22) : 2139~2145
    [20] Chen X G, Wang Z,Park H J. The effect of carboxymethyl-chitosan on proliferation and collagen secr- etion of normal and keloid skin fibroblasts[J]. Biomaterials,2002,23(23):4609~4614
    [21] Ono K, Saito Y, Ishihara M, et al . Photocrosslinkable chitosan as a biological adhesive [J]. J Biomed Mater Res , 2000 ,49(2) : 289~295
    [22] Hoekstra A , Struszczyk H , Kivekas O. Percutaneous microcrystalline chitosan application for sealing arterial puncture sites[J]. Biomaterials , 1998 ,19(16) :1467~1471
    [23] Mi F L, Shyu S S, Wu Y B. Fabrication and characterization of a sponge-like asymmetric chitosan membrane as a wound dressing[J]. Biomaterials , 2001 ,22(2) : 165~173
    [24] Yusof N L B M, LimL Y, Khor E. Preparation and characterization of chitosan beads as a wound dressing precursor [J]. J Biomed Mater Res , 2001 ,54(1) : 59~68
    [25] Lehn J M,Atwood J L,Davis J E D,McNicol D D,Vogtle F.Comprehesive Supramolecular Chemistry,New York; Pergamon,1996
    [26] Zubarev E R, Pralle M U, Li L, Stupp S I.Conversion of supramolecular clusters to macromolecular objects[J]. Science,1999,283:523~526
    [27] Lehn J M.Supramolecular Chemistry:Concepts and Perspeetives,Weinheim,VCH.1996
    [28] 唐有棋,桂琳琳.逆向而行一功能体系的分子工程学研究. 湖南科学技术出版社,1997
    [29] 杜灿屏(Du C P),唐 晋(Tang J) 化学进展(Progress in Chemistry),1998,10:102
    [30] Zimmerman S C,Duerr B F.Controlled molecular aggregation. 1. Cyclic trimerization via hydrogenbonding [J]. J Org Chem,1992.57(8):2215~2217
    [31] Ghadiri M R,Granja J R,Buehler L K.Artificial transmembrane ion channels from self-assembling peptide nanotubes [J]. Nature,1994.369(6478):301
    [32] Takeda N,Umenmoto K,Yamauchi K,Fujita M.A nanometre-sized hexahedral coordination capsule assembled from 24 components [J]. Nature 1999,398(6730):794
    [33] Choi I S,Bowden N,Whitesides G M.Shape-selective recognition and self-assembly of mm-scale components [J]. J Am Chem Soc,1999.121(8):1754~1755
    [34] Cao Y W,Chai x D,Li T J,Smith J,Li D.Self-patterned H-bond supramolecular self-assembly [J]. Chem Commun,1999,16:1605
    [35] Ohtani B,Shintani A,Uosaki K.Two-Dimensional Chirality: Self-assembled monolayer of an atropisomeric compound covalently bound to a gold surface [J]. J Am Chem Soc,1999, 121(27):6515~6516
    [36] Isasi Jose R,Cesteros Luis C,Issa Katim. Hydrogen bonding and sequence distribution in poly(vinyl acetate-co-vinyl alcohol) copolymers[J]. Macromolecules,1994,27(8):2200~2205
    [37] Jan M. Stouffer,Thomas J. McCarthy. Polymer monolayers prepared by the spontaneous adsorption of sulfur-functionalized polystyrene on gold surfaces, Macromolecules 1988, 21: 1204~1208
    [38] Fang Sun,t David G. Castner, David W. Grainger. Ultrathin Self-assembled polymeric films on solid surfaces. 2. Formation of 1,1 -(n-penty1dithio)undecanoate-bearing polyacrylate monolayers on gold. Langmuir 1993,9: 320~3207
    [39] Yuri Lvov, Gero Decher, Helmuth Mohwald, Assembly, structural characterization, and thermal behavior of layer-by-layer deposited ultrathin films of poly(viny1 sulfate) and poly(ally1amine).Langmuir 1993,9,481~486
    [40] Wei Chen , Thomas J. McCarthy. Layer-by-Layer Deposition: A tool for polymer surface modify- cation[J]. Macromolecules, 1997,30 (1): 78~86
    [41] Fou A C, Rubner M F, Molecular-level processing of conjugated polymers. 2.Layer-by-layer mani- pulation of in-situ polymerized p - m e doped conducting polymers[J] . Macromolecules 1995,28, 7115~7120
    [42] Kim W H, et al. Self-assemblied spin-coated and bulk films of a novel poly(diacety1ene) as second-order nonlinear optical polymers[J]. Macromolecules 1995,28:642~647
    [43] Zhang X, Li H B, Zhao B, Shen J C .Ordered self-organizing fFilms of an amphiphilic polymer by slowevaporation of organic solvents [J]. Macromolecules, 1997,30 (6):1633~1636
    [44] David Stewart ,Corrie T. Imrie.Toward supramolecular side-chain liquid crystal polymers. 5. The semplate receptor approach[J]. Macromolecules, 1997,30 (4):877~884
    [45] Ekaterina B. Zhulina, Chandralekha Singh, Anna C. Balazs.Forming patterned films with tethered diblock copolymers[J]. Macromolecules, 1996,29 (19): 6338~-6348
    [46] Ekaterina Zhulina,Anna C. Balazs.Designing patterned surfaces by grafting Y-shaped copolymers[J]. Macromolecules, 1996,29 (7):2667 -2673
    [47] Singhvi R, Kumar A, Lopez G P, Stephanopoulos G N, Wang D I, Whitesides G M, Ingber D E. Engineering cell shape and function[J]. Science 29 April 1994, 264(5159):696~698
    [48] 张希,林志宏.高倩合译.超分子化学.长春:吉林大学出版社,1995:3
    [49] Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery: design, characterization and biological significance [J]. Adv Drug Deliv Rev, 2001, 47 (11): 113~131
    [50] Inoue T, Chen G, Nakamae K, et al. An AB block copolymer of oligo(methyl methacrylate) and poly(acrylic acid) for micellar delivery of hydrophobic drugs [J]. J Controlled Release, 1998, 51 (2-3): 221~229
    [51] Talingang M R, Munk P,Weber S E,et a1. Onion-type micelles from polystyrene-block-poly(2- vinylpyridine) and poly(2-vinylpyridine)-block-poly(ethylene oxide)[J]. Macromolecules,1999,32(5):1593~1601
    [52] Yokoyama M,Lnoue S,Kataoka K,et a1.Preparation of adriamycin-conjugated poly(ethylene glycol)-poly(aspartic acid) block copolymer. A new type of polymeric anticancer agent [J]. Makronol Chem,Rapid Commun,1987,8(9):43l~435
    [53] Yokoyama M.Miyauchi M,Yamada N,et al,Polymer micelles as novel drug carrier: Adriamycin- conjugated poly(ethylene glycol)-poly(aspartic acid) block copolymer [J]. J Control Rel, 1990,Il:269~278
    [54] Kataoka K,Harada A,Nagasaki Y.Block copolymer micelles for drug delivery: design, characterization and biological significance [J]. Adv.Drug Deliv Rev,2001,47(1):113~131
    [55] Scholz L,Lijima M,Nagasaki Y,et al . A novel reactive polymeric micelle with aldehyde groups on its surface [J]. Macromolecules,1995,28(21):7295~7297
    [56] Nagasaki Y,Okada T,Scholz C,et al. The reactive polymeric micelle based on an aldehyde-ended poly- (ethylene-glycol)/Poly(lactide) block copolymer[J]. Macromolecules,1998,31(5):1473~1479
    [57] Akashi M,Chao D,Yashima E,et a1.Graft copolymers having hydrophobic backbone and hydrophilic branches. V. Microspheres obtained by the copolymerization of poly(ethylene glycol) macromonomer with methyl methacrylate[J]. J Appl Polym Sci,1990,39(9):2027~2030
    [58] Zhu H, Yuang X F, Zhao H y, et al. Non-covalent bond micellization: a new approach to macromolecu- lar self-assembly [J]. Chi J Appl Chem (应用化学), 2001, 18 (5): 336~341
    [59] Kabanov A V.Bronich T K,et a1.Soluble stoichiometric complexes from poly(N-ethyl-4-vinylpyri- dinium) cations and poly(ethylene oxide)-block-polymethacrylate anions[J]. Macromolecules,1996,29(21):6797~6802
    [60] Lysenko E A,Bronich T K,Eisenberg A,et a1.Block ionomer complexes from polystyrene-block- polyacrylate anions and N-Ccetylpyridinium cations [J]. Macromolecules,1998,31(14):4511~4515
    [61] Rackstraw B J,Martin A L,Stolnik S.Microscopic investigations into PEG-cationic polymer-induced DNA condensation [J]. Langmuir,2001,17(11):3l85~3193
    [62] Dautzenberg H.Zintchenko A.Polycationic graft Copolymers as carriers for oligonucleotide delivery complexes of oligonucleotides with polycationic graft copolymers[J]. Langmuir,2001,17(10):3096~3102
    [63] Mansouri S, Lavigne P, Corsi,et K, et al. Chitosan-DNA nanoparticles as non-viral vectors in gene therapy: strategies to improve transfection efficacy [J]. Euro J Pharm Biopharm, 2004, 57 (1): 1~8
    [64] Mao H Q, Roy K, Troung-Le V L, et al. Chitosan-DNA nanoparticles as gene carriers: synthesis, charac- terization and transfection efficiency [J]. J Controlled Release,2001, 70 (3): 399~421
    [65] Kawaguchi H and Rokicki G. Aliphatic cyclic carbonates and spiroorthocarbonates as monomers[J] .Pr- og Polym Sci,2000,25(2):259~342
    [66] Chen C Z,Coopers S L. Recent advances in antimicrobial dendrimers [J]. Adv Mater,2000,12(11):843~846
    [67] Fendler J H. Membrane-Mimetic Approach to Advanced Materials (尖端材料的膜模拟) [M]. Jiang L, Ye X L, Ji S X et al. [译]. 北京: 科学出版社, 1999. 54~68
    [68] Uchegbu I F, Schatzlein A G, Tetley L, et al. Polymeric chitosan-based vesicles for drug delivery [J]. J Pharm Pharmacol, 1998, 50: 453~458
    [69] Zhou Y Y, Yang Y D, GUO X M, et al. Preparation and evaluation of magnetic targeting drug release chitosan microspheres Containing Aspirin [J]. Chi J Appl Chem (应用化学), 2002, 19 (12): 1178~1182
    [70] Naiwa H S. Handbook of Nanostructured Material and Nanotechnology: Vol 5 [M]. Australia: AcademicPress, 2000.577~604
    [71] Miwa A, Ishibe A, Nakano M, et al. Development of novel chitosan derivatives as micellar carriers of taxol [J]. Pharm Res, 1998, 15 (12): 1844 ~1850
    [72] 程蓉, 钱欣. 聚乳酸的改性及应用进展[J]. 化工进展, 2002, 21(11):824~826
    [73] Li S M,Rashkov J L, Espartero N, Manolova and Vert M. Synthesis,Characterization,and hydrolytic degradation of PLA/PEO/PLA triblock copolymers with poly(L-lactic acid) [J] . Macromolecules, 1996,29,57~62
    [74] Amarpreet S, Sawhney, Chandrashekhar P.,Pathak,and Jeffrey A H. Bioerodible hydrogels based on photopolymerized poly(ethylene glycol)-co-poly(-hydroxy acid) diacrylate macromers[J]. Macromolecules, 1993,26,581~587
    [75] 汪朝阳,赵耀明,王芳. Synthesis of biodegradable drug delivery material poly(lactic acid-glycolic acid) [J]. Fine Chemistry(精细化工).2003,20(9):515~518
    [76] Loannis A, Atsuyoshi N, Norioki K and Noboru Y. Novel star-shaped polylactide with glycerol using stannous octoate or tetraphenyl tin as catalyst:1.Synthesis,characterization and study of their biodegradability[J]. Polymer , 1995,36(15):2947~2956
    [77] Loannis A, Atsuyoshi N, Norioki K and Noboru Y. Novel polylactides with aminopropanediol or amino- hydroxymethylpropanediol using stannous octoate as catalyst;synthesis,characterization and study of their biodegradability[J]. Polymer 1995, 36 (11):2271~2279
    [78] Robson F S, Stephen C W, Allision C J and Puckett A D. Methacrylate-endcapped poly(d,l-lactide-co- trimethylene carbonate)oligomers[J] .Polymer,1997,38(26):6295~6301
    [79] Dong K Han and Jeffrey A H. Synthesis of polymer network scaffolds from L-lactide and poly(ethylene glycol ) and their interaction with cells[J]. Macromolecules, 1997,30,6077~6083
    [80] Michihiro Iijima,Yukio Nagasaki,Takashi Okada,Masao Kato and Kazunori Kataoka. Core-polymerized reactive micelles from heterotelechelic amphiphilic block copolymers[J]. Macromolecules ,1999,32,11 40~1146
    [81] Peter S,Helmut K and Hartwig H. Copolymerization of 2,2-dimethyltrimethylene carbonate and l,l-lactide[J]. Macromolecules 1996,29,3674~3680
    [82] Yuichi Ohya,Shotaro Maruhashi,and Tatsuro Ouchi. Graft polymerization of l-lactide on pullulan through the trimethylsilyl protection method and degradation of the graft copolymers[J]. Macromolec- ules ,1998,31,4662~4665
    [83] Chen X H and Richard A G. Versatile copolymer from [L]-lactide and [D]-xylofuranose[J]. Macromol- ecules 1999,32,308~314
    [84] 余贯华,计剑,沈家骢(胆固醇-聚(D,L-乳酸)的制备及软骨细胞相容性研究(Synthesis and characteri- zation of poly(D,L-lactide-cholesterol)and its chondrocyte compatibility promotion) .Acta Polymefica Sinica(高分于学报),2006,1(1):136~139
    [85] 罗丙红, 全大萍, 廖凯荣, 卢泽俭. 聚乳酸接枝乙烯基吡咯烷酮的初步研究[J]. 中山大学学报(自然科学版), 2001, 40(5):62~64
    [86] 曹雪波, 王远亮, 潘军, 卢晓, 蔡绍皙. 马来酸酐改性聚乳酸的力学性能研究[J]. 高分子材料科学与工程, 2002, 18(1):115~118
    [87] Zhu K J, Song B H, Yang S L.(“Super Microcapsules”(SMC).I. preparation and characterization of star polyethylene oxide(PEO)-polylactide(PLA) copolymers[J]. J Polym Sci:Part A : Polym Chem, 1989, 27(7):2151~2159
    [88] 唐智荣, 黄虹, 饶炬, 程树军. 吗啉二酮衍生物与丙交酯的共聚[J]. 华东理工大学学报,2002, 28(6):618~620
    [89] 吴之中. 聚乳酸-聚乙二醇嵌段共聚物及其交联聚氨酯弹性体的性能研究[J].信阳师范学院学报(自然科学版), 1999, 12(2):166~169
    [90] 沈正荣, 朱家蕙, 马臻. 乙醇酸和DL-乳酸交替共聚物的合成和表征[J]. 功能高分子学报, 1995, 8(4):489~493]
    [91] Elisseeff J, Anseth K, Langer R, Hrkach J S. Synthesis and characterization of photo-cross-linked poly- mers based on poly(L-lactic acid-co-L-aspartic acid)[J].Macromolecules,1997,30(7):2182~2184
    [92] 罗丙红,全大萍,廖凯荣,周长忍(PLGA-(PEG-ASP)n共聚物的合成与性能研究(Synthesis and Properties of a Novel Copolymer Based on D,L-lactide,Glycolide and Poly(PEG-co-L‘aspartic acid)[J]. 功能高分子学报(Journal functional polymers), 2005, 18(2):295~297
    [93] 赵洁,全大萍,廖凯荣,伍青. 含不同侧氨基密度的PLGA-(ASP-Dio1)x-PLGA共聚物的合成与表征(Synthesis and Characterization of LGA-(ASP-DIOL)x -PLGAs Copolymer Containing Pendant Ami-no Groups with Different Densitie)[J]. 高等学校化学学报(Chemical journal of Chinese univ- ersity-ies),2005,26(8):1570-1573
    [94] 罗彦凤,王远亮,牛旭锋,吴杨兰,潘君,石梁萍. 二胺改性聚乳酸的合成与表征(Synthesis and characterization of ethylenediamine modified poly(D,L-lactic acid)[J].功能高分子学报(Journal functional polymers), 2005, 21(2):139~142
    [95] 张思规,章伟编著 《精细化学品及中间体手册》,化学工业出版社,2004
    [96] 李在国主编,《有机中间体制备》,化学工业出版社,2001
    [97] 段行信主编,《实用精细有机合成手册》,化学工业出版社,2002
    [98] 申有青, 张富尧, 张一峰, 沈之荃. 稀土化合物催化内酯开环聚合Ⅱ . 异丙氧基稀土催化D,L-丙交酯开环聚合[J]. 高分子学报, 1995, (2):222~227
    [99] Nijenhuis A J, Grijpma D W and Pennings A J, Crosslinked poly(l-lactide) and poly(ε-caprolactone)[J]. Polymer,1996,37(13):2783~2791
    [100] Wei J and Huang G X. Synthesis of an amphiphilic star triblock compolymer of polystyrene,poly(ethylene oxide),and polyisoprene using lysine as core molecule[J],Macromulecules, 2005,38,1107~1113
    [101] Loannis Arvanitoyannis,Atsuyoshi Nakayma,Norioki Kawasaki and Noboru Yamamoto. Novel star-shaped polylactide with glycerol using stannous octoate or tetraphenyl tin as catalyst:1.S- ynthesis,characterization and study of their biodegradability[J]. Polymer, 1995,36(15):2947~2956
    [102] 雷自强,白雁斌,王寿峰,丁二酸酐与Sncl2.2H2O共催化乳酸缩聚制备高分子量聚乳酸[J]. 科学通报,2005,50(19):2174~2175
    [103] Lee K Y, KIM J H, KWON I C, et al. Self-aggregates of deoxycholic acid-modified chitosan as a novel carrier of adriamycin [J]. Coll Pol Sci, 2000, 278(12): 1216~1219
    [104] 王爱勤, 李洪启, 张俊彦. 丙三醇壳聚糖的制备与分析[J]. 中国生化药物杂志, 1997,18(2): 75
    [105] Yamada H, Imoto T. A convenient synthesis of glycolchitosan, a substrate of lysozyme[J]. Carbohydr Res, 1981; 92: 160
    [106] Loubaki E, Oureritch M, Sicsic S. Chemical modification chitosan by glgcidyl trimethylammonium chloride[J]. Eur Polym J, 1991; 27: 311
    [107] Yalpani M, Hall LD. Some chemical and analytical aspects of polysaccharide modifications[J]. Macro- molecules, 1984; 17: 272
    [108] Hall L.D.,Yalpani M. Formation of branched-chain, soluble polysaccharides from chitosan[J]. J Chem Soc Chem Common 1980:1153~1154
    [109] Kato Y, Onishi H, Machida Y. Biological characterization of lactosaminated N-succinyl-chitosan as a liver-specific drug carrier in mice[J]. J Control Release 2001,70:295~307
    [110] Sashiwa H., Makimura Y., Shigemasa Y, Roy R(Chemical modification of chitosan: preparation of chitosan-sialic acid branched polysaccharide hybrids[J]. Chem Common 2000:909~910
    [111] Sashiwa H., Shigemasa Y, Roy R,Chemical modification of chitosan: Synthesis of dendronized chitosan-sialic acid hydrid using convergent grafting of preassembled dendrons built on gallic acid and tri(ethylene glycol) backbone[J]. Macromolecules, 2001, 34:3905~3909
    [112] Reute J D, Myc A, Hayes M M, Gan Z, Roy R, Qin D, Yin R, Piehler L T, Esfand R, Tomalia D A, Baker J R. Inhibition of viral adhesion and infection by sialic acid conjugated dendritic polymers[J]. Bioconj Chem 1999,10:271~278
    [113] Tojima T,Katsura H,Han S,Tanida F,Nishi N,Tokura S,Sakaiji N.Preparation of anα-cyclodextrin- linked chitosan derivatives via reductive amination strategy[J]. J Polym Sci Part A: Polym Chem 1998, 39:169~176
    [114] Aoki N,Nishikama M,Hattori K.Synthesis of chitosan derivatives bearing cyclodextrin and adsorption of p-nonylphenyl and bisphenol[J]. Carbohydr Polym 2003, 52:219~-223
    [115] Li H B,Chen YY,Liu S L. Synthesis, characterization, and metal ions adsorption property of chitosan- calixarenes[J] .J Appl Polym Sci 2003;89:1139-1144
    [116] Qu X, Wirsen A, Albertson A C. Synthesis and characterization of pH-sensitive hydrogels based on chitosan and D,L-lactic acid[J]. J Appl Polym Sci 1999,74:3192~3202
    [117] Martin L,Wilson CG,Koosha F,Tetley L,Gray AI,Senel S,Uchegbu IF.The release of model macromolecules may be controlled by the hydrophobicity of palmitoyl glycol chitosan hydrogels[J]. J Control Rels, 2002,80:87~100
    [118] Kurita K, Inous S, Koyama Y. Studies on Chitosan. 18. Preparation of diethylaminoethyl chitosans[J]. Polymer Bull, 1989: 21: 13~18
    [119] Chun H K, Jang W C, Heng J C, et al. Synthesis of chitosan derivatives with quaternary ammonium salt and their antibacterial activity [J]. Pol Bull, 1997, 38(4): 387~393
    [120] 何曼君,陈维孝,董西侠.高分子物理[M],复旦大学出版社,1993:180
    [121] Robert G A,Domszy J G. Determination of the viscometric constants for chitosan [J]. Int J Biol Macr- omol,1982,4:347
    [122]韩笑,谭天伟. 羧甲基壳聚糖制备新工艺研究[J]. 北京化工大学学报,2000, 27(3):1~4
    [123] Havrankova J, Limpouchova Z, and Prochazka K. A new simulation algorithm with revised asso- ciation criteria for studying the association of heteroarm star copolymers[J]. Macromol. Theory Simul,2005, 14(8): 560~568
    [124] Walsh E K. Monte Carlo calculation of hydrodynamic properties of freely jointed, freely rotating, and realpolymethylene chains[J]. Macromalecules,1982, 15(1):153
    [125] Newkome G R, Yao Z Q, Baker G R and Gupta V K. Micelles. Part 1. Cascade molecules: a new approach to micelles [J]. J Org Chem. 1985, 50(11):2003~2004
    [126] Tomalia D A, Baker H, Dewald J et al. Dendritic macromolecules: synthesis of starburst dendrimers[J]. Macromolecules,1986,19(9): 2466~2468
    [127] Newkome G R, Yao Z, Baker G R et al. Chemistry of micelles series. Part 2.Cascade molecules.Sy- nthesis and characterization of a benzene 3-arborol[J].J Am Chem Soc,1986,108(4):849~850
    [128] Newkome G R, Woosley B D,He E Moorefield C N et al. Supramolecular chemistry of flexible, dendritic-based structures employing molecular recognition[J]. Chem. Commu,1996, 2737~2738
    [129] Brunsveld L, Folmer B J, Meijer E W and Sijbesma R P. Supramolecular polymers[J].Chem Rev,2001, 101(12), 4071~4098
    [130] Zeng F W, Wand Steven C and Zimmerman. Dendrimers in supramolecularcChemistry: from molecul- ar recognition to self-assembly[J]. Chem, Rev. 1997,97, 1681~1712
    [131] Chen D Y and Jiang M. Strategies for constructing polymeric micelles and hollow Spheres in solution via specific intermolecular interactions [J].ACC Chem.Res,2005,38(6),494~502
    [132] Yan D Y, Zhou Y F and Hou J. Supramolecular self-assembly of macroscopic tubes[J].Science, 20 04,303,65~67
    [133] 解荡、江明.球形分子与线形高分子基于氢键的自组装研究.2005年全国高分子学术论文报告会
    [134] Zhu H, Yuang X F, Zhao H Y et al. Non-covalent bond micellization: a new approach to macromole- cule-ar self-assembly [J]. Chi J Appl Chem (应用化学), 2001, 18 (5): 336~341
    [135] Zhang X,Li H B, Zhao B, Shen J C .Ordered self-organizing films of an amphiphilic polymer by slow evaporation of organic solvents[J]. Macromolecules, 1997,30 (6):1633 ~1636
    [136] 袁建军, 程时远, 封麟先. 嵌段共聚物自组装及其在纳米材料制备中的应用(下)[J]. 高分子通报, 2002, 2: 9~28
    [137] Booth C, Attwood D. Effects of block architecture and composition on the association properties of po- ly(oxyalkylene) copolymers in aqueous solution[J]. Macromol. Rapid Commun, 2000, 21: 501~527
    [138] Patri A, Majoros I, Baker J R, et al. Dendritic polymer macromo-lecular carriers for drug delivery[J]. Current Opinion in Chemical Biology, 2002: 6: 466~471
    [139] Radoslav Savic, Laibin Luo, Adi Eisenberg, et al. Micellar nano-containers distribute to defned cyto- plasmic organelles[J]. Science, 2003, 300: 615~618
    [140] Kinning D J, Winey K I, Thomas E L .Structural transitions from spherical to nonspherical micelles in blends of poly(styrene-butadiene) diblock copolymer and polystyrene homopolymers[J]. Macromol- ecules,1988,21(12)3502~3506
    [141] Zhang L and Eisenberg A .Morphogenic effect of added ions on crew-cut aggregates of polystyrene-b- poly(acrylic acid) block copolymers in solutions[J]. Macromolecules,1996, 29(27):8805~8815
    [142] Myongsoo Lee, Byoung-Ki Cho, Wang-Cheol Zin. Supramolecular structures from rod-coil block copolymers[J]. Chem Rev, 2001, 101: 3869~3892
    [143] Jenekhe S A, Chen X L. Self-assembled aggregates of rod-coil block copolymersand their solubilization and encapsulation of fullerenes[J]. Science, 1998, 279: 1903~1907
    [144] Jenekhe S A, Chen X L. Self-assembly of ordered microporous materials from rod-coil block copolym- errs[J]. Science, 1999, 283: 373~375
    [145] Lee M S, Kim J W, Hwang I W, et al. Nanoscale organization of conjugated rods in rod-coil molecul- es[J]. Advanced Materials, 2001, 13: 1363~1368
    [146] Kilbinger A F M, Schenning A P H J, Goldoni F, et al. Chiral ag-gregates of α, α’-disubstituted sexithiophenes in protic and aqueous media[J]. J Am Chem Soc, 2000, 122: 1820~1821
    [147] Inoue T, Chen G, Nakamae K, et al. An AB block copolymer of oligo(methyl methacrylate) and poly- (acrylic acid) formicellar delivery of hydrophobic drugs [J]. J Control Rels,1998, 51 (2-3): 221~229.
    [148] Gao Z and Eisenberg A. A model of micellization for block copolymers in solutions [J]. Macromolecu- les,1993, 26(26):7353~7360
    [149] Zhang L, Barlow R J and Eisenberg A. Scaling relations and coronal dimensions in aqueous block polyelectrolyte micelles[J]. Macromolecules, 1995, 28(18): 6055~6066
    [150] Liu Y C, Chen S H and Huang J S. Small-angle Nnutron scattering analysis of the structure and inter- acttion of triblock copolymer micelles in aqueous solution[J]. Macromolecules, 1998, 31(7): 2236~2244
    [151] Florentina M, Pavel and Raymond A . Reverse micellar synthesis of a nanoparticle/polymer composite [J]. Langmuir, 2000, 16(23): 8568~8574
    [152] Yu Y S, Zhang L F and Eisenberg A. Morphogenic effect of solvent on crew-cut aggregates of amphi- philic diblock copolymers[J].Macromolecules, 1998, 31(4): 1144~1154
    [153] Prochazka K, Jartin M T, Webber S E, et al. Onion-type micelles in aqueous media[J]. Macromolecules, 1996, 29(20): 6526~6530
    [154] Zhang L F, Eisenberg A. Multiple morphologies and characteristics of "crew-cut" micelle-like agregatesof polystyrene-b-poly(acrylic acid) diblock copolymers in aqueous solutions[J]. J Am. Chem Soc, 1996, 118(13): 3168~3181
    [155]Moffitt M and Eisenberg A. Scaling relations and size control of block ionomer microreactors contain- ing different metal ions[J]. Macromolecules, 1997, 30(15): 4363~4373
    [156] 熊若华, 周晓东, 戴干策. 嵌段共聚物的合成及其组装行为[J], 现代化工, 2002, 6: 14~18
    [157] 刘世勇, 江 明. 高分子胶束化的新途径及胶束的结构演化[J]. 高等学校化学学报, 2001, 22: 1066~1072
    [158] Zhang L F, Yu K, Eisenberg A. Ion-induced morphological changes in “Crew-Cut”' aggregates of amphiphilic block copolymers[J]. Science, 1996, 272: 1777~1779
    [159] Cameron N S, Corbierre M K, Eisenberg A. Asymmetric amphi-philic block copolymers in solution: A morphological wonderland[J]. Can J Chem, 1999, 77: 1311~1326
    [160] Matsen M W, Bates F S. Unifying weak- and strong-segregation block copolymer theories[J]. Macro- molecules, 1996, 29: 1091~ 1098
    [161] Zhang L, Barlow R J and Eisenberg A. Scaling relations and coronal dimensions in aqueous block polyelectrolyte micelles[J]. Macromolecules, 1995, 28(18): 6055~6066
    [162] Burke S E and Eisenberg A. Kinetics and mechanisms of the sphere-to-rod and rod-to-sphere transitions in the ternary System PS310-b-PAA52/dioxane/water[J].Langmuir, 2001, 17(21): 6705~6714
    [163] Noskov B A. Kinetics of adsorption from micellar solutions[J]. Adv Colloid Interface Sci 2002, 95(3): 237~293
    [164] Prochazka K, Bednar B, Mukhtar E et al. Nonradiative energy transfer in block copolymer micelles[J]. J Phys Chem,1991, 95(11): 4563~4568
    [165] Zhang W Q, Shen L Q et al. Comicellization of poly(ethylene glycol)-block-poly(acrylic acid) and poly(4-vinylpyridine) in ethanol[J].Macromolecules,2005,38(3),899~905
    [166] Zhang W Q, Shen L Q et al. A convenient method of tuning amphiphilic block copolymer micellar morphology [J]. Macromolecules,2004,37(7),2551~2557
    [167] Hasegawa H K, Hashimoto T and Hyde S T. Microdomain structures with hyperbolic interfaces in block and graft copolymer systems [J]. Polymer 1996, 37(17), 3825~3833
    [168] Borner H G, Matyjazewski K. Graft copolymers by atom transfer polymerization[J]. Macromolecular Symposia 2002, 177(1), 1~16
    [169] Shinoda H, Miller P J and Matyjaszewski K . Improving the structural control of graft copolymers bycombining ATRP with the macromonomer method [J]. Macromolecules, 2001, 34,(10) 3186~3190
    [170] Mori H, Seng D C, Zhang M, Mueller, A H E. Hybrid nanoparticles with hyperbranched polymer shells via self-condensing atom transfer radical polymerization from silica surfaces[J]. Langmuir 2002, 18(9), 3682~3693
    [171] Tsukahara Y, Ohta Y, Senoo K. Liquid crystal formation of multibranched polystyrene induced by molecular anisotropy associated with its high branch density[J]. Polymer 1995, 36(17), 3413~3416
    [172] Sheiko S S, Gerle M, Fischer K and Schmidt M. Wormlike polystyrene brushes in thin films[J] Lang- muir 1997,13(20), 5368~5372
    [173] Tsukahara Y, Namba S, Iwasa J, Nakano Y, Kaeriyama K, Takahashi M. Bulk properties of poly(- macromonomer)s of increased backbone and branch lengths[J]. Macromolecules 2001, 34(8), 2624~2629
    [174] 任碧野.强电解质在有机溶剂中聚集态转变的荧光光谱:[博士学位论文].广州:华南理工大学,1999
    [175] Zhou S, Burger C et al.Charge density effect of polyelectrolyte chains on the nanostructures of po- lyelectrolyte-surfactant complexes[J]. Macromolecules,1998,31(23):8157~8163
    [176] Fendler J H. Membrane-Mimetic Approach to Advanced Materials (尖端材料的膜模拟) [M]. JIANG Long, YE Xi-lin,JI Su-xue, et al. [译]. 北京: 科学出版社, 1999. 54~68
    [177] Uchegbu I F, Schatzlein A G, Tetley L, et al. Polymeric chitosan-based vesicles for drug delivery [J]. J Pharm Pharmacol, 1998, 50: 453~458
    [178] Zhou Y G, Yang Y D, Guo X M, et al. Preparation and evaluation of magnetic targeting drug release chitosan microspheres Containing Aspirin [J]. Chi J Appl Chem (应用化学), 2002, 19 (12): 178~1182
    [179] Naiwa H S. Handbook of Nanostructured Material and Nanotechnology: Vol 5 [M]. Australia: Acad- emic Press, 2000.577~604
    [180] Hu Y, Armentrout R S, McCormick C L. Water-soluble polymers. 75. responsive microdomains in lab- eled N-octylamide-substituted poly(sodium maleate-alt-ethyl vinyl ether): Transient fluorescence and time-resolved fluorescence anisotropy studies[J]. Macromolecules,1997,30(12):3538~3546
    [181] BOS, Luz, Yang G, Zhang Z.International Conferences on Polymer Characterization POLYCHAR- 6.Denton,USA:1998.O-48
    [182] Rinsdorf H, Simon J, Wjnnik F M.Fluorescence studies of hydrophobically modified poly(N-iso- propylacrylamides)[J]. Macromolecules,1991,24(7):1678~1686
    [183] 柴立和, 彭晓峰. 来自化学前沿的挑战:动态自组装. 化学进展,2004, 16(2): 169~173
    [184] Decher G. Fuzzy nanoassemblies: toward layered polymeric mul-ticomposites[J]. Science, 1997, 277(5330): 1232~1237
    [185] Decher G, Schlenoff J B. Multilayer thin film-sequential assembly of nanocomposite materials[M]. Weinheim: Wiley-VCH, 2003
    [186] Zhang X, Gao M L, Kong X X, et al. Build-up of a new type of ultrathin film of porphyrin and phthalocyanine based on cationic and anionic electrostatic attraction[J]. J Chem Soc, Chem Commun, 1994, 1055~1056
    [187] Sun Y P, Zhang X, Sun C Q, et al. Supramolecular assembly of al-ternating porphyrins and phthalo- cyanine layers based on electro-static interactions[J]. J Chem Soc, Chem Commun, 1996, 2379~2380
    [188] Ariga K, Lvov Y, Kunitake T. Assembling alternate dye-polyion molecular films by electrostatic layer- by-layer adsorption[J]. J Am Chem Soc, 1997, 119(9): 2224~2231
    [189] Ariga K, Onda M, Lvov Y, et al. Alternately assembled ultrathin films of silica nanoparticles and linear polycations[J]. Chem Lett, 1997, 26: 125~126
    [190] Das S and Pal A J. Layer-by-layer self-assembling of a low molecular weight organic material by different electrostatic adsorption processes[J]. Langmuir, 2002, 18(2): 458~461
    [191] Lee T S, Yang C, Park W H. Synthesis and electrostatic multilayer assembly of an acridine-containing polymer with properties of an optical sensor[J]. Macromol Rapid Commun, 2000, 21(14): 951~955
    [192] Lee S H, Kumar J and Tripathy S K. Thin-film optical sensors em-ploying polyelectrolyte assembly[J]. Langmuir, 2000, 16(26): 10482~10489
    [193] Sun J Q, Wu T, Zou B, et al. Stable entrapment of small molecules bearing sulfonate groups in multilayer assemblies[J]. Langmuir, 2001, 17(13): 4035~4041
    [194] 任碧野,强电解质在有机溶剂中聚集态转变的荧光光谱[博士学位论文],广州,华南理工大学,1999
    [195] Ermi B D and Amis E J. Influence of backbone solvation on small angle neutron scattering from poly- electrolyte solutions[J].Macromolecules,1997,30(22):6937~6942
    [196] Borsali R, Nguyen H and Pecora R. Small-angle neutron scattering and dynamic light scattering from a polyelectrolyte solution: DNA[J] .Macromolecules,1998,31(5):1548~1555
    [197] Liu X, Tong Z and Hu O. Swelling equilibria of hydrogels with sulfonate groups in water and in aqu- eous salt solutions[J].Macromolecules,1995,28(11):3813~3817
    [198] Liu Y J, Rosidian A, Lenahan K, Wang Y-X, Zeng T Y and Claus R O. Characterization of electro-statically self-assembled nanocomosite thin films[J]. SmartMater Struct, 1999, 8, 100 ~105
    [199] 张皓, 郝恩才, 杨柏,沈家骢. ZnSe∶ C u 纳米晶/聚电解质多层膜制备和结构研究[J],高等学校化学学报,2000,21(11),1766~1770
    [200] Petrov A G, Spassova M and Fendler J H, Flexoelectricity and photofelxoelectricity in model and biom- embranes[J]. Thin Solid Film, 1996, 284, 845~848
    [201] 杨合情,张良莹,姚熹,膜模拟化学在纳米材料中的应用研究[J]. 材料研究学报,1999 , 13(6),561~568
    [202] Cha J A, Stucky G D, Morse D E, Deming T J, Biomimetic synthesis of ordered silica structures me- diated by block copolypeptides[J]. Nature, 2000, 403, 289~291
    [203] Sellinger A, Weiss P M, Nguyen A, Lu Y F, Assink R A, Gong W and Brinker C J. Continuous self- assembly of organic-inorganic nanocomposite coating thatmimicnacre[J]. Nature, 1998, 394, 256~260

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700