促红细胞生成素信号通路在缺氧诱导的前列腺癌LNCaP细胞神经内分泌样转化中的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一、研究背景
     前列腺癌是欧美国家最常见的男性恶性肿瘤之一,在男性癌症死因中排在第二位。我国前列腺癌发病率虽然远低于西方国家,但近年来随着人口老龄化及生活条件的改善,发病率增长显著。前列腺癌患者经一段时间内分泌治疗后几乎全部发生雄性激素非依赖性转化。目前,在临床上雄性激素非依赖性前列腺癌尚无有效的治疗方法,其发生的具体机制仍然不清楚。雄激素受体一直是前列腺癌雄性激素性非依赖转化机制研究的重点,但其不能解释所有雄激素非依赖转化的相关现象。雄激素受体不是前列腺癌发生雄激素非依赖转化的唯一的因素。
     有研究已经证实,前列腺癌LNCaP细胞经缺氧培养,细胞将呈神经内分泌改变。前列腺癌组织内神经内分泌(NE)细胞的存在被认为与肿瘤的恶性进展、预后不良密切相关,而且往往提示前列腺癌从激素依赖进入激素难治阶段。前列腺癌NE细胞通过分泌各种具有促进细胞有丝分裂的神经多肽作用于邻近的前列腺癌细胞,使得这些细胞获得雄激素非依赖性生长。
     二、研究目的
     通过缺氧及相关促红细胞生成素信号通路探讨前列腺癌LNCaP细胞的神经内分泌样细胞转化,并进一步阐述缺氧诱导的前列腺癌雄激素非依赖转化的具体机制。
     三、研究内容
     1、通过缺氧环境(37℃、5%CO2、1%O2的饱和湿度)以10%FBS-含酚红RPMI1640培养液持续培养2周,构建缺氧诱导下LNCaP细胞神经内分泌样转化的细胞模型,再通过western blot的方法鉴定缺氧诱导下LNCaP细胞神经内分泌样转化细胞的标记物。
     2、人类前列腺癌LNcap细胞SCID鼠原位移植模型的建立。
     3、通过免疫组化的方法检测雄性激素依赖和雄性激素非依赖前列腺癌组织中EPO和受体(EPOR)的表达。
     4、通过CCK-8法绘制缺氧诱导下LNCaP细胞神经内分泌样转化的细胞的生长曲线;通过RT-PCR和Western blot的方法检测缺氧培养前后LNCaP细胞EPO、EPOR、HIF-1α的变化;siRNA沉默EPOR,通过Western blot检测缺氧诱导下LNCaP细胞神经内分泌样转化细胞的标记物的变化。
     四、研究结果
     1、通过缺氧环境(37℃、5%CO2、1%O2的饱和湿度)以10%FBS-含酚红RPMI1640培养液持续培养2周后,LNCaP细胞呈神经内分泌样改变,再通过western blot的方法发现缺氧诱导的LNCaP细胞神经内分泌样转化细胞的标记物NSE和CgA表达增加。
     2、常氧培养前列腺原位组:13/15小鼠的前列腺生长出肿瘤,可见大部分前列腺腺体被肿瘤细胞破坏,仅见少量正常腺体结构,大量异型性上皮细胞,细胞胞核浓染,呈多形性,可见异常分裂相,胞浆可见有泡沫样的嗜伊红物质。皮下组:9/10小鼠皮下生长出肿瘤。缺氧培养前列腺原位组:4/4小鼠前列腺生长出肿瘤,可见大部分前列腺腺体被肿瘤细胞破坏,仅见少量正常腺体结构,大量异型性上皮细胞,细胞胞核浓染,呈多形性,可见异常分裂相,胞浆可见有泡沫样的嗜伊红物质,局部可见大量坏死组织。
     3、穿刺标本(雄性激素依赖组织)和电切标本(雄性激素非依赖组织)均存在EPO和EPOR过表达;穿刺标本和电切标本的EPO表达评分差异有统计学意义(p<0.001),穿刺标本和电切标本的EPOR表达评分差异有统计学意义(p<0.001)
     4、缺氧诱导的LNCaP细胞神经内分泌样转化细胞获得雄性激素非依赖生长。缺氧培养后LNCaP细胞EPO与EPOR的mRNA和蛋白的表达持续上升,HIF-1的mRNA和蛋白的表达先上升,后出现下降。siRNA沉默EPOR再行缺氧培养2周,LNCaP细胞NSE、CgA蛋白表达的下降。
     五、结论
     1、经缺氧2周培养,LNCaP细胞获得神经内分泌样表型,提示缺氧可能促进列腺癌激素非依赖进展。
     2、临床研究发现CRPC与内分泌治疗前的前列腺癌组织相比,免疫组化结果EPO和EPOR表达明显增强,提示EPO和EPOR自分泌环参与前列腺癌激素非依赖进展。
     3、长期缺氧时,EPO、EPOR持续上升,而HIF-1α表达下降,提示EPO-EPOR自主分泌环形成可能,并可能取代HIF-1α功能,而EPO通过前列腺癌细胞表达的功能性EPOR促进细胞凋亡抵抗及缺氧应激适应。
Background
     Prostate carcinoma (PCa) is one of the most common malignances among theurological neoplasms that happen in men, with a secondary highest lethality. Its recentincidence, though lower than western countries, is increasing significantly in Chinawhich results from the aging and the changes in life style. In clinic, patients with PCawill eventually become androgen-independent after endocrinotherapy. So far, thereare no effective treatments, and the mechanism of transition to androgen-independentis still unknown. Most of the studies on this field only focus on the important roles ofthe Androgen Receptor (AR) during the transition to androgen-independent; however,they fail to explain any of the related mechanisms, which suggest that the AR is notthe only pathway involved in this transition.
     It is indicated that the neuroendocrine-like (NE) cells within the prostate cancertissues are closely correlated to tumor progression, poor prognosis and the transitionto androgen-independent. The neuropeptides secreted by these NE cells have beenidentified as potent paracrine and autocrine growth factors, which instead of androgen,can promote cancer cell migration and growth that will lead to theandrogen-independent transition.
     Objective
     Study of neuroendocrine differentiation of the LNCaP cell induced by oxygen-deficient culture, and its related EPO-EPOR signal pathway during thisprogress. Analyze the mechanism of the androgen-independent transition that causedby hypoxia induce.
     Methods
     1. Construct a specific culture model of neuroendocrine-like (NE) cell by inducing theLNCaP cell with the10%FBS-phenol red RPMI1640culture medium under anoxygen-deficient culture environment (37℃、5%CO2、1%O2saturation humidity) for
     2weeks, then test the NE markers expressed by these cells using western blot.2. Establish a human prostate carcinoma xenograft model by orthotopicly injectingLNCaP cells into SCID mice.
     3. Compare the expression level of EPO and EPOR between the androgen-dependenttissue and the androgen-independent tissue by immunohistochemical analysis.
     4. Illustrate the cell growth curve of the induced neuroendocrine-like cells thattransformed from hypoxia treated LNCaP cells using CCK-8assay; identify theexpression levels of EPO, EPOR, and HIF-1α of the LNCaP cells both before andafter hypoxic culturing by RT-PCR and western blot; analyze the expression levels ofseveral NE markers of the induced neuroendocrine-like cells both before and afterhypoxic culturing, with the EPOR inhibitory treatment at beginning using SmallInterference RNA (siRNA) transfection.
     Results
     1. The LNCaP cells showed a neuroendocrine change after2weeks hypoxic culture.And western blot results revealed some neuron-specific markers, such asneuron-specific enolase (NSE) and chromogranin A (CgA), were increased in thesehypoxic induced LNCaP cells.
     2. In the LNCaP cells orthotopicly injected group, there were tumors that developed in13mice with the total of15(87%), in which most parts of the prostate wereinvaded by tumor cells. There are confluent atypia epithelial cells, some of whichhave hyperchromatic and polymorphic nuclei, frothy eosinophilic structures in thecytoplasm, and some are abnormally proceeding of cytokinesis. In the LNCaP cellssubcutaneously injected group, only9of10mouse (90%) resulted in tumor growth.In the induced LNCaP cells orthotopicly injected group, all of these four mice(100%) had tumors developed in their prostates, in which the cortices and medullaeof metastatic lymph nodes were destroyed by tumor cells, hyperchromatic andpolymorphic nuclei, frothy eosinophilic structures, and abnormal mitotic figure canbe found in these atypia epithelial cells. There were also visible necrotic tissueswithin the tumors.
     3. EPO and EPOR were up-regulated in both the androgen-dependent tissue and theandrogen-independent tissue. And statistic significances (p<0.001) of the EPOscores and the EPOR scores can be found between the androgen-dependent tissueand the androgen-independent tissue respectively.
     4. The induced neuroendocrine-like cells, which transformed from hypoxia treatedLNCaP cells, turned to be androgen-independence that show a continuouslyincreased expression of EPO and EPOR both in the mRNA and the protein level.However, HIF-1α was up-regulated at the beginning and then followed by adown-regulation. NSE and CgA in the induced neuroendocrine-like cells weredecreased when blocking EPOR by siRNA.
     Conclusions
     1. The neuroendocrine transformation of the LNCaP cells, after2weeks hypoxicculture, indicates oxygen deficit which may promote theandrogen-independent progress of the prostate carcinoma.
     2. Compared with androgen-dependent tissue, the up-regulation of EPO andEPOR in androgen-independent tissue suggests that EPO-EPOR autocrineloop plays an important role during tumor development andandrogen-independent progression.
     3. The continuously increase of both EPO and EPOR in LNCaP cells underhypoxic culture, together with the sustained decrease of HIF-1α, indicates thatthere is formation of a EPO-EPOR autocrine loop that takes over the functionof the HIF-1α. Besides, the EPO can also regulate cell apoptosis and cellresponse to hypoxic stress by binding to the functional EPOR.
引文
1.Jemal A, Siegel R, Ward E, et a1. Cancer statistics[J]. CA Cancer J Clin,2007,57:43-66
    2.han W, Jiang Y. C6-C8bridged epothilones: consequences of installing aconformational lock at the edge of the macrocycle[J]. Chemistry,201123,17(52):14792-14804
    3.Pajonk F, Weil A, Sommer A, et al. The erythropoietin-receptor pathway modulatessurvival of cancer cells[J]. Oncogene2004;23:8987-8991
    4.Vesey DA, Cheung C, Pat B, et al. Erythropoietin protects against ischaemic acuterenal injury[J].. Nephrol Dial Transplant2004;19(2):348-355
    5.Lee JJ, Kelly WK. Epothilones: tubulin polymerization as a novel target for prostatecancer therapy[J].. Nat Clin Pract Oncol.2009Feb;6(2):85-92
    6. Zhou Tie, Xu Chuan-liang, Sun Ying-hao. Erythropoietin receptor in humanprostate carcinoma[J].. Chin J Urol;2007,28(12):832-834
    7.Jin RJ, Lho Y, Connelly L, et al. The nuclear factor-kappaB pathway controls theprogression of prostate cancer to androgen-independent growth. Cancer Res2008;68:6762-6769.
    8.Yuan TC, Veeramani S, Lin MF. Neuroendocrine-like prostate cancer cells:neuroendocrine transdifferentiation of prostate adenocarcinoma cells. EndocrRelat Cancer2007;14:531-547.
    9.Yuan TC, Veeramani S, Lin FF, et al. Androgen deprivation induces human prostateepithelial neuroendocrine differentiation of androgensensitive LNCaP cells.Endocr Relat Cancer2006;13:151-167.
    10.Palmer J, Ernst M, Hammacher A et al. Constitutive activation of gp130leads toneuroendocrine differentiation in vitro and in vivo. Prostate2005:62:282-289.
    11.Van Haaften-Day C, Raghavan D, Russell P, et al. Xenografted small cellundifferentiated cancer of prostate: possible common origin with prostaticadenocarcinoma. Prostate1987;11:271-279.
    12. Ishida E, Nakamura M, Shimada K, et al. Immunohistochemical analysis ofneuroendocrine differentiation in prostate cancer. Pathobiology2009;76:30-38.
    13.Huang J, Yao JL, di Sant’Agnese PA, et al.Immunohistochemical characterizationof neuroendocrine cells in prostate cancer. Prostate2006;66:1399-1406.
    14.Yao JL, Madeb R, Bourne P, et al. Small cell carcinoma of the prostate: animmunohistochemical study. Am J Surg Pathol2006;30:705-712.
    15.Vashchenko N, Abrahamsson PA. Neuroendocrine differentiation in prostatecancer: implications for new treatment modalities. Eur Urol2005;47:147-155.
    16.Hudson DL. Epithelial stem cells in human prostate growth and disease. ProstateCancer Prostatic Dis2004;7:188-194.
    17.Pinthus JH, Waks T, Schindler DG, et al. WISH-PC2: a unique xenograft model ofhuman prostatic small cell carcinoma. Cancer Res2000;60:6563-6567.
    18.True LD, Buhler K, Quinn J, et al. A neuroendocrine/small cell prostate carcinomaxenograft-LuCaP49. Am J Pathol2002;161:705-715.
    1. Wang XW,An Z,Gelhr J,et a1.High—mailignancy orthotopic nude mouse modelof human prostrate cancer LNCaP.Prostate,1999,39:182.186.
    2.Paget S.The distribution of secondary growths in cancer of the breast[J].CancerMetastasis Rev,1989;8:98—101.
    3.Bastide C,Bagnis C,Mannon P,et a1.A Nod Scid Mouse model to study humanprostate cancer[J].Prostate Cancer Prostatic Dis,2002;5:311-315
    4.王元天,孙颖浩,邱镇等,裸鼠前列腺原位移植PC3肿瘤模型的建立[J].中华实验外科杂志2004年7月第21卷第7期Chin J Exp Surg,July2004,V0l21.No.7.
    5.罗勇,张林琳,贺大林等,裸鼠前列腺原位肿瘤模型的建立[J].第四军医大学报(JFourth Mil Med Univ)2005;26(19).
    6.Sato N,Gleave ME,Bruchovsky N,et al A metastasis and androgen-sensitivehuman prostate cancer model using intrapmstatic inoculation of LNCaP cells inSCID mice[J].Cancer Res,1997;57:l584一l589
    [1]Jemal A, Siegel R, Xu J, et al. Cancer Statistics,2010. CA Cancer J Clin2010, doi:10.3322/caac.20073.
    [2]叶定伟,李长岭.前列腺癌发病趋势的回顾和展望.中国癌症杂志,2007,17(3):177-780.
    [3]Halin S, Hammarsten P, Wikstrom P, et al. Androgen-insensitive prostate cancercells transiently respond to castration treatment when growing in anandrogen-dependent prostate environment. Prostate2006Dec27.
    [4] Krantz SB. Erythropoietin[J]. Blood1991;77:419–434
    [5] Baston E, Leroux FR. Inhibitors of steroidal cytochrome p450enzymes as targetsfor drug development[J]. Recent Pat Anticancer Drug Discov.2007;2(1):31-58
    [6] Galmarini CM. a microtubule stabilizer for the potential treatment of cancer[J].Curr Opin Investig Drugs.2009;10(12):1359-1371
    [7]Bella AJ, Lin G. Emerging neuromodulatory molecules for the treatment ofneurogenic erectile dysfunction caused by cavernous nerve injury[J]. Asian JAndrol.2008;10(1):54-59.
    [8]Kumar SM, Acs G, FangD, et al. Functional erythropoietin autocrine loop inmelanoma[J]. Am J Pathol2005;166:823-830.
    [9]Lai SY, Childs EE, Xi S, et al. Erythropoietin mediated activation of JAK-STATsignaling contributes to cellular invasion in head and neck squamous cellcarcinoma[J]. Oncogene2005;24:4442-4449
    [10]Mohyeldin A, Lu H, Dalgard C, et al. Erythropoietin signaling promotesinvasiveness of human head and neck squamous cell carcinoma[J]. Neoplasia2005;7:537-543
    [11]Moriconi F, Ramadori P. Characterization of the erythropoietin/erythropoietinreceptor axis in a rat model of liver damage and cholangiocarcinomadevelopment[J]. Histochem Cell Biol.2012Oct4.
    [12]EcclesTG, Patel A,Verma A, et al. Erythropoietin and the erythropoietin receptorare expressed by papillary thyroid carcinoma from children and adolescents.Expression of erythropoietin receptor might be a favorable prognostic indicator[J].Ann Clin Lab Sci2003;33:411-422.
    [13]Feldman L, Wang Y, Rhim JS, et al. Erythropoietin stimulates growth and STAT5phosphorylation in human prostate epithelial and prostate cancer cells[J]. Prostate2006;66:135–145.
    [14]Acs G, Acs P, Beckwith SM, et al. Erythropoietin and erythropoietin receptorexpression in human cancer[J]. Cancer Res.2001;61:3561-3565.
    [15]Arcasoy MO, Amin K, Vollmer R, et al. Erythropoietin and erythropoietinreceptor expression in human prostate cancer[J]. Mod Pathol2005;18:421-430.
    [16] Buttyan R, Shabsigh A, Perlman H, et al. Regulation of apoptosis in the prostategland by androgenic steroids. Trends Endocrin Metabol1999;10(2):47-54.
    [17] Lekas E, Johansson M, Widmark A, et al. Decrement of blood flow precedes theinvolution of the ventral prostate in the rat after castration. Urol Res1997;25(5):309-314.
    [18] Shabsigh A, Chang DT, Heitjan DF, et al. Rapid reduction in blood flow to the ratventral prostate gland after castration:preliminary evidence that androgensinfluence prostate size by regulating blood flow to the prostate gland andprostatic endothelial cell survival. Prostate1998;36(2):201-206.
    [19] Halin S, Hammarsten P, Wikstrom P, et al. Androgen-insensitive prostate cancercells transiently respond to castration treatment when growing in anandrogen-dependent prostate environment. Prostate2006Dec27.
    1. Papandreou I, Krishna C, Kaper F, Cai D, Giaccia AJ, Denko NC. Anoxia isnecessary for tumor cell toxicity caused by a low-oxygen environment. CancerResearch.2005;65(8):3171–3178.
    2. Chan N, Milosevic M, Bristow RG. Tumor hypoxia, DNA repair and prostatecancer regression: new targets and new therapies. Future Oncology.2007;3(3):329–341.
    3. Abrantes AM, Serra ME, Murtinho D, Gonsalves AR, Botelho MF. An insight intotumoral hypoxia: the radiomarkers and clinical applications. Oncology Reviews.2009;3(1):3–18.
    4. Abrantes AM, Serra E, Gon alves C, et al. Tumour hypoxia and technetium tracers:in vivo studies. Current Radiopharmaceuticals.2012;5(2):99–105.
    5. Wang GL, et al. Hypoxia-inducible factor1is a basic-helix-loop-helix-PASheterodimer regulated by cellular O2tension. Proc. Natl Acad. Sci. USA.1995;92:5510-5514.
    6. Bruick RK, et al. A conserved family of prolyl-4-hydroxylases that modify HIF.Science2001;294:1337-1340.
    7. Berra E, et al. The hypoxia-inducible-factor hydroxylases bring fresh air intohypoxia signalling. EMBO Rep.2006;7:41-45.
    8. Acker T, et al. The good, the bad and the ugly in oxygen-sensing: ROS,cytochromes and prolyl-hydroxylases. Cardiovasc. Res.2006;71:195-207.
    9. Dery MA, et al. Hypoxia-inducible factor1: regulation by hypoxic andnon-hypoxic activators. Int. J. Biochem. Cell Biol.2005;37:535-540.
    10.
    11. Asgharian Rezaee M, Moallem SA, Imenshahidi M, Farzadnia M,Mohammadpour AH. Iran J Pharm Res.2012Fall;11(4):1191-9..
    12.Feldman L, Wang Y, Rhim JS, et al. Erythropoietin stimulates growth and STAT5phosphorylation in human prostate epithelial and prostate cancer cells[J]. Prostate2006;66:135–145.
    13. Arcasoy MO, Amin K, Vollmer RT, et al. Erythropoietin and erythropoietinreceptor expression in human prostate cancer. Mod Pathol.2005Mar;18(3):421-30.
    14.Masuda, S, Nagao, M, and Sasaki, R. Erythropoietic, neurotrophic, and angiogenicfunctions of erythropoietin and erythropoietin production. Int.J.Hematol1999;70(1):1-6.
    15.Acs G, Acs P, Beckwith SM, et al. Erythropoietin and erythropoietin receptorexpression in human cancer. Cancer Res2001;61:3561-3565.
    16.Acs G, Zhang PJ, McGrath CM, et al. Hypoxia-inducible erythropoietin signalingin squamous dysplasia and squamous cell carcinoma of the uterine cervix and itspotential role in cervical carcinogenesis and tumor progression. Am. J. Pathol2003;162:1789-1806.
    17. Arcasoy M, Amin K, Karayal AF, et al. Functional significance of erythropoietinreceptor expression in breast cancer. Lab. Invest2002;82:911-918.
    18.Pajonk F, Weil A, Sommer A, et al. The erythropoietin-receptor pathway modulatessurvival of cancer cells. Oncogene2004;23:8987-8991.
    19.Gregory T, Yu C, Ma A, Orkin SH, et al. GATA-1and erythropoietin cooperate topromote erythroid cell survival by regulating bcl-xL expression. Blood,1999,94(1):87–96.
    20.Hafid-MedhebK, Augery-Bourget Y, Minatchy M-N, et al. Bcl-XL is required forheme synthesis during the chemical induction of erythroid differentiation ofmurine erythroleukemia cells independently of its antiapoptotic function. Blood,2003,101(7):2575–2583.
    21.Feldman L, Wang Y, Rhim J, Sytkowski AJ. Human prostate epithelial cells andprostate cancer cells express functional erythropoietin receptors and respond toerythropoietin in vitro. Exp Hematol2002;30(6Suppl1):61.
    22.Brower V. Normal and neoplastic prostate cells have EPO receptors. Lancet Oncol2003;4(2):69.
    23.Arcasoy MO, Amin K, Vollmer R, et al. Erythropoietin and erythropoietin receptorexpression in human prostate cancer. Mod Pathol2005;18:421-430.
    1. F. D’Amico, M. Biancolella, K. Margiotti, J.K. Reichardt and G. Novelli, Genomicbiomarkers, androgen pathway and prostate cancer, Pharmacogenomics8(2007), pp.645–661.
    2. R.E. Rugo and R.H. Schiestl, Increases in oxidative stress in the progeny ofX-irradiated cells, Radiat Res162(2004), pp.416–425.
    3. M. Gilbert and S. Knox, Influence of Bcl-2overexpression on Na+/K(+)-ATPasepump activity: correlation with radiation-induced programmed cell death, J CellPhysiol171(1997), pp.299–304.
    4. C.M. Chresta, J.R. Masters and J.A. Hickman, Hypersensitivity of human testiculartumors to etoposide-induced apoptosis is associated with functional p53and a highBax:Bcl-2ratio, Cancer Res56(1996), pp.1834–1841.
    5. J.A. Romashkova and S.S. Makarov, NF-kappaB is a target of AKT inanti-apoptotic PDGF signalling, Nature401(1999), pp.86–90.
    6.J.L. Boddy, S.B. Fox, C. Han, L. Campo, H. Turley and S. Kanga et al., Theandrogen receptor is significantly associated with vascular endothelial growth factorand hypoxia sensing via hypoxia-inducible factors HIF-1a, HIF-2a, and the prolylhydroxylases in human prostate cancer, Clin Cancer Res11(2005), pp.7658–7663.
    7. H. Zhong, A.M. De Marzo, E. Laughner, M. Lim, D.A. Hilton and D. Zagzag et al.,Overexpression of hypoxia-inducible factor1alpha in common human cancers andtheir metastases, Cancer Res59(1999), pp.5830–5835.
    8. A. Lekas, A.C. Lazaris, C. Deliveliotis, M. Chrisofos, C. Zoubouli and D. Lapas etal., The expression of hypoxia-inducible factor-1alpha (HIF-1alpha) and angiogenesismarkers in hyperplastic and malignant prostate tissue, Anticancer Res26(2006), pp.2989–2993.
    9. Y.S. Chun, K.H. Lee, E. Choi, S.Y. Bae, E.J. Yeo and L.E. Huang et al., Phorbolester stimulates the nonhypoxic induction of a novel hypoxia-inducible factor1alphaisoform: implications for tumor promotion, Cancer Res63(2003), pp.8700–8707.
    10. B.P. Eliceiri, R. Paul, P.L. Schwartzberg, J.D. Hood, J. Leng and D.A. Cheresh,Selective requirement for Src kinases during VEGF-induced angiogenesis andvascular permeability, Mol Cell4(1999), pp.915–924.
    11. B.H. Jiang, G. Jiang, J.Z. Zheng, Z. Lu, T. Hunter and P.K. Vogt,Phosphatidylinositol3-kinase signaling controls levels of hypoxia-inducible factor1,Cell Growth Differ12(2001), pp.363–369.
    12. B.H. Jiang, E. Rue, G.L. Wang, R. Roe and G.L. Semenza, Dimerization, DNAbinding, and transactivation properties of hypoxia-inducible factor1, J Biol Chem271(1996), pp.17771–17778.
    13. B.H. Jiang, J.Z. Zheng, S.W. Leung, R. Roe and G.L. Semenza, Transactivationand inhibitory domains of hypoxia-inducible factor1alpha. Modulation oftranscriptional activity by oxygen tension, J Biol Chem272(1997), pp.19253–19260.
    14. M. Alvarez-Tejado, S. Naranjo-Suarez, C. Jimenez, A.C. Carrera, M.O. Landazuriand L. del Peso, Hypoxia induces the activation of the phosphatidylinositol3-kinase/Akt cell survival pathway in PC12cells: protective role in apoptosis, J BiolChem276(2001), pp.22368–22374.
    15. X.S. Zhong, J.Z. Zheng, E. Reed and B.H. Jiang, SU5416inhibited VEGF andHIF-1alpha expression through the PI3-K/AKT/p70S6K1signaling pathway,Biochem Biophys Res Commun324(2004), pp.471–480.
    16. L.M. Ellis, C.A. Staley, W. Liu, R.Y. Fleming, N.U. Parikh and C.D. Bucana et al.,Down-regulation of vascular endothelial growth factor in a human colon carcinomacell line transfected with an antisense expression vector specific for c-src, J BiolChem273(1998), pp.1052–1057.
    17. A. Namiki, E. Brogi, M. Kearney, E.A. Kim, T. Wu and T. Couffinhal et al.,Hypoxia induces vascular endothelial growth factor in cultured human endothelialcells, J Biol Chem270(1995), pp.31189–31195.
    18W. Zundel, C. Schindler, D. Haas-Kogan, A. Koong, F. Kaper and E. Chen et al.,Loss of PTEN facilitates HIF-1-mediated gene expression, Genes Dev14(2000), pp.391–396.
    19W.G. An, M. Kanekal, M.C. Simon, E. Maltepe, M.V. Blagosklonny and L.M.Neckers, Stabilization of wild-type p53by hypoxia-inducible factor1alpha, Nature392(1998), pp.405–408.
    20R. Ravi, B. Mookerjee, Z.M. Bhujwalla, C.H. Sutter, D. Artemov and Q. Zeng etal., Regulation of tumor angiogenesis by p53-induced degradation ofhypoxia-inducible factor1alpha, Genes Dev14(2000), pp.34–44.
    21.P. Storz, Reactive oxygen species in tumor progression, Front Biosci10(2005), pp.1881–1896.
    22. H.M. Shen and Z.G. Liu, JNK signaling pathway is a key modulator in cell deathmediated by reactive oxygen and nitrogen species, Free Radic Biol Med40(2006), pp.928–939.
    23. R.E. Shackelford, W.K. Kaufmann and R.S. Paules, Oxidative stress and cellcycle checkpoint function, Free Radic Biol Med28(2000), pp.1387–1404.
    24. K. Muzandu, Z. Shaban, M. Ishizuka, A. Kazusaka and S. Fujita, Nitric oxideenhances catechol estrogen-induced oxidative stress in LNCaP cells, Free Radic Res39(2005), pp.389–398.
    25. W.G. Kaelin jr., ROS: really involved in oxygen sensing, Cell Metab1(2005), pp.357–358.
    26. N. Gao, B.H. Jiang, S.S. Leonard, L. Corum, Z. Zhang and J.R. Roberts et al., p38Signaling-mediated hypoxia-inducible factor1alpha and vascular endothelial growthfactor induction by Cr(VI) in DU145human prostate carcinoma cells, J Biol Chem277(2002), pp.45041–45048.
    27U.M. Moll, N. Marchenko and X.K. Zhang, p53and Nur77/TR3–transcriptionfactors that directly target mitochondria for cell death induction, Oncogene25(2006),pp.4725–4743.
    28.G. Kroemer, Mitochondria in cancer, Oncogene25(2006), pp.4630–4632.
    29. E. Asatiani, W.X. Huang, A. Wang, E. Rodriguez Ortner, L.R. Cavalli and B.R.Haddad et al., Deletion, methylation, and expression of the NKX3.1suppressor genein primary human prostate cancer, Cancer Res65(2005), pp.1164–1173.
    30. C. Jeronimo, G. Varzim, R. Henrique, J. Oliveira, M.J. Bento and C. Silva et al.,I105V polymorphism and promoter methylation of the GSTP1gene in prostateadenocarcinoma, Cancer Epidemiol Biomarkers Prev11(2002), pp.445–450.
    31.A.R. Trzeciak, S.G. Nyaga, P. Jaruga, A. Lohani, M. Dizdaroglu and M.K. Evans,Cellular repair of oxidatively induced DNA base lesions is defective in prostatecancer cell lines, PC-3and DU-145, Carcinogenesis25(2004), pp.1359–1370.
    32.Y. Suzuki, Y. Kondo, S. Himeno, K. Nemoto, M. Akimoto and N. Imura, Role ofantioxidant systems in human androgen-independent prostate cancer cells, Prostate43(2000), pp.144–149.
    33.S.A. Tomlins, R. Mehra, D.R. Rhodes, X. Cao, L. Wang and S.M. Dhanasekaranet al., Integrative molecular concept modeling of prostate cancer progression, NatGenet39(2007), pp.41–51.
    34. P. Oettgen, Regulation of vascular inflammation and remodeling by ETS factors,Circ Res99(2006), pp.1159–1166.
    35. O. Aprelikova, M. Wood, S. Tackett, G.V. Chandramouli and J.C. Barrett, Role ofETS transcription factors in the hypoxia-inducible factor-2target gene selection,Cancer Res66(2006), pp.5641–5647.
    36.V.A. Carroll and M. Ashcroft, Role of hypoxia-inducible factor (HIF)-1alphaversus HIF-2alpha in the regulation of HIF target genes in response to hypoxia,insulin-like growth factor-I, or loss of von Hippel–Lindau function, implications fortargeting the HIF pathway, Cancer Res66(2006), pp.6264–6270.
    37. C.J. Hu, L.Y. Wang, L.A. Chodosh, B. Keith and M.C. Simon, Differential rolesof hypoxia-inducible factor1alpha (HIF-1alpha) and HIF-2alpha in hypoxic generegulation, Mol Cell Biol23(2003), pp.9361–9374.
    38. M.O. Ripple, W.F. Henry, R.P. Rago and G. Wilding, Prooxidant–antioxidantshift induced by androgen treatment of human prostate carcinoma cells, J Natl CancerInst89(1997), pp.40–48.
    39. O. Meurette, L. Lefeuvre-Orfila, A. Rebillard, D. Lagadic-Gossmann and M.T.Dimanche-Boitrel, Role of intracellular glutathione in cell sensitivity to the apoptosisinduced by tumor necrosis factor {alpha}-related apoptosis-inducing ligand/anticancerdrug combinations, Clin Cancer Res11(2005), pp.3075–3083.
    40.N. Chan, M. Milosevic and R.G. Bristow, Tumor hypoxia, DNA repair andprostate cancer progression, new targets and new therapies, Future Oncol3(2007), pp.329–341.
    41Y.M. Delahoussaye, M.P. Hay, F.B. Pruijn, W.A. Denny and J.M. Brown,Improved potency of the hypoxic cytotoxin tirapazamine by DNA-targeting, BiochemPharmacol65(2003), pp.1807–1815.
    42R.S. Bindra and P.M. Glazer, Co-repression of mismatch repair gene expression byhypoxia in cancer cells: role of the Myc/Max network, Cancer Lett252(2007), pp.93–103.
    43. R. Fan, T.S. Kumaravel, F. Jalali, P. Marrano, J.A. Squire and R.G. Bristow,Defective DNA strand break repair after DNA damage in prostate cancer cells:implications for genetic instability and prostate cancer progression, Cancer Res64(2004), pp.8526–8533.
    44.R.S. Bindra and P.M. Glazer, Repression of RAD51gene expression byE2F4/p130complexes in hypoxia, Oncogene26(2007), pp.2048–2057.
    45. J.M. Brown and L.D. Attardi, The role of apoptosis in cancer development andtreatment response, Nat Rev Cancer5(2005), pp.231–237.
    46.M. Weinmann, V. Jendrossek, D. Guner, B. Goecke and C. Belka, Cyclic exposureto hypoxia and reoxygenation selects for tumor cells with defects in mitochondrialapoptotic pathways, FASEB J18(2004), pp.1906–1908
    47.T.L. Aho, J. Sandholm, K.J. Peltola, H.P. Mankonen, M. Lilly and P.J. Koskinen,Pim-1kinase promotes inactivation of the pro-apoptotic Bad protein byphosphorylating it on the Ser112gatekeeper site, FEBS Lett571(2004), pp.43–49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700