基于机械臂的月壤挖掘采样及力学参数辨识的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对未知领域的认知,对茫茫宇宙的探索,是人类发展的永恒动力,是人类的不懈追求。美国、前苏联、俄罗斯等均对地外星体进行过探测和采样分析。作为新晋崛起的航天大国——中国,目前也规划的“绕”、“落”、“回”三个阶段的月球探测计划。而在探测过程中,节能和对月球土壤(月壤)参数进行辨识则是两大焦点问题。本文在探月三期计划中的“表取采样机构月壤参数反演”项目支持下,旨在研制出一套适用于月球探测、采样返回的机械臂末端采样器,并且研究出一套能够可靠实现的月壤参数辨识的方法,同时依据辨识结果指导最优挖掘轨迹的制定,进而达到减少能耗的目的。
     考虑到月球表面采样环境的不确定性及低重力环境下月壤颗粒运动的不可知性,本文围绕着低重力环境下月壤颗粒的流动性,运用颗粒物质力学软件EDEM进行仿真分析,获得了月壤内摩擦角及月壤与工具间的摩擦角对其流动性的影响规律,同时得到了低重力环境下采样器敲击机构的最优激振频率及方向。在结构设计方面应用仿生学设计原理,以减阻为目标对末端采样器挖掘铲的铲形进行优选设计。在此基础上研制出一种集采样、激振、贮存、锁定等功能于一体的月壤采样器。
     本文以月壤—铲斗的土力学作为理论分析基础,对月壤发生剪切强度失效的判定方法、挡土墙的压力分布以及土层极限平衡的受力状况进行了深入的分析,并对理想状态下的土层发生剪切滑移进行了定量分析,确定了主动、被动土压力作用下的滑移面形态与位置,以此为基础建立了月壤—铲斗挖掘力模型;由于本文中采用仿生学设计的铲体为曲面构型,与常用的平面型铲体不同,本文提出一种基于微元法的隔离体极限平衡受力分析方法,通过对微元模型的二维受力分析分别建立了主动、被动土压状态下的土压力合力计算模型,进而获得铲斗的挖掘力峰值与月壤参数的函数关系;通过整合月壤—铲斗土力学研究成果,提出一种基于Newton加速迭代算法的月壤参数辨识算法,以实现对月壤重度(或密度)、土层内摩擦角及铲斗—土层摩擦角的参数辨识。
     本文建立了包含挖掘速率效应、铲斗边缘效应以及铲斗形态效应的挖掘阻力数学模型,并对关键的挖掘参数进行了定量分析,分别获得了挖掘角度、挖掘速率对挖掘阻力的影响规律。同时对挖掘过程中入铲、挖掘和装载三个阶段进行分析,在此基础上借鉴分层优化的思想提出了外层以挖掘能耗为指标的铲斗末端挖掘路径优化、内层以铲斗挖掘合外力为指标的挖掘角度优化的双层优化结构,并应用遗传算法进行求解。进而,以挖掘过程中的系统挖掘时间、能耗为综合考量指标建立了目标函数,通过变量转化将连续型非线性优化问题转化为一个标准的离散型凸优化问题并加以求解,最终获得了基于时间—能耗最优的机械臂挖掘轨迹。
     本文利用实验室现有设备搭建了实验平台,进行了末端采样器功能性验证实验、月壤参数辨识实验和挖掘轨迹优化实验。从而验证了末端采样器、参数辨识算法以及挖掘轨迹优化方法的可行性和可靠性。
Exploring the unknown domain, such as universe, might be the eternalmotivation of human advancement. United States, the former Soviet Union,Russia and etc. have done some exploration and sampling analysis ofextraterrestrial planets. As a budding rising space powers, China, is also planning“circling”,“landing” and “returning” as the three-stage of the lunar explorationprogram. In the exploration process, energy comsumption and plantary soilparameter identification are two major focus. With the support of “surfacesampling mechanism and plantary soil parameters identification” for the ChineseLunar Exploration Plan Stage III, this disserstion aims to design a set of robotarm end-effecot which can complete the plantary exploration, sampling,acquisition and return tasks, develop a reliable plantary parameters identificationalgorithm and optimize the excavation strategy which based on the parametersidentification results to reduce the energy consumption.
     Due to the uncertainty of the lunar surface and unpredictability of theparticle movement in the low-gravity environment, the simulation analysis wascarried out via EDEM software aiming at the fluidity of lunar soil particle underlow-gravity environment. The influence rule of inner frction angle and soil-toolfriction angle on the fluidity of lunar particle was acquired as well as the theoptimal percussion frequency and direction of the percussion mechanism on theend-effector. Meanwhile, applying the bionic design theory, the shape of diggingshovel on the end-effector was optimized to ensure the lowest excavationresistance. Based on these studies, a highly integrated end-effector with multi-funtions, such as acquisition, cathing, locking and percussion, was designed.
     This paper took the soil mechanics of soil-bucket as the foundation oftheoretical analysis. Based on this theory, this paper analyzed the determinationmethod of the plantary soil strength failure, the force stauts of retaining wallpressure distribution and soil limit equilibrium and quantitative analyzed the soilshear slip under the ideal conditions to make sure the location of slip surfaceunder the initiative and passive soil pressure, in order to establish the soil-bucketdigging force model. Different from the common bucket, the shape of this bionic designed bucket is curved. Consequently, a method which based on the micro-element method to analyze the isolated body limit equilibrium force was appliedin this paper. Through the two-dimensional stress analysis of the micro-elementmodel, the earth pressure force calculation model under the initiative and passiveearth pressure conditions were established to obtain the function between thepeak digging resistive force and the plantary soil parameters. Based on the aboveoutcomes, a Newton Accelerate the iterative algorithm based plantary soilparameters identification algorithm was introduced to achieve the identificationof the soil density, the soil internal friction angle and the friction angle betweensoil and bucket.
     This paper established a mathematical model which contains the excavationvelocity effect, the bucket edge effect and bucket shape effect, quantitativelyanalyzed the key excavation parameters, obtained the effect of angle of attackand excavation velocity on excavation resistance. Also, based on the analysis ofthe three stage of excavation process, penetrate, drag and curl, this paperintroduced the thought of hierarchical optimization that contains the outer andinner layers. The outerlayer set the excavation energy consumption as target tooptimize the excavation path. The inner layer set the digging force as target tooptimize the angle of attack. The double layers were calculated by the geneticalgorithm. Then, an objective function was established which takes theexcavation time and energy consumption as the comprehensive specification.Continuous nonlinear optimization problem was transformed to a standarddiscrete convex optimization problem by the variable transformation to calculate.After this, the optimal excavation trajectory that based on the time-energyconsumption could be achieved.
     Finally, this paper used the existing equipments of the laboratory to bulid upa testbed to verify the feasibility and reliability of the end-effector function, thesoil parameters identification algorithm and optimal excavation strategy.
引文
[1] Allton, Judith. Catalog of Apollo Lunar Surface Geological Sampling Toolsand Containers[D]. NASA Document JSC-23454/LESC-26676. NationalAeronautics and Space Administration.1989.
    [2] Jones, Eric (editor). Apollo Lunar Surface Journal[OL]. Website. UpdatedAugust10,2006as of March14,2010. http://history.nasa.gov/alsj/.
    [3] Apollo12Crew Technical Debriefing[D]. NASA Document, prepared bymission Operations Branch, Flight Crew Support Division, MannedSpacecraft Center (now Lyndon B. Johnson Space Center), Houston.National Aeronautics and Space Administration.1969.
    [4] Apollo15Crew Technical Debriefing[D]. NASA Document, prepared bymission Operations Branch, Flight Crew Support Division, MannedSpacecraft Center (now Lyndon B. Johnson Space Center), Houston.National Aeronautics and Space Administration.1971.
    [5] Apollo17Crew Technical Debriefing[D]. NASA Document, prepared bymission Operations Branch, Flight Crew Support Division, MannedSpacecraft Center (now Lyndon B. Johnson Space Cent Houston. NationalAeronautics and Space Administration.1973.
    [6]史建魁,刘振兴,程征伟.火星探测研究结果分析[J].科技导报,2011,10:64-70.
    [7] Ringrose, T. J., Towner, M. C., and Zarnecki, J. C. Convective vortices onMars: a reanalysis of Viking Lander2meteorological data[J]. sols1-60,Icarus2006,163(1):78–87.
    [8] Moore, H. J.; Hutton, R. E.; Clow, G. D.; and Spitzer, C. R. PhysicalProperties of the Surface Materials at the Viking Landing Sites on Mars[D].U. S. Geological Survey Professional Paper1389. United StatesGovernment Printing Office.1987.
    [9] Trebi-Ollennu, Ashitey, Volpe, Richard, et al. In-situ robotic armoperations[J]. IEEE Robotics and Automation Magazine,2009,16(4):34-43.
    [10] Zacny, K., Craft, J., Yachbes, I., et al. Honeybee Robotics approach totechnology development and infusion[C]//Proceedings of the2010IEEEAerospace Conference,2010,1(7):6-13.
    [11] Ashitey Eric T. P. Chris Robert G. Bonitz Leger. Robotic Arm In-situOperations for the Mars Exploration Rovers SurfaceMission[C]//International conference on systems, man and cybernetics),2005:1-8.
    [12] Baumgartner, Eric; Bonitz, Robert; Melko, Joseph; Shiraishi, Lori; andLeger, Chris. The Mars Exploration Rover Instrument PositioningSystem[C]//Proceedings of the2005IEEE Aerospace Conference.2005:1-19.
    [13] Honeybee Robotics Space Craft Mechanisms Corporation[OL]. Websiteaccessed March11,2010, http://www.honeybeerobotics.com/index.html.
    [14] Grotzinger, John P.,Crisp, et al. Mars Science Laboratory mission andscience investigation[J]. Space Science Reviews,2012,170(1-4):5-56.
    [15] Jandura, L., Burke, K., Kennedy, B., et al. An Overview of the MarsScience Laboratory Sample Acquisition, Sample Processing, and HandlingSubsystem[J]. Earth and Space,2010:941-948.
    [16] Robinson, M., Collins, C., Leger, P., et al. Test and validation of the MarsScience Laboratory Robotic Arm[C]//Proceedings of the8th InternationalConference,2013:184-189.
    [17] Rowan, J., Moran, J., Adams, D.S. Development and qualification of theMars Science Laboratory Mortar Deployment System[C]//Proceedings ofthe20th AIAA Aerodynamic Decelerator Systems Technology Conference,2009:1-15.
    [18] Price, H., Cramer, K., Doudrick, S., et al. Mars Sample Return SpacecraftSystems Architecture[C]//IEEE Aerospace conference proceedings.2000:357-375.
    [19] Backes, P., Ganino, T., and Younse, P.. A Sample Acquisition and CachingArchitecture Applicable to a MER-Class Rover for Mars SampleReturn[C]//Concepts and Approaches for Mars Exploration,2012: No.1679.
    [20] Zacny, K., Chu, P., Wilson, J., et al. Honeybee Approach to the SampleAcquisition and Caching Architecture for the2018Mars Sample ReturnMission[C]//Proceedings of the IEEE Aerospace conference,2011:No.1573.
    [21] Zacny, K., Chu, P., Paulsen, G., et al. Sample acquisition and cachingarchitectures for the Mars2020rover mission[C]//Proceedings of the AIAASPACE2013Conference and Exposition,2013:1-21.
    [22] Zacny, K., Chu, P., Paulsen, G., et al. Mars Drill for the Mars SampleReturn Mission with a Brushing and Abrading Bit, Regolith and Powder Bit,Core PreView Bit and a Coring Bit[C]//Proceedings of the IEEE Aerospaceconference,2012.
    [23] Backes, P., Lindemann, R., Collins, C., Younse, P. An integrated coring andcaching concept[C]//Proceedings of the2010IEEE Aerospace Conference,2010, Paper1675.
    [24] Zacny K., Paulsen G., Mckay C.P., et al. Reaching1m deep on mars: Theicebreaker drill[J]. Astrobiology,2013,13(12):1166-1198.78.
    [25]王海涛,付丽璋,蒋万松.“凤凰号”火星探测器着陆过程[J].航天返回与遥感,2009,03:8-15.
    [26] Zent, A. P., Hecht, M. H., Cobos, D. R., et al. The thermal electricalconductivity probe (TECP) for Phoenix[J]. Geophys. Res.,2009,114:E00A27.
    [27] www.alliancespacesystems.com. August,2010.
    [28] Smith, P. H., Tamppari, L., Arvidson, R. E., et al. Introduction to specialsection on the Phoenix Mission: Landing Site Characterization Experiments,Mission Overviews, and Expected Science[J]. Journal of GeophysicalResearch,2008,113: E00A18.
    [29] Kounaves, S., Hecht, Michael H., West, Steven J., et al. The MECA WetChemistry Laboratory on the2007Phoenix Mars Scout Lander[J]. Journalof Geophysical Research: Planets,2009,114(E3): E00A19.
    [30] Robert Lori Matthew, Robinsion Shiraishi. NASA Mars2007PhoenixLander Robotic Arm and Icy Soil Acquisition Device[J]. Journal ofGeophysical Research,2008:1-4.
    [31] Bonitz, R. G., Shiraishi, L. R., Robinson, M. L., et al. The Phoenix MarsLander robotic arm[C]//Proc. IEEE Aerospace Conf.,2009:1-12.
    [32] Bonitz, R., Shiraishi, L., Robinson, M., et al. The Phoenix Mars LanderRobotic Arm[C]//Proceedings of the2009IEEE Aerospace conference,2009,1(12):7-14.
    [33] Bar-Cohen, Y., Badescu, M., Bao, X., et al. Deep Drilling and Sampling viaCompact Low-Mass Rotary-Hammer Auto-Gopher[C]//Proceedings of the12th International Conference on Engineering, Science, Construction, andOperations in Challenging Environments-Earth and Space2010,2010:1021-1030.
    [34] Davé, A.,Thompson, S., J.,McKay, C.,et al.The sample handling system forthe Mars Icebreaker Life mission: From dirt to data[J]. Astrobiology,2013,13(4):354–369.
    [35]杨帅,孙京,殷参,李广荣,尹忠旺,莫桂冬.地外星体土壤取样机构技术[J].航天器工程,2011,04:137-146.
    [36] Goldstein, Barry. Phoenix-The First Mars Scout Mission[C]//Proceedingsof AIAA57th International Astronautical Congress,2006,2:1070-1086.
    [37] Arvidson, R. E., Bonitz, R. G., Robinson, M. L., et al. Results from theMars Phoenix Lander robotic arm experiment[J]. Geophys. Res.,2009,114:E00E02.
    [38]廖荣华.灵感来自牙医的大胆设想—太空持嵌钳和火星岩芯取样器的发明[J]《发明与创新》,2004,05:9-9.
    [39]章勇.从“和平号”太空站到国家探月工程奔向太空:精益求精的理大科研[J].中国科技财富,2010,23:12-14.
    [40] Heemskerk, C., Petersen, H., Aris, L. Era Operations Verification Resultsand Lessons Learned[C]//Proceedings of the8th ESA Workshop onAdvanced Space Technologies for Robotics and Automation 'ASTRA2004'ESTEC. Noordwijk,2004:1-8.
    [41] Townera, M. C., Patela, M. R., Ringrosea, T. J., et al. The Beagle2environmental sensors: science goals and instrument description[J].Planetary and Space Science,2004,52(13):1141-1156.
    [42] Patel, M. R., Zarnecki, J. C., Catling, D. C., Ultraviolet radiation on thesurface of Mars and the Beagle2UV sensor, Planet[J]. Space Sci.2002,50(9):915-927.
    [43] Younse, P., Stroupe, A., Huntsberger, T., et al. Sample Collection andCaching for Rover-Based Planetary Astrobiology[C]//Proceedings of theAstrobiology Science Conference2008,2008:477-498.
    [44] Younse, P., Stroupe, A., Huntsberger, T., et al. Sample Acquisition andCaching using Detachable Scoops for Mars Sample Return [C]//IEEEAerospace Conference Proceedings,2009:1-12.
    [45] Yoji KURODA, Koji KONDO, Kazuaki NAKAMURA, etc. Low PowerMobility System for Micro Planetary Rover “Micro5”[C]//Proceedings ofthe i-SAIRAS’99, ESTEC,1999:37-45.
    [46] Yasuharu Kunii, Yoji Kuroda, Takashi Kubota, Development of micro-manipulator for tele-science by lunar rover: Micro5, Acta Astronautica,Volume52, Issues2–6, January–March2003, Pages433-439,
    [47] Takashi Kubotaa, Yoji Kurodab, Yasuharu Kuniic, Ichiro Nakatania. Small,light-weight rove “Micro5” for lunar exploration[J].2002,52(2-6):447-453.
    [48]陈波.土壤动态切削的试验研究[J].筑路机械与施工机械化,2000,02:11-12.
    [49]皮爱如,沈兆武.土壤冲击特性的实验研究[J].振动与冲击,2003,22(3):28-30
    [50]徐中华,王建华.有限元法分析土壤切削问题的研究进展[J].农业机械学报,2005,36(1):133-137
    [51] Panagiotopoulos N. Investigation into the variation of cutting resistancedozer blades under of effect of oscillation[C]//Second internationalconference of International Society for TerrainVehicle Systems, l962:152-168.
    [52] Szabo B F,Barnes S,Sture, H Y Ko. Effectiveness of vibrating bulldozer and Plow blades on draft force reduction[J]. Transaction of the ASAE,1994,41(2):283-290.
    [53] Boyd B. H., Nalezny C. L. A model of vibratory soil cutting[J]. Society ofAutomotive Engineers,1967: Paper No.670750,
    [54]周昌雄,周传鳞.振动压实土体参数的辨识[J].华东船舶工业学院学报,2000,(6):91-94.
    [55]殷涌光,李俊明,王国强.二维振动铲装的实验研究[J].农业机械学报,1994,25(2):18-23.
    [56]赵伟民,周贤彪,陆念力,等.关于振动掘削岩土的基础研究[J].建筑机械,2000,(6):56-60.
    [57]任露泉.地面机械脱附减阻仿生研究进展[J].中国科学(E辑:技术科学),2008,09:1353-1364.
    [58]刘国敏.蚯蚓体表减粘降阻功能耦合仿生研究[D].吉林:吉林大学博士学位论文,2009:27-49.
    [59]高吭.东方蝼蛄(GryllotalpaorientalisBurmeister):特征、功能、力学及其仿生分析[D].吉林:吉林大学博士学位论文,2009:33-56.
    [60]吴娜,张伏,佟金.臭蜣螂唇基切土减阻的力学分析[J].农业机械学报,2009,10:207-210+222.
    [61] Ren L. Q., Tong, J., Li, J. Q., et al. Soil adhesion and biomimetics of soil-engaging components: A review[J]. Agr Eng Res,2001,79(3):239-263.
    [62]任露泉,陈德兴,胡建国.土壤动物减粘脱土规律初步分析[J].农业工程学报,1990,6(1):15-20.
    [63]任露泉,丛茜,佟金.界面粘附中非光滑表面基本特性的研究[J].农业工程学报,1992,8(1):16-22.
    [64]任露泉,丛茜,陈秉聪,等.几何非光滑典型生物体表防粘特性的研究[J].农业机械学报,1992,23(2):29-34.
    [65] Tong, J., Ren, L. Q., Chen, B. C. Geometrical morphology, chemicalconstitution and wettability of body surfaces of soil animals[J]. Int Agr Eng,1994,3(1&2):59-68.
    [66]寇冰雪.仿蚯蚓润滑功能耦合表面减阻特性[D].吉林:吉林大学硕士学位论文,2011:15-27.
    [67] Ren, L. Q., Wang, Y. P., Li, J. Q., et al. Flexible unsmoothed cuticles of soilanimals and their characteristics of reducing adhesion and resistance[J].Chinese Sci Bull,1998,43(2):166-169.
    [68]任露泉,梁云虹.生物耦合功能特性及其实现模式[J].中国科学:技术科学,2010,03:223-230.
    [69]孙久荣,任露泉,丛茜,等.蚯蚓体表电位的测定及其与运动的关系[J].吉林工业大学学报,1991,4:18-24.
    [70]谷云庆.仿生射流表面减阻性能研究[D].哈尔滨:哈尔滨工程大学博士学位论文,2013:37-44.
    [71]任露泉,崔相旭,张伯兰,等.典型土壤动物爪趾形态的初步分析[J].农业机械学报,1990,2:44-48.
    [72]张献振.土壤动物爪趾仿生PDC钻头研制与试验研究[D].吉林:吉林大学硕士学位论文,2012:20-30.
    [73]刘建军.仿生深耕挖掘犁刀的建模与仿真分析[J].湖北农业科学,2012,14:3084-3087+3091.
    [74]张琰,黄河,任露泉.挖掘机仿生斗齿土壤切削试验与减阻机理研究[J].农业机械学报,2013,01:258-261+229.
    [75]杜干.推土板触土曲面减粘技术综述[J].建筑机械,2013,09:81-84+87.
    [76] Choo Par Tan, Yahya H. Zweiri, Lakmal D. Seneviratne. On Soil ParameterEstimation scheme Based on Newton-Raphson Method for AutonomousExcavation[J]. IEEE/ASME Transaction on Mecratronic,2005,10(2):21-28.
    [77] Hong, W. J., Salisbury, J. K. Obstacle Negotiation in RoboticExcavation[C]//In Proceedings of the IASTED Robotics and Applications1999Conference,1999.
    [78] Joshua Alexander Marshall. Towards Autonomous Excavation FragmentedRock: Experiments, Modeling, Identification of and Control[D]. Ontario:MD Thesis of Queen' s University,2001:98-109.
    [79] Bernold, L. E. Motion and path control for robotic excavation[J]. Journal ofAerospace Engineering,1993,6(1):1-18.
    [80]赵崇友.液压挖掘机振动掘削及其控制系统研究[D].长沙:中南大学硕士学位论文,2006:35-56.
    [81]朱建新,赵崇友,邹湘伏.液压挖掘机振动掘削土体参数在线辨识[J].中南大学学报(自然科学版),2006,37(3):537-541.
    [82]杨成云.液压挖掘机振动掘削机理及其实现[D].长沙:中南大学硕士学位论文,2005:42-65.
    [83]郭鑫.液压挖掘机振动掘削减阻机理分析及参数优选[D].长沙:中南大学硕士学位论文,2006:33-60.
    [84]高成秀,胡赤兵,刘在德.振动沉拔桩机系统参数估计的计算机仿真[J].机械研究与研究,2001,14(1):9-10.
    [85]杨振中.小型振动冲击式打桩机冲击点优化及计算机仿真[J].水利学报,1998,(8):72-76.
    [86]简林莎,何运,卫雪莉.动态分析法判断振动压路机土壤压实状态[J].中国公路学报,1998,11(2):112-118.
    [87]刘静.挖掘机器人虚拟样机建模技术及其应用研究[D].杭州:浙江大学博士学问论文,2005:44-78.
    [88]冯丽.液压挖掘机虚拟样机系统仿真分析[D].天津:河北工业大学硕士学位论文,2005:38-59.
    [89] Carrier, W. D., Olhoeft, G. R., Mendell, W. Physical Properties of the LunarSurface[M]. New York, Cambridge Univ. Press,1991:475-594
    [90] Gromov, V. Physical and Mechanical Properties of Lunar and PlanetarySoils[J]. Earth Moon and Planets,1998,80(1-3):51-72.
    [91] Mitchell, J.K. Apollo16Mission: Soil Mechanics Investigation.http://www.lpi.usra.edu/lunar/missions/apollo/apollo_16/experiments/smi/2010.
    [92] Janosi, Z., Hanamoto, B. Analytical Determination of Drawbar Pull as aFunction of Slip for Tracked Vehicle in Deformable Soils[C]//Proceedingsof the1st International Conference of ISTVES,1961:707-726.
    [93] Moore, H. J., Clow, G. D., Hutton, R. E., Spitzer, C. R. Physical propertiesof the surface materials at the Viking landing sites on Mars[D]. U.S.Geological Survey Professional Paper.1987:1389-1396
    [94] Hong, W. Modeling, Estimation, and Control of Robot-SoilInteractions[D]. Cambridge, Massachusetts: Ph.D Dissertation ofMassachusetts Institute of Technology,2001:108-149
    [95] The Rover Team. Characterization of the Martian Surface Deposits by theMars Pathfinder Rover, Sojourner[J]. Science,1997,278(5344):1765-1768.
    [96] Arvidson, R. E., Bonitz, R. G., Robinson, M. L., et al. Physical Propertiesand Localization Investigations Associated with the2003Mars Explorationrovers[J]. Geophys. Res.,2003,108(E12):8070.
    [97] Arvidson, R. E., Bonitz, R. G., Robinson, M. L., et al. Localization andPhysical Properties Experiments Conducted by Spirit at Gusev Crater[J].Science.2004,305(5685):821-824
    [98] Arvidson, R. E., Bonitz, R. G., Robinson, M. L., et al. Localization andPhysical Property Experiments Conducted by Opportunity at MeridianiPlanum[J]. Science.2004,306(5702):1730-1733.
    [99] Ding Liang, Gao Haibo, Deng Zongquan, Liu, Zhen. Slip-ratio-coordinatedcontrol of planetary exploration robots traversing over deformable roughterrain[C]//IEEE/RSJ2010International Conference on Intelligent Robotsand Systems, IROS2010-Conference Proceedings,2010:4958-4963.
    [100]丁亮,高海波,邓宗全,陶建国,熊历冰.月球车轮地相互作用力学模型解耦及其应用[J].哈尔滨工业大学学报,2011,(01):56-61.
    [101]丁亮,高海波,邓宗全等.基于月球车轮地作用地面力学积分模型的月壤力学参数辨识方法[J].航空学报,2011,(06):1112-1123.
    [102]安国明.反铲斗挖掘土壤实验研究与挖掘阻力计算(上)[J].建筑机械化.2005,(04):26-28.
    [103]安国明.反铲斗挖掘土壤实验研究与挖掘阻力计算(下)[J].建筑机械化.2005,(05):34-35.
    [104]郑永春,欧阳自远,王世杰,邹永廖.月壤的物理和机械性质[J].矿物岩石,2004,04:14-19.
    [105] Gruntz, D.W. Development and Evaluation of a Tool for EVA or RoboticPlanetary Sampling[D]. MD thesis of University of Maryland,2007:20-26.
    [106]樊绍巍.类人型五指灵巧手的设计及抓取规划的研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2010:15-38.
    [107]兰天.多指仿人机器人灵巧手的同步控制研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2010:22-38.
    [108] http://en.wikipedia.org/wiki/Henri_Tresca.htm,2014.
    [109] http://en.wikipedia.org/wiki/Mohr–Coulomb_theory.htm,2014.
    [110] http://www.engineersedge.com/material_science/von_mises.htm,2014.
    [111]李广信,张丙印,于玉贞.土力学[M].北京:清华大学出版社,2013:229-230.
    [112]陈希哲,叶菁.土力学地基基础[M].北京:清华大学出版社,2013:208-214.
    [113] Hong, W. J. Modeling, estimation and control of robot-soilinteractions[D]. Massachusetts: Ph.D Dissertation of MassachusettsInstitute of Technology,2011:85-98.
    [114] Althoefer, K., Tan, C. P., Zweiri, Y. H., et, al. Hybrid soil parametermeasurement and estimation scheme for excavation automation[J]. IEEETransactions on Instrumentation and Measurement,2009,58(10):3633-3641.
    [115] Spong, M. W. Modeling and control of Elastic joint robots[J]. Journal ofDynamic Systems, Measurement, and Control,1987,109(1):310~319.
    [116] Mckyes, E. The calculation of draft forces and soil failure boundaries ofnarrow cutting blades[J]. ASAE Transactions,1978,21(1):20-24.
    [117] Mckyes, E., Negi, S., Douglas, E. et, al. The effect of machinery trafficand tillage operations on the physical properties of a clay and on yield ofsilage corn[J]. Journal of Agricultural Engineering Research,1979,24(2):143-148.
    [118] Mckyes, E., Desir, F. Prediction and field measurements of tillage tooldraft forces and efficiency in cohesive soils[J]. Soil and Tillage Research,1984,4(5):459-470.
    [119] Reece, A. The Fundamental Equation of Earth-Moving Mechanics[J].Proceedings of the Institution of Mechanical Engineers,1964,1(1):16-22,
    [120] Hettiaratchi, D. R., Reece, A. Symmetrical Three-Dimensional SoilFailure[J]. Journal of Terramechanics,1967,4(3):45-67.
    [121]韦宝琛.巨型电铲新型工作机构性能研究[D].上海:上海交通大学博士学位论文,2012:49-51.
    [122] Verscheure, D., Demeulenaere, B., Swevers, J., et al. Time-Optimal PathTracking for Robots: A Convex Optimization Approach[J]. IEEETransactions on Automatic Control,2009,54(10):2318-2327.
    [123] Bobrow, J., Dubowsky, S., Gibson, J. Time-optimal Control of RoboticManipulators Along Specified Paths[J]. International Journal of RoboticsResearch,1985,4(3):3-17.
    [124] Bauer, R., Leung, W., and Barfoot, T. Experimental and SimulationResults of Wheel-Soil Interaction for Planetary Rovers[C]//IEEE/RSJInternational Conference on Intelligent Robots and Systems. Edmonton,Alberta, Canada,2005:586-591.
    [125] Wong, J. Y. Terramechanics and Off-Road Vehicles[M]. Amsterdam:Elsevier Press,1989:66-82.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700