铸造凝固过程计算机数值模拟技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铸造是应用最为广泛的材料成型工艺之一,在国民经济中占有重要地位,当今传统的铸造工艺已跟不上知识经济发展的步伐。计算机模拟技术介入铸造技术标志着铸造业由传统走向现代化。凝固过程是铸造过程的重要一环,对铸件表面及内部质量有着决定性的影响。本文通过研究凝固传热过程定量分析理论,建立传热过程的数学模型,并开发具有独立计算功能的传热模拟计算程序,预测铸件生产过程中可能出现的缺陷及部位,从而为优化铸造工艺过程提供理论指导。实践证明,本文的研究内容具有重要的科学价值和现实意义。
     本文在深入研究金属凝固传热学的基础上,建立了凝固过程传热微分方程数学模型。总结求解微分方程的各种数值算法,并分析影响凝固传热的各边界条件,采用有限差分法对数学模型在时间及空间上进行离散化,建立了具有定解条件的差分方程。针对不同材料传热特性不同的问题,建立对应铸件—铸型边界模型,并采用一个综合传热系数来表达边界处的传热特点。采用温度回复法解决小结晶区间合金的潜热释放问题,对于具有一定结晶区间的合金则采用等价比热法进行处理,充分发挥两种方法的优点,提高计算的准确度。对凝固潜热的释放模式进行研究,确定采用潜热释放与温度变化呈线性关系的模式进行近似计算。同时,在用等价比热法处理潜热问题时,分六种情况对可能的计算结果进行讨论,并根据能量平衡原理,对计算结果进行修正,提高了处于凝固区间网格传热计算的精度。
     程序开发部分,本文采用面向对象编程技术,以Microsoft VC++6.0为开发平台,独立开发了凝固温度场计算功能模块,实现数学模型求解的程序化。通过开发相应的接口程序,将各功能模块与主程序动态链接,减小主程序文件尺寸,提高了程序运行的效率。通过开发文件数据读入接口,实现了三维造型软件与本程序的数据连通,进而实现软件三维模型显示、网格剖分、凝固传热模拟计算及计算结果显示等一整套数值模拟过程。软件界面简洁易用,程序设计结构严谨、可读性及可扩展性良好。
     最后,将所开发模拟程序用于零件模型的传热过程模拟,分析计算结果并与成熟模拟软件AnyCasting的模拟结果做对比,结果表明两者的计算结果基本一致,验证了所开发模拟模块计算的准确性。
Casting Technology, which plays an important role in the national economy,is one of the most widely used material molding method. But,today the traditional casting technology has been the can not keep up with the pace of the development of knowledge-based economy.Computer simulation techniques involved in foundry marks this traditional industry face to modernization. Solidification process,which is an important part of the casting process, has a decisive influence on the whether surface or internal quality of casting. In this paper,based on the analysis of the solidification heat transfer theory, a mathematical model of heat transfer process is established and a program module with independent caculation function is developped, so as to forecast the possible defects of casting in its producing process and optimize the casting process in order to give theoretical directions to optimize the casting process.It is proved that the content researched in this paper has important practical and scientific value.
     Making quantitative analysis on solidification heat transfer process, Basing on the in-depth study of metal solidification and heat transfer theory,the paper has established a mathematical model in the form of differential equations.Then,through summarying a variety of numerical algorithms on solving differential equations and analysing the factors that has impact on the solidification process, established the differential equations which has definite solution by using finite diference method to make the model discretization in space and time domain. The paper adopted an integrated heat transfer coefficient to solve the heat transfer problem on the boundary of different materials which have different heat transfer coefficient characteristics.Using the temperature recovery mehtod to settle the problem of latent heat realease of the material which has a narrow crystallization temperature range and the equally specific heat method to the material with the wide crystallization temperature range,in order to play to the advantages of both methods and improve accuracy of the calculation.Reaserching on the mode of latent heat realease, changing relationship between Heat release and temperature is determined to be linear mode.Meanwhile,six possible cases are discussioned when using the equally specific heat method to settle the problem of latent heat realease and the caculated results are modified according to the principle of energy balance,so that, the accuracy of the calculation is improved.
     In the part of program development,with Microsoft VC++6.0 as development platform, object-oriented programming technology is used to develop the calculation module of solidification temperature field independently,and the programming of the mathematical model is implemented. By developing the appropriate interface program, each of the functional modules is dynamically linked to the main program,so, the main program file size is reduced and the running efficiency of the program is improved.By developing the file data reading program, data connectivity between the three-dimensional modeling software and this software come true,then, a set of numerical simulation,including shows of the three-dimensional model、mesh generation、solidification and heat transfer calculation and the simulation results display are implemented. Finally,the interface of the software is simple and easily used,the programming is structured design with good expensibility and readability.
     In the last,using the sofuware to simulate the heat-transfer process of the parts model,comparing the results with the one of AnyCasting,it shows that the result of our software consistents with the result of AnyCasting,so that the calculation accuracy of the simulation module is validated.
引文
[1]赖华清.压铸工艺及模具[M].北京:机械工业出版社,2004.
    [2]罗守靖,陈炳光,齐丕骧.液态模锻与挤压铸造技术[M].北京:化学工业出版社,2006.
    [3]罗继相.我国挤压铸造技术的回顾及展望[J].铸造,2003,52(1):1-6.
    [4]齐丕骧.挤压铸造[M].北京:国防工业出版社,1984.
    [5]叶明松.铸造充型过程三维流场数值模拟技术研究[D].武汉:武汉理工大学,2010.
    [6]骆国建.铸造过程计算机模拟前处理技术研究[D].武汉:武汉理工大学,2010.
    [7]荆涛.凝固过程数值模拟[M].北京:电子工业出版社,2002.
    [8]熊守美,许庆彦,等.铸造过程模拟仿真技术[M].北京:机械工业出版社,2004.
    [9]雷玲.低压铸造铸件充型凝固过程数值模拟[D].西安:西安理工大学,2005.
    [10]蒋永,张云鹏.铸件充型数值模拟的研究进展[M].热加工工艺,2006,35(1):70-72.
    [11]张良,赵旭平.计算机模拟技术在铸造中的应用[J].石油机械,2006,34(9):92-94.
    [12]罗继相,胡建华,等.挤压铸造金属液流充型特性研究[J].武汉理工大学学报,2003,25(2):23-26.
    [13]解锦婷.金属铸造凝固过程的界面传热系数的研究与应用[D].天津:天津理工大学,2007.
    [14]邱宗文.铸件凝固过程温度场三维数值模拟软件开发[D].南京:东南大学,2004.
    [15]R.A.Stoehr, C.Wang. Modeling the Filling of Complex Foundry Models. TMS-IME[J], 1986:303-313.
    [16]J.Q.Wang, P.N.Hansen.3D Modeling and Simulation of Mold Filling Using PC's. Modeling of Casting and Welding Process[J],1988 (5):741~753.
    [17]Lin.H.J. Combined Fluid Flow and Heat Transfer Analysis for the Filling of Castings. AFS Transactions[J],1988 (96):447~458.
    [18]Stoehr.R.A. Coupled Heat Transfer and Fluid Flow in the Filling of Castings. AFS Transactions[J],1988 (96):733~740.
    [19]GUpadhya, A.J.Paul. Comprehensive Casting Analysis Model Using A Geometry-Based Technique Followed by Fully Coupled 3-D Fluid Flow. Heat Tansfer and Solidification Kinetics Calculations, AFS Transactions[J],1992:925~933.
    [20]杨平.C#中铸件凝固过程温度场三维数值模拟软件开发研究[D].太原:太原理工大学,2008.
    [21]张红松.一般铸件凝固过程数值模拟研究[D].昆明:昆明理工大学,2003.
    [22]柳百成.铸件充型凝固过程数值模拟国内外研究进展[J].铸造,1999,8:40-45.
    [23]S.B.Kim, Ch.P.Hong. Modeling of Combined Fluid Flow. Heat Transfer and Solidification During the Filling of Casting,60th World Foundry Congress[C],1993.
    [24]T.S.Piwoka, V.Voller. Modeling of Casting, Welding and Advanced Solidification Processes Ⅵ, Proceedings of International Conference[C]. Palm Coast, U.S.A:The Minerals, Metals & Materials Society.1993:337~492.
    [25]M.Cross, J.Compbell. Modeling of Casting, Welding and Advanced Solidification Processes Ⅷ, Proceedings of International Conference[C]. London:The Minerals, Metals & Materials Society.1995:907~1013.
    [26]骆国建,罗继相,等.铸造模拟软件JSCAST在挤压铸造中的应用[J].特种铸造及有色合金,2008,28(1):26-28.
    [27]董秀琦.低压及差压铸造理论与实践[M].北京:兵器工业出版社,1995.
    [28]Ying-chun Wang. Da-yong Li. Ying-hong Peng.Xiao-qin Zeng. Numerical simulation of low pressure die castingof magnesium wheel[J]. Int J Adv Manuf Technol,2007(32): 257-264.
    [29]J.-F. HETU, D.M. GAO, K.K. KABANEMI, S. BERGERON, K.T. NGUYEN AND C.A. LOONG. Numerical Modeling of Casting Processes[J]. Advanced Performance Materials, 1998(5):65-82.
    [30]张国伟,候华,徐宏.铸件凝固组织模拟研究进展[J].材料导报,2004,18(10),6-9.
    [31]周丹晨,蒋玉明,等.国外铸件充型凝固过程数值模拟软件介绍[J].热加工工艺,2009,19(1),48-51.
    [32]曾怡丹,王娜,等.铸铁件浇注的三维充型与凝固模拟[J].内蒙古工业大学学报,2000(5),45-47.
    [33]韩占中,王敬,兰小平FLUENT流体工程仿真计算实例与应用[M].北京:北京理工大学出版社,2005.
    [34]王万良,田学雷,宋成玉.铸件凝固模拟进展和国内外应用现状[J].山东机械,1995(6),31-33.
    [35]C M Wang, A J Paul, W W Fincher, O J Huey. Modeling of Mold Filling and Solidification during Evaporative Pattern Casting[A]. Edited by T S Piwonka, V Voller and L Kat German. Proceedings of International Conference on Modeling of Casting,Welding and Advanced Solidification Processes Ⅵ (C). Plam Coast, USA:The Mineral, Metals & Materials Society,1993:477-485.
    [36]H M Domanus, Y YLiu, W T Sha. Fluid Flow and Heat Transfer Modeling for Castings [A]. Edited by S Kou and R Mehrabian. Proceedings of International Conference on Modeling of Casting and Welding Process Ⅲ (C). Santa Barbara, CA:The Metallurgical Society of AIME.1986:361-377.
    [37]刘全坤.材料成型基本原理[M].北京:机械工业出版社,2004.
    [38]宋文娟,王智民,杨璀珍,张金龙.低压铸造充型与凝固过程数值模拟[J].模具工业,2008,34(2):8-12.
    [39]杨世铭,陶文铨.传热学[M].北京:高等教育出版社,2006.
    [40]陶文铨.数值传热学[M].西安:西安交通大学出版社,2008.
    [41]翁中杰,程惠尔,戴华淦..传热学[M].上海:上海交通大学出版社,1987.
    [42]王经.传(?)热学与流体力学基础[M].上海:上海交通大学出版社,2007.
    [43]李梅娥.传输过程数值计算[D].西安:西安交通大学出版社,2008.
    [44]王能超.数值分析简明教程[M].北京:高等教育出版社,2003.
    [45]C M Wang. Computer Simulation of Fluid Flow during the Filling of Casting Molds [D] Pittsburgh, USA:Ph D Thesis, University of Pittsburgh,1985:6-19.
    [46]J L Yeh, S HJong, W S Hwang. Improved 3-D mold filling model for complex castings and experimental verification (J).AFS Transactions.1993:1055-1061.
    [47]Seigeo KASHIWAI, Itsuo O, Akihiko K, etal. Numerical simulation and X-ray direct observation of mold filling during vacuum suction casting [A]. Proc. of MCSP6-2004 (C). Taiwan:Kaohsiung,2004.107-114.
    [48]R A Stoehr, C Wang. Coupled heat tranfer and fluid flow in the filing of castings [J]. AFS Transactions.1988:733-740.
    [49]张红金.球墨铸铁件凝固过程数值模拟[D].昆明:昆明理工大学,2005.
    [50]毛红奎.球铁件凝固过程数值模拟技术研究[D].太原:华北工学院,2003.
    [51]朱宪华.用直接差分法进行凝固过程数值解析的研究[J].西安交通大学学报,1983,
    [52]李依依,李殿中,朱苗勇.金属材料制备工艺的计算机模拟[M].北京:科学出版社,2006.
    [53]朱立华,朱建,俞琼.面向对象程序设计及C++[M].北京:人民邮电出版社,2008.
    [54]周志德,候正昌.C++程序设计[M].北京:电子工业出版社,2004.
    [55]王清辉,王彪.Visual C++ CAD应用程序开发技术[M].北京:机械工业出版社,2008.
    [56]周进,朱训林,张宏林.Visual C++使用教程[M].北京:人民邮电出版社,2008.
    [57]孙鑫.VC++深入详解[M].北京:电子工业出版社,2009.
    [58]宋坤,刘锐宁.Visual C++开发技术大全[M].人民邮电出版社,2006.
    [59]周鸣扬.Visual C++界面编程技术[M].北京:北京希望电子出版社,2003.
    [60]李于剑.Visual C++实践与提高图形图像编程篇[M].北京:中国铁道出版社,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700