太白红杉胚胎学及其遗传多样性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太白红杉(Larix chinensis Beissn.)是我国特有种,为松科落叶松属植物,仅分布于陕西省境内秦岭山地海拔2600~3500m的山脊绝顶之上,其生境自然间断,在其分布地常形成小种群;自然种群生长极为缓慢,自我更新能力较差,在多数分布地段,植株常发育不良,更为严重的是自然状态下太白红杉的结实率低,即使球果发育,也常常是干瘪无子。该种已被列为国家二级保护植物。
     本文通过对太白红杉雌、雄配子体的形成和胚胎发育的系统观察,阐明其胚胎发育过程,揭示其有性生殖障碍,并根据其生殖生物学特征,为其系统位置的确定提供胚胎学证据;同时利用SSR分子标记分析和检测太白红杉自然居群的遗传多样性,阐明太白红杉自然居群的遗传结构和变异。通过对太白红杉胚胎学和遗传多样性的研究,揭示致濒的可能原因,为进一步预测太白红杉的遗传学命运和对太白红杉的保护提供有益的参考。
     对太白红杉胚胎学的研究表明:(1)太白红杉的雄球花7月初开始分化。小孢子囊壁一般包括5~6层细胞:表皮、药室内壁、2~3层中层和绒毡层。绒毡层属于周原质团型。造孢细胞在7月下旬形成,8月上旬形成小孢子母细胞,8月下旬开始减数分裂,于10月上旬进入双线期,并以双线期渡过休眠。翌年3月下旬解除休眠继续进行减数分裂,4月中旬形成四分体,4月下旬到5月初小孢子从四分体内释放出来,小孢子经过连续4次有丝分裂后,于5月中旬形成5-细胞型的成熟花粉粒(雄配子体)并开始散粉。(2)太白红杉雌球花于7月中下旬开始分化:9月上旬至9月中旬形成大孢子母细胞;10月中旬,大孢子母细胞进入休眠期:翌年4月底至5月初解除休眠,大孢子母细胞进行减数分裂,于5月10日左右形成直列四分体,7月初形成成熟卵细胞并受精。太白红杉具简单多胚和莲座胚。9月中旬,太白红杉的成熟胚形成,成熟胚具5~6枚子叶。太白红杉从花芽分化到胚胎成熟历时14个月。(3)太白红杉小孢子母细胞发育表现出不同步现象,部分小孢子母细胞在发育过程中出现退化,在小孢子囊内形成空腔,小孢子囊绒毡层细胞在小孢子母细胞进行减数分裂Ⅰ时发生膨大和增生现象,挤压小孢子母细胞,很有可能导致小孢子母细胞的败育。太白红杉在幼胚时期不少胚珠出现发育异常,有的雌配子体变为半透明状,有的则干瘪萎缩。这可能是导致目前太白红杉有性生殖衰退、结实率低的主要原因。(4)太白红杉小孢子母细
    
    胞以减数分裂双线期渡过休眠,成熟花粉粒中包含5个细胞,属于油杉型。大抱
    子母细胞在9月上旬至9月中旬形成,经过近7个月的冬季休眠,于第二年4月
    底到5月初进行减数分裂,太白红杉具2弓个颈卵器,2个颈细胞,在幼胚发育
    阶段产生简单多胚和莲座胚。这些胚胎学特征都为太白红杉归属于落叶松属红杉
    组提供了证据。
     通过利用SSR分子标记对6个太白红衫自然居群的遗传多样性的研究,结
    果表明:太白红杉自然居群具有较高的遗传多样性水平,平均每个位点的等位基
    因数A=4.71,每个位点的预期杂合度和观测杂合度分别为He=0.6748,Ho=
    0.6667,Sharinon多样性指数为I=1 .2818。自然居群平均杂合性基因多样度比率
    凡了=11.6%,表明有88.4%的遗传变异存在于居群内。根据Nei’s(1978)无偏差估
    算的太白红杉自然居群间的遗传一致度与遗传距离表明,居群间的遗传一致度平
    均值为0.7894(变化范围:0.6484一0.9069),遗传距离平均值为0.2403(变化范围:
    0.0978一0.4332)。太白红杉自然居群间虽然存在相当程度的基因流(Nm=
    1.9045),能够抵制遗传漂变的作用,维持居群间的遗传相似性,但与其它松属、
    落叶松属植物相比较,基因流水平偏低,暗示太白红杉自然居群间产生了一定程
    度的遗传分化。
     通过本文的研究表明,太白红杉致濒原因首先可能是由于太白红杉对其生境
    的高度适应,导致竞争力缺乏,自然居群总是限制在较小的范围:其次,太白红
    杉有性生殖过程中,小抱子母细胞的败育和幼胚发育的异常经常发生,进而可能
    导致太白红杉结实率降低、种子生活力下降:同时,野外调查还发现,随着近年
    来高山森林生态旅游资源的开发,太白红杉生境的人类活动日益频繁,人为因素
    干扰将会加剧太白红杉走向濒危。
     根据本文的研究结果,建议太白红衫的保护应以就地保护为主,重点加强对
    居群内遗传多样性较高的朱雀居群、牛背梁居群的保护。同时应加强对其自然更
    新、生长发育和繁殖规律的研究,注重保护太白红杉生境,减少森林生态旅游开
    发对其自然居群造成的破坏。
Larix chinensis Beissn., an endemic species to China, belongs to the genus Larix Mill and only distributes on several peaks of Qinling Mountains in Shaanxi Province, with the altitude ranging from 2600 to 3500m. L. chinensis usually forms small populations and the individuals are runtishly in their discontinuous habitats, the natural populations grow very slowly and regenerate poorly. What is worse, L. chinensis has an extraordinarily low seed-setting rate and most seeds are atrophic. It has been listed among Grade II Endangered and Protected Plant Species.
    Through the systematic observation on the formation of male and female gametophytes and the embryonic development, this paper has given a clear picture of L. chinensis' embryonic development process and revealed its reproductive obstacle. Embryologic evidences are also provided for the determination of its systematic position according to the traits of its reproductive biology. Meanwhile, the genetic structure and variation of L. chinensis' natural populations have been illustrated by means of SSR molecular markers. Through all these research work, this paper reveals the possible causes for its endangered situation and provides a helpful reference for the prediction of L chinensis' genetic destiny and its biological conservation.
    The results of embryological research reveal that: (1) the male cone of L. chinensis differentiates during early July. The microsporangium wall of L chinensis consists of 5-6 cellular layers, namely the epidermis. the endothecium. the 2-3 middle layers and the tapetum. The tapetum belongs to the periplasmodial type. The sporogenous cell occurs in late July and develops into the microspore mother cell in early August. In early August, the latter starts its meiosis and enters into its diplotene phase in early October and later goes through dormancy in this form. The dormancy ends in late March the next year, and its meiosis continues. In middle April tetrads form and microspores are released between late April and early May. After four times' continuous mitoses, the microspore develop into the mature pollen (malegametophyte) which consists of five cells and begins shedding in middle May. (2) the female strobilus of L. chinensis Beissn. starts its differentiation in middle and late July;
    
    
    Megasporocyte forms during early and middle September and enters into dormancy in middle October; Between late April and early May the following year, the megasporocyte ends dormancy and begins its meiosis. Linear tetrads form around 10 May, and mature egg cells form and start the fertilization takes in early July. Simple polyembryony and rosette embryo occur frequently in L. chinensis. The mature embryo with 5~6 cotyledons forms in middle September. It takes 14 months from differentiation of female strobilus to formation of mature embryo. (3) the development of the microspore mother cell is nonsynchronous. Degeneration occurs in part of microspore mother cells during the developmental process, resulting in the formation of a large cavity in the microsporangium. Besides, the cells of tapetum undergo abnormal inflation and hyperplasia during the meiosis I of the microspore mother cell, which will probably cause abortion of the microspore mother cell. Some ovules undergo abnormal development in the early embryonic stage, with their megagametophytes becoming semitransparent or atrophic. All these phenomena may be responsible for the sexual reproductive degeneration and low seed-bearing. (4) the microspore mother cell of the L chinensis goes through dormancy in the diplotene stage and the mature pollen consists of five cells; Megasporocytes form during middle and late September, and begins its meiosis between April and May the following year after an approximate 7-month period of winter dormancy. L. chinensis has two to three archegonia per ovule, and each archegonium has two neck cells. Furthermore, during the early embryonic development, simple polyembryony and rosette embryos occur in L. chinensis. These embryological traits support the conclusion that the
引文
[1]郑万钧,傅立国.中国植物志(第七卷).北京:科学出版社,1978,168-196
    [2]王战,张颂云.中国落叶松林.北京:中国林业出版社,1992
    [3]应俊生,张玉龙.中国种子植物特有属.北京:科学出版社,1994
    [4]狄维忠,于兆英.陕西省第一批国家珍稀濒危保护植物.陕西:西北大学出版社,1989,41-43
    [5]国家环境保护局,中国科学院植物研究所.中国珍稀濒危保护植物名录(第一册).北京:科学出版社,1987
    [6]傅立国.中国植物红皮书—稀有濒危植物(第一册).北京:科学出版社,1992
    [7]朱志诚.秦岭太白山顶植被的起源和发展.西北大学学报.1979,1:156-159
    [8]朱志诚.秦岭高山区冰蚀原生裸地植被演替规律探讨.科学通报.1979,24(22):1041-1043
    [9]朱显谟.陕西太白山岩生植物和原始成土过程.土壤学报.1963,11(1):1-9
    [10]尚华,崔金钟,李承森.松科早期球果研究的历史与现状.植物学通报.1999,16(1):28-36
    [11]王伏雄,钱南芬,张玉龙等.中国植物花粉形态(第二版).科学出版社,1997,20-25
    [12]石福臣,木佐贯博光,铃木和夫.中国东北落中松属植物亲缘关系的研究.植物研究.1998,18(1):55-62
    [13]肖玲,杨平厚,崔宏安.太白山主要森林植物叶片的生态解剖与其抗寒性的初步研究.1991,11(5):142-147
    [14]赵利峰.太白红杉自然居群遗传多样性和遗传结构的研究[硕士学位论文].西北大学,2001,6
    [15]阎桂琴,赵桂仿,胡正海.秦岭太白红杉群落特征及物种多样性的研究.西北植物学报.2001,21(3):49-505
    [16]陈存根,彭鸿,1994.秦岭太白红杉林的群落学特征及类型划分.林业科学,30(6):487-496
    [17]阎桂琴,赵桂仿,胡正海,岳明.秦岭太白红杉群落结构与动态的研究.应用生态学报.2001,12(6):824-828
    [18]吴征镒.中国植被.北京:科学出版社,1980,157-175
    [19]周崟.中国落叶松属木材解剖性质及其归类的初步研究.林业科学.1962,2:97-116
    [20]Hizume M.. Karyomorphological studies in the family Pinaceae. Mem. Fas.
    
    Edduc. Ehime.Univ., Nat Sci.. 1988, 8:1-108
    [21]张皲方,卓丽环,李懋学.五种落叶松的核型研究.遗传.1985,7(3):39-11
    [22]胡志昂,王洪新,阎龙飞.裸子植物的生化系统学(一):松科植物的过氧化物酶.植物分类学报.1983,21(4):421-431
    [23]李林初.落叶松属的核型及系统位置的研究.植物分类学报.1993,31(5):405-412
    [24]应俊生.中国裸子植物分布区的研究(1)—松科植物的地理分布.植物分类学报.1989,27(1):27-38
    [25]管中天.四川红杉类植物分布的基本特征.植物分类学报.1981,9(4):393-407
    [26]王中仁.植物等位酶研究.1996,北京:科学出版社
    [27]Soltis P S, Soltis D E, Wolf, P G. Allozynic divergence in North American Polystichum (Dryopteridaceae). Syst. Bot.. 1990, 15(2): 205-215
    [28]Crawford F J. Phylogenetic and systematic inferences from electrophoretic studies. In: Tandksley SD, and Orton T J eds. Isozymes in Plant Genetics and Breeding, Part A, Amsterdam: Elsevier Science Publishers B V. 1983, 257-287
    [29]Powell J R.. Molecular techniques in population genetics: A brief history. In: Schierwater B, Streit B, Wagner GP and DeSalle R eds. Mol Ecol and Evolution: Applications. Berlin: Birharser Verlag Basel. 1994, 131-156
    [30]Nienhuis J, Helentjaris T, Slocum M et al. Restriction fragment length polymorphism analysis of loci associated with insect resistance in tomato. Crop Sci.. 1987, 27:797-803
    [31]Clegg M T, Brown A D, and Whitfield P R. Chloroplast DNA diversity in wild and cultivated barley: Implications for genetic conservation. Genet Res Camb. 1984, 43:339-343
    [32]Botstein D. et al. Construction of a genetic linkage map in man using restriction fragment lengthpolymorphisms. Am. J. Hum. Genet. 1980, 32: 314-318
    [33]Autrique, Singhrp, Tanksleysd, et al. RFLP mapping of genes associated with different agronomic traits and disease resistance in wheat. Abstract of Internation Plant Genome Ⅲ. 1995, 8, San Diego, USA.
    [34]Palmer J D. Evolution of chroloplast and mitochondrial DNA in plants and algae. In Maclntyre R J. ed., Monographs in Evolutionary Biology: Molecular Evolutionary Genetics. Plenum, New York, 1985, 131-140
    [35]Welsh J, McClelland M. Fingerprinting genomes using PCR with arbitrary primers. Nucl Acids Res.. 1990, 18.. 7213-7218
    [36]Williams J G K, Kubelik A R., Livak K J, Rafakski J L, Tingey S V. DNA
    
    polymorphism amplified by arbitrary primers are as genetic markers. Nucl Acids Res.. 1990, 15:6531-6535
    [37]李造哲,扈廷茂.分子标记及其在植物育种中的应用.内蒙古农业大学学报(自然科学版).2000,21(3):102-105
    [38]Lerceteau E, Szmidt A E. QTL mapping wood production and wood quality traits in Pinus sylvestris L. using AFLP markers. In: Eighteenth International Congress of Genetics. Beijing .. BeijingAcedPress, 1998, 176-240
    [39]Wachira F N, Waugh R, Jckett CA, Powell W. Detection of genetic diversity in tea (Camellia sinensis) using RAPD markers. Genome. 1995, 38: 201-210
    [40]Gillies A C M, Cornelius J P, Newton A C et al. Genetic variation in Costa Rican populations of the tropical timber species Cedrela odorata L. Assessed using RAPDs. Mol. Ecol.. 1997, 6.: 1133-1145
    [41]Schierenbeck K A, Skupshi M, Leiberman D et al. Population structure and genetic diversity in four tropical tree species from Costa Rica. Mol. Ecol.. 1997, 6:137-144
    [42]Szmid A E, Wang X R, Lu M Z. Empirical assessment ofallozyme and RAPD variation in Pinus sylvestris (L.) using haploid tissue analysis. Heredity. 1996, 76:412-420
    [43]Zabeau M, Vos P. Selective restriction fragment amplification: a general method for DNA fingerprinting. European Patent. 1993, 0535858A1, 03-31
    [44]Beismann H, Barker J H, Karp Aet al. AFLP analysis sheds light on distribution of two Salix species and their hybrid along a natural gradient. Mol. Ecol.. 1997, 6:989-993
    [45]Chen X L, S H, Lee Y H et al. The study of orchid (aranda) hybrid by AFLP. Eighteenth International Congress of Gentetics. Beijing: Seiemce Press, 1998
    [46]Wang B S, Li M G, Wang Z F, Zhang J L. AFLP analysis of Cryptocarya concinna population in lower subtropical forests, China. XVI International Botanical Congress Abstract. St. Louis, New York: Academic Press, 1999, 1389
    [47]Arcade A., Anselin F., E Fampant, M.C. Lesage. L.E. Paques. D. Prat. Application of AFLP, RAPD and ISSR markers to genetic mapping of European and Japanese larch. Theor Appl Genet. 2000, 100:299-307
    [48]Nei, M. Molecular evolutionary genetics. New York: Columbia Univ. Press, 1987
    [49]Wu K S, Tanksley S D. Abundance, polymorphism and genetic mapping of microsatellite in rice. Mol Gen Genet. 1993, 241:225-235
    
    
    [50]何平.真核生物中的微卫星及其应用.遗传.1998,20(4):42-47
    [51]Li W H, Graur D. 'Fundamentals of Molecular Evolution'Sinauer. 1991, 61-63
    [52]邱明光,秦岭太白山落叶松林的类型及组成初报,陕西林业科学技术资料汇编,1964,第四集
    [53]任毅等.秦岭大熊猫栖息的植物:佛坪自然保护区的植被.陕西:陕西科技出版社,1998,346-415
    [54]彭鸿,尚廉斌,孙瑞生.秦岭太白红杉林的组成结构调查初报.西北林学院学报.1993,8(3):33-38
    [55]朱志诚.秦岭植被的变迁.西北大学学报(自然科学版).1979,2:76-85
    [56]朱志诚.秦岭落叶松林的主要类型及其演变的初步分析.西北大学学报(自然科学版).1980,4:57-64
    [57]郑万钧,傅立国,诚静容.中国裸子植物.植物分类学报.1975,13(4):56-67
    [58]刘全宏,王孝安,田光华,肖娅萍.太白红杉叶的形态解剖学特征与环境因子的关系.西北植物学报.2001,2l(5):885-893
    [59]李正理.植物制片技术.北京:科学出版社,1978
    [60]中国科学院植物研究所形态细胞研究室比较形态组.松树—形态结构与发育.北京:科学出版社,1978,92-119
    [61]曹玉芳,许方,姚敦义.松杉类植物雌雄配子体的发育与胚胎发生.莱阳农学院学报.1995,12(3):206—212
    [62]Ekberg G, Eriksson G, Sulikova Z. Meiosis and pollen formation in Larix. Hereditas. 1968, 59:427-438
    [63]Pwens I N, Molder M. Meiosis in conifers: prolonged pachytene and diffuse diplotene stage. Canadian Journal Botany. 1971, 49.. 2061-2064
    [64]曹玉芳,姚敦义,许方,钱南芬,初庆刚.侧柏小孢子的发生和雄配子体的形成.西北植物学报.1997,17(2):163-169
    [65]Moens P B. A new interpretation of meiotic prophase on Lycopersicon esculentum(Tomato). Chromosoma. 1964, 15:231-242
    [66]胡适宜.被子植物胚胎学.北京:高等教育出版社,1982,20-66
    [67]陈祖铿,王伏雄,周馥.白皮松绒毡层细胞超微结构的研究.植物学报.1987, 29(5):486-491
    [68]陈祖铿,王伏雄.穗花杉的胚珠结构与雌雄配子体发育.植物学报.1985,27(1):19-25
    [69]吕洪飞,余象煜,李平,何福基.-杉木雄性不育株与可育株小孢子囊发育的电镜研究.武汉植物学研究.1997,15(2):97-102
    [70]Chamberlain CL. Gymnosperms, structure and evolution. Chicago: University
    
    of Chicago Press, 1935
    [71]吉成均,杨雄,李正理.银杏大孢子形成的形态学研究.植物学报.1999,41(2):219-221
    [72]陈祖铿,王伏雄.白皮松受精作用的研究.植物学报.1982,24(1):10-16
    [73]王伏雄,陈祖铿.银杉的雄配子体.植物分类学报.1986,24(6):469-470
    [74]贾桂霞,李凤兰,沈熙环.华北落叶松雌雄配子体的形成及发育.北京林业大学学报.1994,16(2):10-14
    [75]Owens JN, Molder M. Sexual reproduction of white spruce (Picea glauca). Canadian Journal of Botany. 1979, 57:152-169
    [76]Wang FH. Life history of Keteleeria I: strobili, development of the gametophytes and fertilization in Keteleeria evelyniana. Amer. J. Bot.. 1948, 35:21-27
    [77]胡适宜,朱潋.高等植物受精作用中雄性核和雌性核的融合.植物学报.1979,21(1):1-10
    [78]Haupt AW. O?genesis and fertilization in Pinus lambertiana and P. monophylla. Bot. Gaz.. 1941, 102:482-498
    [79]McWilliam JR, Mergen F. Cytology of fertilization in Pinus. Bot. Gaz.. 1958, 119:246-249
    [80]王伏雄.银杉生物学.北京:科学出版社,1990,64-72
    [81]陈祖铿,李莹,王伏雄.三尖杉属受精作用的研究.植物学报.1987,29(3):253-257
    [82]王伏雄,钱南芬.水杉的胚胎发育.植物学报.1964,12(3):241-253
    [83]陈祖铿,王伏雄.福建柏的配子体发育.植物学报.1980,22(1):6-10
    [84]陈祖铿,王伏雄.白豆杉的配子体发育和受精作用.植物学报.1979,21(1):19-29
    [85]Runions CJ, Owens JN. Sexual reproduction oflnterior speruce(Pinaceae)Ⅱ: Fertilization to early embryo formation. International journal of plant sciences. 1999, 160(4): 641-652
    [86]Doyle J. Polyembryogeny in Pinus in relation to that in other conifers—a survey. Scientific Proceedings of the Royal Ireland Academy. 1963, 62B 13:181-216
    [87]Doyle J, Brennan M. Cleavage polyembryogeny in conifers and taxads—a survey Ⅱ Cupressaceae, Pinaceae and conclusions. Scientific Proceedings of the Royal Dublin Society. 1972, 4A 10: 137-158
    [88]李珊.用RAPD标记检测庙台槭自然居群的遗传结构和遗传分化[硕士学位论文].西北大学,2001,6
    [89]P.D. Khasa, C.H. Newton, M.H. Rahman, B. Jaquish, B.P. Dancik. Isolation,
    
    characterization and inheritance of microsatellite loci in alpine larch and western larch. Genome. 2000, 43:439-448
    [90]Muhammad H. Rahman, Barry.Jaquish, P.D. Khasa. Optimization of PCR Protocol in Microsatellite Analysis with Silver and SYBR Stains. Plant Molecular Biology Reporter. 2000, 18:339-348
    [91]许绍斌,陶玉芬,杨昭庆,褚嘉祜.简单快速的DNA银染和胶保存方法.遗传.2002,24(3):335-336
    [92]Weir, B S and Cockerham C C. Estimating F-statistics for the analysis of population structure. Evolution. 1984. 38:1358-1370
    [93]Nei, M. F-statistics and analysis of gene diversity in subdivided populations. Ann. Human Genet. 1977, 41:225-233
    [94]Hamrick J L, Plant population genetics and evolution. Amer. J. Bot. 1982, 69(10):1685-1693
    [95]Hamrick J L, Godt M J W. Allozyme diversity in plant species. In: Brown AH D, Clegg M T, Kaher A L, Weir B S eds. Plant population genetics, breeding and genetic resources. Sunderland: Sinauer, 1989, 43-63
    [96]Karron J D. Patterns of genetic variation and breeding systems in rare plant species. In: Falk D A, Holsinger eds. Genetics and conservation of rare plant. New York: Oxford University Press Inc, 1991, 87-98
    [97]Karron J D, Linhart Y B, Chaulk C A, Robertson C A. Genetic structure of populations of geographically restricted and widespread species of Astragalus (Fabaceae). AmerJ Bot.. 1988, 75:1114-1119
    [98]El-Kassaby Y A. Genetic variation within and among conifer conifer population: Review and evaluation of methods. In: Fineschi S, Maluolti M E, Cannata F et al eds., Biochemical Markers in the Population Genetics of Frest trees. The Netherlands: Academic Publishing, 1991, 61-76
    [99]Loveless M D, Hamrick J L. Ecological determinant of genetic structure in plant populations. Ann.Rev.Evol.Syst. 1984, 15:65-95
    [100]Linhart Y A, Mitton J B, Sturgeon K Bet al. Genetic variation in space and time in a population of ponderosa pine. Heredity. 1981, 46:407-426
    [101]EI-Kassaby Y A, Sziklai O. Genetic variation of allozyme and quantitative traits in a selected douglas-fur population. Forest Ecol Management. 1982, 4:115-126
    [102]葛颂,王明麻,陈岳武.用同工酶研究马尾松群体的遗传结构.林业科学.1988,24(6):399-409
    [103]杨一平,王述礼,尹瑞雪.红松群体内和群体间同工酶变异的研究.林业
    
    科学.1989,25(3):201-208
    [104]L.Ying, E.K.Morgenstem. The population structure of Larix laricina in New Brunswick. Canada. Silvae Genetica, 1991, 40:180-184
    [105]Fins L, Seeb L W. Genetic variation in allozymes of western larch. Can J For Res. 1986, 16:1013-1018
    [106]A. Lewandowski, L.Mejnartowicz. Levels and patterns of allozyrne variation in some European larch (Larix decidua) population. Hereditas. 1991, 115: 221-226
    [107]Maier J. Genetic variation in European larch (Larix decidua Mill.). Ann Sci For. 1992, 49: 39-47
    [108]赵桂仿, Francous FELBER, Philippe K?PFER. Genetic Variation and Differentiation of Larix deciduas Populations in Swiss Alps. Acta bot. Sinica. 2001, 43(7):731-735
    [109]葛颂,王海群,张灿明,洪德元.八面山银杉林的遗传多样性和群体分化.植物学报.1997,39(3):266-271
    [110]Gottlieb L D. Electrophoretic evidence and plant systematics. Ann. Missouri. Bot. 1977, 64:161-180
    [111]Crawford D J. Enzyme Electrophoresis and Plant Systernatics. In:Soltis D E, Soltis P S eds. Isozymes in Plant Biology. Portland, Oregon: Dioscorides Press. 1989, 146-164
    [112]Knowles P, Fumier G R, Aleksvik M A et al. Significant levels of self- fertilization in natural populations of tama-rack. Can J Bot.. 1987, 65:1087-1091
    [113]Wright S. Evolution in Mendelian populations. Genetics. 1931, 16:97-159
    [114]Slatkin M. Gene flow in natural populations. Ann.Rev.Ecol.Syst.. 1985, 16: 393-430
    [115]阎桂琴.太白红杉种群生态及遗传结构研究[博士学位论文].西北大学, 2001,5
    [116]Jain S.K. and Bradshaw A.D.. Evolutionary divergence among adjacent plant populations I:The evidence and its theoretical analysis. Heredity. 1966, 20: 407-441
    [117]Schaal BA. Isolation by distance in Liatris cylindracea. Nature. 1974, 252: 703

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700