锂电池电极材料的磁性及电化学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二次电池作为一种可循环使用的高效洁净新能源,是综合缓解能源、资源和环境问题的一种重要技术途径。在强大的社会发展需求推动下,新型锂离子电池的研究和开发一直是近年来国际上一系列重大科技发展计划的热点。基于新构思、新材料和新技术的新型锂离子电池不断涌现,锂离子电池正向着高能量、高功率、长寿命、绿色环保等方向发展。锂离子电池电极材料不仅仅具有优秀的电化学性能,由于特殊的几何构型和多重的离子价态更是展现出丰富的物理现象和思想。
     本论文中,我们系统地研究了几类锂离子电池电极材料,详尽的探讨了材料的合成条件、晶体结构与磁学、电化学性质。并对材料表现出来的新奇的磁性现象和电化学性能给出了科学的解释。
     (1)单斜结构Li0.33MnO2被认为是一种新型的3V电池正极材料,但是对其电化学过程中结构演化等一些基础问题的研究尚不明朗。本章中我们通过低温固相烧结法制备了Li0.33MnO2,并通过测量循环伏安曲线、阻抗谱及原位XRD、XAS和Raman谱发现材料在低电压区间下具有更好的容量保持率。而高电压区间下迅速的容量损失主要是由于材料表面形成了较厚的尖晶石层。在Li+离子插入后,Li0.33MnO2转变为尖晶石相得LiMnO2。此外Li0.33MnO2材料的直流磁化率曲线和磁化率倒数曲线都印证了存在两个磁转变过程。定量分析交流磁化率峰位对于频率的依赖性关系发现随着温度的降低Li0.33MnO2 (?)将经历从顺磁态到原子尺度自旋玻璃态、再到团簇自旋玻璃态的转变。
     (2)NiO具有立方的NaCl结构,作为负极材料理论电容量可达718mAh.g-1,由于其具有较高的可逆比容和低廉的价格,所以NiO被认为是一种具有广阔应用前景的锂二次电池负极材料。NiO也是一种典型的P型半导体,低温呈现反铁磁,奈尔转变温度为523K。本章中我们通过熔盐法制备了Li离子掺杂的Li0.29Ni0.71O材料,并探讨了离子掺杂对于体系电化学和磁学性质的调制行为。直流磁化率研究发现掺杂后Li0.29Ni0.71O表现出重入自旋玻璃态行为,从亚铁磁到自旋玻璃态的转变,可能的产生原因在于掺杂诱导体系出现多重相互竞争的交换相互作用。Li离子的掺杂后对于电化学性能的提升并未表现出我们所期待的效果,其首次循环就出现的不可逆的Li20是引起材料容量降低的主要原因。
     (3)层状结构的Li(Nix,Mnl-x-y,Coy)O2材料中+4价的Mn离子不存在Jahn-Teller效应,抑制了充放电过程中Mn离子变价所能引起的结构相变。Co3+离子在体系中不存在电化学活性,主要起到稳定结构的作用。而Ni离子承载着电化学变价的作用,在锂离子插入和脱出的过程中由+2价变为+3价。在充放电过程中各种离子“各司其职”使该材料展现出良好的电化学性能。但是这个接近于完美的结构中离子之间的无序是制约其电化学性能的一个主要因素。我们通过溶胶-凝胶法制备了442三元掺杂材料并研究材料的磁性行为。研究发现材料在低温呈现团簇自旋玻璃态,这与Chernova等人通过固相法制备的材料表现的原子尺度自旋玻璃态具有明显的差别。我们认为这种差别来源于过渡金属层间的离子无序分布诱导团簇行为的出现。
     (4)富锂Li[Li(l/3-x/3)Mn(2/3-2x/3Nix]O2体系在最近几年内因为其高比容量和良好的循环性能,吸引了广泛的关注。但是对于该系列材料磁性的研究却相对较少。富锂材料一方面具有六方层状结构,过渡金属层为失措的三角点阵;另一方面富锂材料一定程度上又可以看成是有六方层状结构的LiMO2和单斜结构Li2MnO3形成的固溶体,在层状结构中引入了无序。这也就提供我们一个难得的机会去探讨几何失措与无序分布在材料磁性表象上的竞争作用。我们通过溶胶-凝胶法制备了富锂的材料Li[Li0.2Mn0.4Ni0.4]O2,研究材料在低温呈现类自旋玻璃态行为。计算体系的自旋失措因子F=7.8小于几何失措效应起效果所需要的最低标准10。我们认定在该类富锂材料中类自旋玻璃态产生的原因为过渡金属层间的离子无序分布。
Lithium-ion secondary battery, as a new recycling and clean energy, is a kind of important technical method to solve energy, resource and environment problems. With the strong request of social development, the research and development of new lithium-ion battery have attached much attention. New lithium-ion battery has been developed greatly based on the new thoughts, new material and new technology and tending to high energy, high power, long life and environmental protection. The electrode materials not only show good electrochemical properties, also display abundant physical phenomena and thoughts due to the special crystal structure and multi-valence sates.
     In this thesis, we explored some typical kinds of electrode materials and studied their synthesis processes, lattice structure, magnetic properties and electrochemical properties. We also offered our perspective on their novel and abundant magnetic phenomena.
     (1) Monoclinic Li0.33Mn02 has been studied as a good 3V cathode material, but the structural transition during electrochemical cycling is still uncertainty. In this chapter, we prepare Li0.33MnO2 and find the material show good capacity retention in low voltage and the surface of Li0.33MnO2 will change into a spinel layer in high voltage by study the CV, impedance, in situ XRD, XAS and Raman. Furthermore, Li0.33MnO2 shows two magnetic transitions due to dc and ac susceptibility data. The quantitative studies on relation between ac peaks and frequencies shows Li0.33MnO2 display the transition from paramagnetism into atomic-scale spin glass, then into cluster spin glass with the decreasing of temperature.
     (2) Cubic NiO has a high theoretical capacity of 718 mAh g-1 as a negative material and is considered a promising negative materials because of the high capacity and low price. NiO is a typical P-type semiconductor and antiferromagnetism with Neel temperature 523 K. We synthesize Lio.29Ni0.71O by molten salt method and discuss the effect of nonmagnetic Li+ ion doping on the electrochemical and magnetic properties. Dc susceptibility shows a reentrant spin glass behavior from ferrimagnetism to spin glass in Lio.29Ni0.71O. The possible reason may lie in the multi-competitive exchange interactions when Li+ ions are introduced into NiO lattice. Li0.29Ni0.71O does not show better electrochemical properties in comparison with that of NiO which may originate from the irreversible Li2O in the fist cycling.
     (3) In layered Li(Nix,Mnl-x-y,Coy)O2 material, the structural phase transition during the charge/discharge process will be suppresed because Mn4+ ions shows non-Jahn-Teller effect. Co3+ ions does not have electrochemical properties and Ni2+ ions will change the valence from+2 into+3 in the electrochemical cycles. One of the major problems to restrict electrochemical properties is the disordered arrangements of transitions ions in the transition-metal layers. In this chapter, we firstly synthesizes the 442 materials, and then studies and discusses the magnetic behaviors. Our research results shows 442 material shows cluster spin glass behavior, which is quite different from the atomic spin glass in Chernova's reports. Such difference may come from the scale of disordered cluster due to the different preparation process.
     (4) Lithium-rich Li[Li(l/3-x/3)Mn(2/3-2x/3)Nix]O2 system has attracted much attentions in recent years due to the high specific capacity and good cycling. But the magnetic studies on this materials are lack comparatively. Such type of lithium-rich materials has rhombohedral layered structure with triangle lattice in the transition-metal layers. On the other hand this material can be considered to be the solid solution of LiMnO2 and Li2MnO3. This provide us a possibility and chance to discuss the effect of geometrical frustration and disorder on the formation of spin glass. We find Li[Li0.2Mn0.4Ni0.4]O2 show a spin-glass-like behavior. Calculated spin-frustration parameter F=7.8 is far below the standard parameter 10 which geometrical frustration works. So we can conclude that the origin of spin glass in Li[Li0.2Mn0.4Ni0.4]O2 is disorder arrangements of transition metal oxides rather than geometrical frustrartion.
引文
[1]雷永泉.新能源材料[M].天津:天津大学出版社,2000.
    [2]Armand M, Tarason J M. Buliding better batteries [J]. Nature,2008,451:652-657.
    [3]Tarason J M, Armand M. Issues and chanllenges facing rechargeable lithium batteries [J]. Nature,2001,414:359-367.
    [4]魏英进.锂离子电池锰基正极材料的合成与表征[D].长春:吉林大学,2004.
    [5]Lutgens F K, Tarbuck E J. Essentials of Geology [M]. New York:Prentice Hall, 2000.
    [6]Ward R D, Brownlee D. Rare Earth [M]. New York:Copernicus,2000.
    [7]Vincent C A. Lithium batteries:A 50-year perspective,1959-2009 [J]. Solid State Ionics,2000,134:159-167.
    [8]吕鸣祥,黄长保,宋玉瑾.化学电源[M].天津:天津大学出版社,1992.
    [9]Brandt K. Historical development of secondary lithium batteries [J]. Solid State Ionics,1994,69:173-183.
    [10]Murphy D W, DiSalvo F J, Carides J N, Waszczak J V. Topochemical reactions of rutile related structures with lithium [J]. Mat. Res. Bull.,1978,13:1395-1402.
    [11]Lazzari M, Scrosati B. A cyclable lithium organic electrolyte cell based on two intercalation electrodes [J]. J. Electrochem. Soc,1980,127:773-774.
    [12]Armand M, Chabagno J M, Duclot M J. Fast ion transport in solids electrdes and eelectrolytes [M]. (eds Vashishta P, Mundy J N, Shenoy G K.) Amsterdam: North-Holland,1979.
    [13]Armand M. In Materials for Advanced Batteries (Proc. NATO Symp. Materials Adv. Batteries) [M]. (eds Murphy D W, Broadhead J, Steele B C.) New York: Plenum,1980.
    [14]Mizushima K, Jones P C, Wiseman P J, Goodenough J B. LixCoO2 (0< x《 1): A new cathode material for batteries of high energy density [J]. Mat. Res. Bull.,1980, 15:783-789.
    [15]Thomas M G S R, Bruce P G, Goodenough J B. Lithium mobility in the layered oxide Lii-xCoO2 [J]. Solid State Ionics,1985,17:13-19.
    [16]Ozawa K. Lithium-ion rechargeable batteries with LiCoC2 and carbon electrodes: the LiCoO2/C system [J]. Solid State Ionics,1994,69:212-221.
    [17]Fenton D E, Parker J M, Wright P V. Complexes of alkaline metal ions with polyethylene oxide) [J]. Polymer,1973,14:589-592.
    [18]Xu K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries [J]. Chem. Rev.,2004,104:4303-4417.
    [19]Orsini F, Pasquier A, Beaudouin B, Tarascon J M, Trentin M, Langenhuizen N, Beer E, Notten P. In situ SEM study of the interfaces in plastic lithium cells [J]. J. Power Sources,1999,81-82:918-921.
    [20]Amriou T, Khelifa B, Aourag H, Aouadi S M, Mathieu C. Ab initio investigation of the Jahn-Teller distortion effect on the stabilizing lithium intercalated compounds [J]. Mater. Chem. Phys.,2005,92:499-504.
    [21]Liu H, Yang Y, Zhang J. Reaction mechanism and kinetics of lithium ion battery cathode material LiNiO2 with CO2 [J]. J. Power Sources,2007,173:556-561.
    [22]Rougier A, Bravereau P, Delmas D. Optimization of the composition of the Lil-zNil+zO2 electrode materials:Structural, magnetic and electrochemical studies [J]. J. Electrochem. Soc.,1996,143(4):1168-1175.
    [23]Antolini E. LiCoO2:Formation, structure, lithium and oxygen nonstoichiometry, electrochemical behavior and transport properties [J]. Solid State Ionics,2004,170: 159-171.
    [24]Armstrong A R, Bruce P G. Synthesis of layered LiMnO2 as anelectrode for rechargeable lithium batteries[J]. Nature,1996,392:499-500.
    [25]Davidson I J, McMillan R S, Murray J J, Greedan J E. Lithium ion cell based on orthorhombic LiMnO2[J]. J. Power Source,1995,54:232-235.
    [26]Jong U K, Young J J, Gye C P, Woon J J, Hal B G Charge/discharge characteristics of LiMnO2 composite for lithium polymer battery[J]. J. Power Sources, 2003,119-121:686-689.
    [27]Natasha A, Chernova, Ma M M, Xiao J, Whittinghan M S, Breger J 1, Grey C P. Layered LixNiyMnyCo1-2yO2 cathodes for lithium Ion Batteries:Understanding Local Structure via Magnetic Properties[J]. Chem. Mater,2007,19:4682-4693.
    [28]Ma M M, Chernova N A, Toby B H, Peter Y Z, Whittingham M S. Structural and Electrochemical behavior of LiMn0.4Ni0.4Co0.2O2[J]. Chem. Mater, 2007, 165: 517-534.
    [29]Ngala J K, Natasha A C, Ma M M, Marc M, Peter Y Z, Whittingham M S. The synthesis characterization and electrochemical behavior of the layered LiMn0.4Ni0.4Coo.2O2 compound[J]. J. Mater. Chem.,2004,14:214-220.
    [30]Whittingham M S. Lithium batteries and cathode materials [J]. Chem. Rev.,2004, 104:4271-4302.
    [31]Thackeray M M, Kang S H, Johnson C S, Vaughey T, Benedek R, Hackney S A. Li2MnO3-stablized LiMO2 electrodes for lithium-ion batteries[J]. J. Mater. Chem., 2007,17:3112.
    [32]Karan N K, Abraham D P, Balasubramanian M, Furczon M M, Thomas R, Katiyer R S, Morphology. Structure and Electrochemistry of Solution derived LiMn0.5-xCr2XNi0.5-xO2 for lithium ion cells[J]. J. Electrochem. Soc., 2009, 156: A533-562.
    [33]Cabana J, Kang S H, Johnson C S, Thackeray M M, Grey C P. Structural and electrochemical characterization of composite layered spinel electrodes containing Ni and Mn for Li-Ion batteries [J]. J. Electrochem. Soc.,2009,156:A730-736.
    [34]Robertson A D, Bruce P G. Overcapacity of Li[NixLiMn]O2 electrodes[J]. Electrochem. Solid State Lett.,2004,7:A294-298.
    [35]Jiang M, Key B, Meng Y S, Grey C P. Electrochemical and structural study of the layered "Li-Excess" Lithium ion battery electrode material Li[Li1/9Ni1/3Mn5/9]O2[J]. Chem. Mater.,2009,21:2733-2745.
    [36]Huang X K, Zhang Q S, Chang H T, Gan J I, Yue H J, Yang Y. Hydrothermal synthesis of nanosized LiMnO2-Li2MnO3 compounds and their electrochemical performances[J]. J. Electrochem. Soc.,2009,156:A162-168.
    [37]Armstrong A R, Holzapfel M, Novak P, Johnson C S, Kang S h, Thackeray M M, Bruce P G. Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mno.6]O2[J]. J. Am. Chem. Soc.,2006, 128:8694-8698.
    [38]冯端,金国均.凝聚态物理学(上卷)[M].北京:高等教育出版社,2003.
    [39]杜菲.关联电子体系材料新奇磁学性质的研究[D].长春:吉林大学,2008.
    [40]冯端,师昌绪,刘治国.材料科学导论[M].北京:化学工业出版社,2002.
    [41]Cai J W, Wang C, Shen B G, Zhao J G, Zhan W S. Colossal magnetoresistance of spin glass perovskite LaCaMnO3[J]. Appl. Phys. Lett.,1997,71:1277-1279.
    [42]Wang F, Zhang J, Chen Y F, Wang G J, Sun J R, Zhang S Y, Shen B G. Spin glass behavior in La(FeMn)Si compounds[J]. Phys. Rev. B,2004,69:094424.
    [43]Dieny B, Barara B. Critical properties of a random anisotropy system a DyNi a new universality class in disordered system[J]. Phys. Rev. Lett.,1986,57:1169-1172.
    [44]Maignan A, Martin C, Damay F, Raveau B, Hejtmank J. Transition from a paramagnetic metallic to a cluster glass metallic state in electron doped perovskite manganites [J]. Phys. Rev. B,1998,58:2758-2763.
    [45]Young A P, Helmut G, Katzgraber. Absence of an Almeida-Thouless Line in three dimensional spin glasses[J]. Phys. Rev. Lett.,2004,93:207203.
    [46]Daniel S F, David A H. Ordered phase of short range Ising Spin glass [J]. Phys. Rev. Lett.,1986,56:1601-1604.
    [47]Helmut G K, Young A P. Probing the Almeida-Thouless Line away from the mean field model[J]. Phys. Rev. Lett.,2005,72:184416.
    [48]Luo W I, Nagel S R, Rosenbaum T F, Rosensweig R E. Dipole interactions with random anisotropy in a frozen ferrofluid[J]. Phys. Rev. Lett.,1991,67:2721-2724.
    [49]Saito H, Zayets V, Yamagata S, Ando K. Magneto-optical studies of ferromagnetism in the II-VI diluted magnetic semiconductor ZnCrTe[J]. Phys. Rev. B, 2002,66:081201.
    [50]Yeshurun Y, Salamon M B, Rao K V, Chen H S. Spin glas ferromagnetic critical line in amorphous FeMn Alloys[J]. Phys. Rev. Lett.,1980,45:1366-1369.
    [1]Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature,2001,414:359-367.
    [2]Ammundsen B, Paulsen J. Novel lithium-ion cathode materials based on layered manganese oxides[J]. Advanced materials,2001,13:943-956.
    [3]Broussely M, Biensan P, Simon B. Lithium insertion into host materials:the key to success for Li ion batteries[J]. Electrochimica Acta,1999,45:3-22.
    [4]Mishra S K, Ceder G. Structural stability of lithium manganese oxides[J]. Physical Review B,1999,59:6120-6130.
    [5]Bruce P G, Armstrong A R, Gitzendanner R L. New intercalation compoundes for lithium batteries:layered LiMnO2[J]. Journal of materials chemistry,1999,9:193-198.
    [6]Paulsen J M, Thomas C L, Dahn J R, Layered Li-Mn-oxide with the O2 Structure: A cathode material for Li-ion cells which does not convert to spinel[J]. Journal of the electrochemical society,1999,146:3560-3565.
    [7]Shao-Horn Y, Hackney S A, Armstrong A R, Bruce P G, Gitzendanner R, Johnson C S, Thackeray M M. Structural characterization of layered LiMnO2 electrodes by electron diffraction and lattice imaging[J]. Journal of the electrochemical society, 1999,146:2404-2412.
    [8]Ammundsen B, Desilvestro J, Groutso T, Hassell D, Metson J B, Regan E, Steiner R, Pickering P J. Formation and Structural Properties of Layered LiMnO2 Cathode Materials[J]. Journal of the electrochemical society,2000,147:4078-4082.
    [9]Jang Y I, Huang B Y, Wang H F, Sadoway D R, Chiang Y M. Electrochemical cycling-induced spinel formation in high-charge-capacity orthorhombic LiMnO2[J]. Journal of the electrochemical society,1999,146:3217-3223.
    [10]Franger S, Bach S, Pereira-Ramos J P, Baffier N. Chemistry and Electrochemistry of low temperature manganese oxides as lithium intercalation compounds[J]. Journal of the electrochemical society,2000:147:3226-3230.
    [11]Julien C M, Banov B, Monchilov A, Zaghib K. Lithiated manganese oxide Li0.33MnO2 as an electrode materal for lithium batteries[J]. J. Power Sources, 2006,159:1365-1370.
    [12]Ohzuku T, Kitagawa M, Hirai T. Electrochemistry of manganese dioxide in lithium nonaqueous cell[J]. J. Electrochem. Soc,1990,137:769-775.
    [13]Levi E, Zinigrad E, Teller H, Levi M D, Aurbach D, Mengeritsky E, Elster E, Dan P, Granot E, Yamin H. Structural and electrochemical studies of 3V LixMnO2 cathodes for rechargeable Li batteries[J]. J. Electrochem. Soc,1997,144:4133-4141.
    [14]Yoshio M, Nakamura H, Xia Y Y. Lithiated manganese dioxide Lio.33Mn02 as a 3V cathode for lithium batteries[J]. Electrochimica Acta,1999,45:273-283.
    [15]Xia Y Y, Tatsumi K, Fujieda T, Trosini P P, Sakai T. Solid-state lithium-polymer batteries using lithiated MnO2 cathodes[J]. Journal of the electrochemical society, 2000,147:2050-2056.
    [16]Boschloo G K, Goossens A, Schoonmam J. Photoelectrochemical stude of thin Anatase TiO2 films prepared by metallorganic chemical vapor deposition[J]. J. Electrochem. Soc.,1997,144:1311-1317.
    [17]Zhang Z R, Liu H S, Gong Z L, Yang Y. Electrochemical performance and spectroscopic characterization of TiO2-coated LiNi0.8Co0.2O2 cathode materials [J]. Journal of power sources,2004,129:101-106.
    [18]Fey G T K, Muralidharan P, Lu C Z, Cho Y D. Enhanced electrochemical performance and thermal stability of La2O3-coated LiCoO2[J]. Electrochimica Acta, 2006,51:4850-4858.
    [19]Xie J, Tanaka T, Imanishi N, Matsumura T, Hirano A, Takeda Y, Yamamoto O. Li-ion transport kinetics in LiMn2O4 thin films prepared by radio frequency magnetron sputtering[J]. Journal of power sources,2008,180:576-581.
    [20]Liao X Z, Ma Z F, Gong Q, He Y S, Pei L, Zeng L J. Low-temperature performance of LiFePO4/C cathode in a quaternary carbonate-based electrolyte [J]. Electrochemistry communications,2008,10:691-694.
    [21]Levi M D, Gamolsky K, Aurbach D, Heider U, Oesten R. On electrochemical impedance measurements of LixCo0.2Ni0.8O2 and LixNiO2 intercalation electrodes[J]. Electrochimica Acta,2000,45:1781-1789.
    [22]Park M, Zhang X c, Chung M, Less G B, Sastry A M. A review of conduction phenomena in Li-ion batteries[J]. Journal of power sources,2010,195:7904-7929.
    [23]Rui X H, Ding N, Liu J, Li C, Chen C H. Analysis of the chemical diffusion coefficient of lithium ions in Li3V2(PO4)3 cathode material[J]. Electrochimica Acta, 2010,55:2384-2390.
    [24]Levi M D, Gamolsky K, Aurbach D, Herder U, Oesten R. Determination of the Li ion chemical diffusion coefficient for the topotactic solid-state reactions occurring via a two-phase or single-phase solid solution pathway[J]. Journal of Electroanalytical Chemistry,1999,477:32-40.
    [25]Bang H J, Donepudi V S, Prakash J. Preparation and characterization of partially substituted LiMyMn2-yO4 (M= Ni, Co, Fe) spinel cathodes for Li-ion batteries [J]. Electrochimica Acta,2002,48:443-451.
    [26]Aurbach D, Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries[J]. Journal of Power Sources, 2000,89:206-218.
    [27]Levi M D, Salitra G, Markovsky B, Teller H, Aurbach D, Heider U, Heider L. Solid-state electrochemical kinetics of Li-ion intercalation into Lil-xCoo2:simultaneous application of electroanalytical techniques SSCV, PITT, and EIS[J]. Journal of the electrochemical society,1999,146:1279-1289.
    [28]Montoro L A, Rosolen J M. The role of structural and electronic alterations on the lithium diffusion in LixCo0.5Ni0.502[J]. Electrochimica Acta,2004,49:3243-3249.
    [29]Treuil. N, Labrugere C, Menetrier M, Portier J, Campet G, Deshayes A, Frison J C, Hwang S J, Song S W, Choy J H. Relationship between chemical bonding nature and electrochemical property of LiMn2O4 spinel oxides with various particle sizes: "Electrochemical grafting" concept [J]. J. Phys. Chem. B.1999,103:2100-2106.
    [30]Wei Y J, Nam K W, Kim K B, Chen G Spectroscopic studies of the structural properties of Ni substituted spinel LiMn2O4 [J]. Solid State Ionics,2006,177:29-35.
    [31]Julien C M, Massot M. Lattice vibrations of materials for lithium rechargeable batteries:Lithium extraction-insertion in spinel structures [J]. Materials Science and Engineering B.2003,100:69-78.
    [32]He P. Luo J Y, Yang X H, Xia Y Y. Preparation and electrochemical profile of Lio.33Mn02 nanorods as cathode material for secondary lithium batteries[J]. Electrochimica Acta,2009,54:7345-7349.
    [33]Irons S H, Sangrey T D, Beauchamp K M, Smith M D, Loye H-C z. Ac susceptibility of Sr3CuPtxIrl-xO6:A magnetic system with competing interactions and dimensionality[J]. Physical Review B,2000,61:11594.
    [34]Masatsugu S, Itsuko S, Walter S J. Magnetism and superconductivity in McTa2S2C[J]. Physical Review B,2005,71:224407.
    [35]De K, Thakur M, Manna A, Giri S. Unusual glassy states in LaMno.5Fe0.5O3: Evidence of two distinct dynamical freezing processes[J]. Journal of Applied Physics, 2006,99:013908.
    [36]Mukadam M D, Yusuf S M, Sharma P, Kulshreshtha S K, Dey G K. Dynamics of spin clusters in amorphous Fe2O3[J]. Phys. Rev. B,2005,72:174408.
    [37]Ogielski A T, Morgenstern I. Critical behavior of three-dimensional Ising spin-glass model[J]. Phys. Rev. Lett,1985,54:928-931.
    [38]Marcano N, Gomez Sal J C, Espeso J I, Fernandz Barquin L, Paulsen C. Cluster-glass percolative scenario in CeNil-xCux studied by very low-temperature ac susceptibility and dc magnetization[J]. Phys. Rev. B,2007,76:224419.
    [39]Mukadam M D, Yusuf S M, Sharma P, Kulshreshtha S K, Dey G K. Phys. Dynamics of spin clusters in amorphous Fe2O3[J]. Phys.Rev. B,2005,72:174408.
    [40]Li D X, Yamamoto E, Nimori S, Yubuta K, Shiokawa Y. Spin-glass behavior in CeCu2-type uranium compound U2AuGa3[J]. Appl. Phys. Lett,2005,87:142505.
    [41]Kundu A K, Nordblad P, Rao C N R. Nonequilibrium magnetic properties of single-crystalline La0.7Ca0.3CoO3[J]. Phys. Rev.B,2005,72:144423.
    [1]姜涛.聚阴离子型正极材料Li3V2(PO4)3和Na2FePO4F的制备与性质研究[D].长春:吉林大学,2010.
    [2]詹世英.掺杂V205正极材料的合成及电化学性质表征[D].长春:吉林大学,2010.
    [3]Zhang F B, Zhou Y K, Li H 1. Nanocrystalline NiO as electrode material for electrochemical capacitor[J]. Mater. Chem. Phys.,2004,83:260-264.
    [4]Boschloo G, Hagfeldt A. Spectroelectrochemistry of nanostructured NiO [J]. J. Phys. Chem. B,2001,105:3039-3044.
    [5]Xing W, Li F, Yan Z F, Lu G Q. Synthesis and electrochemical properties of mesoporous nickel oxide[J]. J. Power Sources,2004,134:324-330.
    [6]Yang Q, Sha J, Ma X Y, Yang D R. Synthesis of NiO nanowires by a sol-gel process[J]. Materials Letters,2005,59:1967-1970.
    [7]Elp J V, Eskes H, Kruper P, Sawatzky G A. Electronic structure of Li-doped NiO [J]. Phys. Rev. B,1992,45:1612-1622.
    [8]Kodama R H, Makhlouf S A, Berkowitz A E. Finite size effects in antiferromagnetic NiO nanoparticles[J]. Phys. Rev. Lett.,1997,79:1393-1396.
    [9]Mallick P, Rath C, Rath A, Banerjee A, Mishra N C. Antiferro to superparamagneic transition on Mn doping in NiO[J]. Solid State Communications, 2010,150:1342-1345.
    [10]Thongbai P, Yamwong T, Maensiri S. Effect of Li and Fe doping on dielectric relaxation behavior in (LiFe)-doped NiO ceramics[J]. Mater. Chem. Phys.,2010,123: 56-61.
    [11]Thongbai P, Yamwong T, Maensiri S. Electrical responses in high perimittivity dielectric (LiFe)-doped NiO ceramics[J]. Appl. Phys. Lett.,2009,94:152905.
    [12]Manna S, Deb A K, Jagannath J, De S K. Synthesis and room temperature ferromagnetism in Fe doped NiO nanorods[J]. J. Phys. Chem. C,2008,112: 10659-10662.
    [13]Soriano L, Gutierrez A, Preda Ⅰ, Palacin S, Sanz J M, Abbate M, Trigo J F, Vollmer A, Bressler P R. Splitting of Ni 3d states at the surface of NiO nanostructuresm [J]. Phys. Rev. B,2006,74:193402.
    [14]Soriano L, Preda I, Gutierrez A, Palacin S, Abbate M, Vollmer A. Surface effect in the Ni 2p xray photoemission spectra of NiO[J].Phys. Rev. B,2007,75:233417.
    [15]Liu H S, Li J, Zhang Z R, Gong Z 1, Yang Y. Structural electrochemical and thermal properties of LiNiTiCoO2 as cathode materials for lithium ion battery[J]. Electrochimica Acta,2004,49:1151-1159.
    [16]Pham Q N, Bohnke C, Bohnke O. Effect of surface treatments on LiLinTiO3 perovskite ceramics an xray photoelectrotron spectrpscopy study[J]. Surface Science, 2004,572:375-384.
    [17]He J H, Yuan S L, Tian Z M, Yin Y S, Li P, Wang Y Q, Liu K L, Yuan S J, Wang X L, Liu L. Magnetic properties in Fe doped NiO synthesized by coprecipitaion[J].J. Magnet. Magnet. Mater.,2008,320:3293-3296.
    [18]Lin Y H, Wang J F, Jiang L, Chen Y, Nan C W. High permittivity Li and Al doped NiO ceramics[J]. Appl. Phys. Lett.,2004,85:5664.
    [19]Lin Y H, Wang J F, Cai J N, Ying M H, Zhao R J, Li M, Nan C. Ferromagnetism and electrical transport in Fe doped NiO[J]. Phys. Rev. B,2006,73:193308.
    [20]Kodama R H, Makhlouf S A, Berkowitz A E. Finite size effect in antiferromagneic NiO nanoparticles[J]. Phys. Rev. Lett.,1997,79:1393-1396.
    [21]Wu J B, Nan C W, Lin Y H, Deng Y. Giant dielectric perimittivity observed in Li and Ti doped NiO[J]. Phys. Rev. Lett.,2002,89:217601.
    [22]Manna S, De S K. Magnetic properties of Li and Fe co-doed NiO[J]. Solid State Comm.,2009,149:297-300.
    [23]Srinivasan G, Seehra M S. Magnetic susceptibility their temperature variation and exchange constant of NiO[J]. Phys. Rev. B,1984,29:6295-6298.
    [24]Guillux-Viry O P M, Antunes A B, Peng W, Ma Y W, Gao Z S, Moure C. Magnetization reversal in bulk and thin films of the ferromagnetic ErCoMnO3 perovskite[J]. J. Magnet. Magnet. Mater.,2009,321:1723-1726.
    [25]Feng Z, Seehra M S. Phase diagram and magnetic properties of the diluted fcc system NiMgO[J]. Phys. Rev. B,1992,45:2184-2189.
    [26]Kannan R, Seehra M S. Pecolation effects and magnetic properties of the randomly diluted fcc system CoMgO[J]. Phys. Rev. B,1987,35:8472184.
    [27]Huang X H, Tu J P, Zhang B, Zhang C Q, Li Y, Yuan Y F, Wu H M. Electrochemiacl properties of NiO-Ni nanocomposite as anode material for lithium batteries[J]. J. Power Sources,2006,161:541-544.
    [28]Huang X H, Tu J P, Zhang C Q, Xiang J Y. Net-structured NiO-C nanocomposte as Li-intercalation electrode material [J]. Electrochem. Commun.,2007,9: 1180-1184.
    [29]Oh S W, Bang H J, Bae Y C, Sun Y K. Effect of calcination temperature on morphology, crystallinity and electrochemical properties of nano-crystalline metal oxides (CO3O4, CuO, and NiO) prepared via ultrasonic spray pyrolysis [J]. J.Power Sources,2007,173:502-509.
    [30]Rahman M M, Chou S L, Zhong C, Wang J Z, Wexler D, Liu H K.Spray pyrolyzed NiO-C nanocomposite as anode material for the lithium-ion battery with enhanced capacity retention[J]. Solid State Ionics,2010,180:1646-1651.
    [31]Yang S, Song H, Chen X. Electrochemical performance of expanded mesocarbon microbeads as anode material for lithium-ion batteries[J]. Electrochem. Commun., 2006,8:137.
    [32]Bard A J, Faulkner L R.Electrochemical Methods:Fundamentals and Applications[M]. New York:Wiley,1980.
    [33]Rui X H, Ding N, Liu J, Li C, Chen C H. Analysis of the chemical diffusion coefficient of lithium ions in Li3V2(PO4)3 cathode material[J]. Electrochimica Acta, 2010,55:2384-2390.
    [34]Xie J, Tanaka T, Imanishi N, Matsumura T, Hirano A, Takeda Y, Yamamoto O.Li-ion transport kinetics in LiMn2O4 thin films prepared by radio frequency magnetron sputtering[J]. Journal of Power Sources,2008,180:576-583.
    [35]Liao X Z, Ma Z F, Gong Q, He Y S, Pei L, Zeng L J. Low-temterature performance of LiFePO4/C cathode in a quaternary carbonate-based electrolyte [J].Electrochemistry Communications,2008,10:691-694.
    [36]Levi M D, Gamolsky K, Aurbach D, Heider U, Oesten R. On electrochemical impedance measurements of LixCo0.2Ni0.8O2 and LixNiO2 intercalation electrodes[J]. Electrochimica Acta,2000,45:1781-1789.
    [1]Chernova N A, Ma M M, Xiao J, Whittinghan M S, Breger J, Grey C P. Layered LixNiyMnyCol-2yO2 cathodes for lithium Ion Batteries:Understanding Local Structure via Magnetic Properties[J]. Chem. Mater.,2007,19:4682-4693.
    [2]Ma M M, Chernova N A, Toby B H, Zavalij P Y, Whittingham M S. Structural and Electrochemical behavior of LiMn0.4Ni0.4Co0.2O2[J].Chem. Mater.,2007,165: 517-534.
    [3]Ngala J K, Chernova N A, Ma M M, Mamak M, Zavalij P Y, Whittingham M S. The synthesis characterization and electrochemical behavior of the layered LiMn0.4Ni0.4Co0.2O2 compound[J]. J. Mater. Chem.,2004,14:214-220.
    [4]Whittingham M S. Lithium batteries and cathode materials [J]. Chem. Rev.,2004, 104:4271-4302.
    [5]Lee Y S, Sun Y K, Ota S, Miyashita T, Yoshio M. Preparation and characterization of nanocrystalline LiNi0.5Mn1.5O4 for 5V cathode materials by composite carbonate process [J]. Electrochemistry Communications,2002,4: 989-994.
    [6]Park S H, Yoon C S, Kang S G, Kim H S, Moon S I, Sun Y. K. Synthesis and structural characterization of layered LiMn0.3Ni0.3Co0.3O2 cathode materials by ultrasonic spray pyrolysis method[J]. Chem. Rev.,2004,49:557-563.
    [7]Bonda M, Holzapfel M, Brion S d, Darie C, Feher T, Baker P J, Lancaster T, Blundell S J, Pratt F L. Effect of magnesium doping on the orbital and magentic order in LiNiO2 [J]. Phys. Rev. B,2008,78:104409.
    [8]Sugiyama J, Mukai K, Ikedo Y, Russo P L, Nozaki H, Andreica D, Amato A, Ariyoshi K, Ohzuku T. Static magnetic order in the triangular lattice of LixNiO2: Muon-spin spectroscopy measurements[J]. Phys. Rev. B,2004,78:144412.
    [9]Kang K, Morgan D, Ceder G. First principles study of Li diffusion in I-Li2NiO2 structure [J]. Phys, Rev, B,2009,79:014305.
    [10]Du F, Huang Z F, Wang C Z, Meng X, Chen G, Chen Y, Feng S H. Spin-glass-like behavior in rhombohedeal Li(Mn,Cr)O2[J]. J. Appl. Phys. B,2007, 102:113906.
    [11]Chen H, Liu L N, Li Z, Wei Y J, Meng X, Wang CZ, Chen G, Du F. Spin glass like behavior in rhombohedral Li[Li(1/3-x/3)Mn(2/3-2x/3)Nix]O2(x=0.4) [J]. J. Alloys and Compounds,2010,506:488-491.
    [12]Bakonyi I, Kiss L F, Varga E, Varga L K. Magnetic properties of metastable Zr-Ni and Hf-Ni alloys around the paramagnetic ferromagnetic transition[J]. Phys. Rev. B,2005,71:014402.
    [13]Felner I, Asaf U, Nowik I, Bradaric I. Magentic and Mossbauer studies of CaRuMO3[J]. Phys. Rev. B,2002,66:054418.
    [14]Binder K, Young A P. Spin glass:Experimental facts theoretical concepts and open questions[J]. Rev. Modern Phys.,1986,58:801-976.
    [15]Tran V H, Bukowski Z, Damm J S, Zaleski A J, Badurski D, Gorzelniak R, Sulkowski C, Troc R. Coexistence of antiferromagnetic and spin glass behavior in U3Rh3Sb4[J]. J. Phys.:Condens. Matter,2005,17:3597-3609.
    [16]Huang Z F, Du F, Wang C Z, Wang D P, Chen G Low-spin Mn3+ ion in rhombohedral LiMnO2 predicted by first principle calculation[J]. Phys. Rev. B,2007, 75:054411.
    [17]Du F, Li A, Liu D L, Zhan S Y, Hu F, Wang C Z, Chen Y, Feng S H, Chen G. Transport and magnetic properties of disordered LixVyO2[J]. J. Magnet. Magnet. Mater.,2009,321:1975-1979.
    [18]Terada N, Mitsuda S, Gukasov A. Impurity-induced orthogonal double sinusoidal magnetic structure in the triangular lattice antiferromagnet CuFeAlO2[J]. Phys. Rev. B, 2006,73:014419
    [19]Rao C N R, Paul G, Choudhury A, Sampathkumaran E V, Raychaudhuri A K. Properties of a mixed valent iron compound with the kagome lattice[J]. Phys. Rev. B, 2003,67:134425.
    [20]Cai J W, Wang C, Shen B G, Zhao J G, Zhan W S. Colossal magnetoresistance of spin glass perovskite LaCaMnO3[J]. Appl. Phys. Lett.,1997,71:1277-1279.
    [21]Wang F, Zhang J, Chen Y F, Wang G J, Sun J R, Zhang S Y, Shen B G. Spin glass behavior in La(FeMn)Si compounds[J]. Phys. Rev. B,2004,69:094424.
    [22]Dieny B, Barara B. Critical properties of a random anisotropy system a DyNi a new universality class in disordered system[J]. Phys. Rev. Lett.,1986,57:1169-1172.
    [23]Maignan A, Martin C, Damay F, Raveau B, Hejtmank J. Transition from a paramagnetic metallic to a cluster glass metallic state in electron doped perovskite manganites [J]. Phys. Rev. B,1998,58:2758-2763.
    [24]Young A P, Katzgraber H G Absence of an Almeida-Thouless Line in three dimensional spin glasses[J]. Phys. Rev. Lett.,2004,93:207203.
    [25]Fisher D S, Huse D A. Ordered phase of short range Ising Spin glass[J]. Phys. Rev. Lett.,1986,56:1601-1604.
    [26]Katzgraber H G, Young A P. Probing the Almeida-Thouless Line away from the mean field model[J]. Phys. Rev. Lett.,2005,72:184416.
    [27]Luo W, Nagel S R, Rosenbaum T F, Rosensweig R E. Dipole interactions with random anisotropy in a frozen ferrofluid[J]. Phys. Rev. Lett.,1991,67:2721-2724.
    [28]Saito H, Zayets V, Yamagata S, Ando K. Magneto-optical studies of ferromagnetism in the II-VI diluted magnetic semiconductor ZnCrTe[J]. Phys. Rev. B, 2002,66:081201.
    [29]Yeshurun Y, Salamon M B, Rao K V, Chen H S. Spin glas ferromagnetic critical line in amorphous FeMn Alloys[J]. Phys. Rev. Lett.,1980,45:1366-1369.
    [30]Ramirez A P. Geometric frustration:Magic moments[J]. Nature,2003,421:483.
    [31]Harris M J, Bramwell S T, McMorrow D F, Zeiske T, Godfrey K W. Geometrical Frustration in the ferromagnetic pyrochlore Ho2Ti2O7[J]. Phys. Rev. Lett.,1997,79: 2554-2557.
    [32]Urano C, Nohara M, Kondo S, Sakai F, Takagi H, Shiraki T, Okubo T. LiV2O4 spinel as a heavy mass Fermi liquid:Anomalous transport and role of geometrical frustration[J]. Phys. Rev. Lett.,2000,85:1052-1055.
    [33]Laflorencie N, Poilblanc D. Doped coupled frustrated spin 1/2 chain with four spin exchange[J]. Phys. Rev. Lett.,2003,90:157202.
    [34]Lau G C, Freitas R S, Ueland B G, Schiffer P, Cava R J. Geometrical magnetic frustration in rare-earch chalcogenide spinels[J]. Phys. Rev. B,2005,72:054411.
    [35]Bhame S D, Joly V L J, Joy P A. Effect of disorder on the magnetic properties of LaMnFeO3[J]. Phys. Rev. B,2005,72:054426.
    [36]Moreo A, Yunoki S, Dagotto E. Phase separation scenario for manganese oxides and related materials[J]. Science,1999,283:2034-2040.
    [1]Thackeray M M, Kang S H, Johnson C S, Vaughey T, Benedek R, Hackney S A. Li2MnO3-stablized LiMO2 electrodes for lithium-ion batteries[J]. J. Mater. Chem., 2007,17:3112-3125.
    [2]Karan N K, Abraham D P, Balasubramanian M, Furczon M M, Thomas R, Katiyer R S, Morphology. Structure and Electrochemistry of Solution derived LiMn0.5-xCr2XNi0.5-xO2 for lithium ion cells[J]. J. Electrochem. Soc.,2009,156: A533-562.
    [3]Cabana J, Kang S H, Johnson C S, Thackeray M M, Grey C P. Structural and electrochemical characterization of composite layered spinel electrodes containing Ni and Mn for Li-Ion batteries [J]. J. Electrochem. Soc.,2009,156:A730-736.
    [4]Robertson A D, Bruce P G. Overcapacity of Li[NixLiMn]O2 electrodes[J]. Electrochem. Solid State Lett.,2004,7:A294-298.
    [5]Jiang M, Key B, Meng Y S, Grey C P. Electrochemical and structural study of the layered "Li-Excess" Lithium ion battery electrode material Li[Li1/9Ni1/3Mn5/9]O2[J]. Chem. Mater.,2009,21:2733-2745.
    [6]Huang X K, Zhang Q S, Chang H T, Gan J L, Yue H J, Yang Y. Hydrothermal synthesis of nanosized LiMnO2-Li2MnO3 compounds and their electrochemical performances[J]. J. Electrochem. Soc.,2009,156:A162-168.
    [7]Armstrong A R, Holzapfel M, Novak P, Johnson C S, Kang S h, Thackeray M M, Bruce P G Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2[J]. J. Am. Chem. Soc.,2006, 128:8694-8698.
    [8]Lu Z h, Dahn J R. Understanding the Anomalous Capacity of Li/Li[NiLiMn]O2 cells using in situ Xray diffraction and electrochemical studies[J]. J. Electrochem. Soc,2002,149:A815-822.
    [9]Wei Y J, Nikolowski K, Zhan S Y, Ehrenberg H, Oswald S, Chen G, Wang C Z, Chen H. Electrochemical kinetics and cycling performance of nano Li[Li0.23Co0.3Mn0.47]O2 cathode material for lithium ion batteries[J]. Electrochem. Comm.,2009,11:2008-2011.
    [10]Chen H, Liu L N, Li Z, Wei Y J, Meng X, Wang C Z, Chen G, Du F. Spin glass like behavior in rhombohedral Li[LiMnNi]O2[J]. J.Alloys Compounds,2010,506: 488-491.
    [11]Greedan J E. Geometrically frustrated magnetic materials[J]. J. Mater. Chem., 2001,11:37-53.
    [12]Harris M J, Bramwell S T, McMorrow D F, Zeiske T, Godfrey K W. Geometrical frustration in the ferromagnetic Pyrochlore Ho2Ti2O7[J]. Phys. Rev. Lett.,1997,79: 2554-2557.
    [13]冯端,金国均.凝聚态物理学(上卷)[M].北京:高等教育出版社,2003.
    [14]杜菲博士论文.关联电子体系材料新奇磁学性质的研究[D],长春:吉林大学,2008.
    [15]Fujimoto S. Geometrical frustration induced semimetal to insulator transition[J]. Phys. Rev. Lett.,2002,89:226402.
    [16]Du F, Huang Z F, Wang C Z, Meng X, Chen G, Chen Y, Feng S H.Spin-glass-like behavior in rhombohedeal Li(Mn,Cr)O2[J]. J. Appl. Phys. B,2007,102:113906.
    [17]Bakonyi I, Kiss L F, Varga E, Varga L K. Magnetic properties of metastable Zr-Ni and Hf-Ni alloys around the paramagnetic ferromagnetic transition[J]. Phys. Rev. B, 2005,71:014402.
    [18]Felner Ⅰ, Asaf U, Nowik Ⅰ, Bradaric Ⅰ. Magentic and Mossbauer studies of CaRuMO3[J]. Phys. Rev. B,2002,66:054418.
    [19]Binder K, Young A P. Spin glass:Experimental facts theoretical concepts and open questions[J]. Rev. Modern Phys.,1986,58:801-976.
    [20]Tran V H, Bukowski Z, Damm J S, Zaleski A J, Badurski D, Gorzelniak R, Sulkowski C, Troc R. Coexistence of antiferromagnetic and spin glass behavior in U3Rh3Sb4[J]. J. Phys.:Condens. Matter,2005,17:3597-3609.
    [21]Terada N, Mitsuda S, Gukasov A. Impurity-induced orthogonal double sinusoidal magnetic structure in the triangular lattice antiferromagnet CuFeAlO2[J]. Phys. Rev. B, 2006,73:014419
    [22]Rao C N R, Paul G, Choudhury A, Sampathkumaran E V, Raychaudhuri A K.Properties of a mixed valent iron compound with the kagome lattice[J]. Phys. Rev. B,2003,67:134425.
    [23]Cai J W, Wang C, Shen B G, Zhao J G, Zhan W S. Colossal magnetoresistance of spin glass perovskite LaCaMnO3[J]. Appl. Phys. Lett.,1997,71:1277-1279.
    [24]Wang F, Zhang J, Chen Y F, Wang G J, Sun J R, Zhang S Y, Shen B G. Spin glass behavior in La(FeMn)Si compounds [J]. Phys. Rev. B,2004,69:094424.
    [25]Urano C, Nohara M, Kondo S, Sakai F, Takagi H, Shiraki T, Okubo T. LiV2O4 spinel as a heavy mass Fermi liquid:Anomalous transport and role of geometrical frustration[J]. Phys. Rev. Lett.,2000,85:1052-1055.
    [26]Laflorencie N, Poilblanc D. Doped coupled frustrated spin 1/2 chain with four spin exchange[J]. Phys. Rev. Lett.,2003,90:157202.
    [27]Lau G C, Freitas R S, Ueland B G, Schiffer P, Cava R J. Geometrical magnetic frustration in rare-earch chalcogenide spinels[J]. Phys. Rev. B,2005,72:054411.
    [28]Bhame S D, Joly V L J, Joy P A. Effect of disorder on the magnetic properties of LaMnFeO3[J]. Phys. Rev. B,2005,72:054426.
    [29]Moreo A, Yunoki S, Dagotto E. Phase separation scenario for manganese oxides and related materials[J]. Science,1999,283:2034-2040.
    [30]Luo W, Nagel S R, Rosenbaum T F, Rosensweig R E. Dipole interactions with random anisotropy in a frozen ferrofluid[J]. Phys. Rev. Lett.,1991,67:2721-2724.
    [31]Saito H, Zayets V, Yamagata S, Ando K. Magneto-optical studies of ferromagnetism in the Ⅱ-VI diluted magnetic semiconductor ZnCrTe[J]. Phys. Rev. B, 2002,66:081201.
    [32]Yeshurun Y, Salamon M B, Rao K V, Chen H S. Spin glas ferromagnetic critical line in amorphous FeMn Alloys[J]. Phys. Rev. Lett.,1980,45:1366-1369.
    [33]Ramirez A P, Geometric frustration:Magic moments[J]. Nature,2003,421:483.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700