锂离子电池富锂层状正极材料Li[Li_((1/3-x/3))Co_xMn_((2/3-2x/3))]O_2的制备与性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锂离子电池作为一种重要的电化学能量储存与转换装置,已经广泛地应用在手机、笔记本电脑、电动汽车以及混合电动汽车等领域,成为缓解能源危机与环境污染等问题的一种有效途径。锂离子电池的性能在很大程度上取决于正极材料的性能,以LiCoO_2为代表的传统正极材料由于资源紧缺、原料成本高和对环境有污染等缺点在工业化生产中受到制约。近年来,富锂层状正极材料以其低廉的成本,高的能量密度和良好的安全性能成为了人们研究的重点。
     本文以富锂层状正极材料Li[Li_((1/3-x/3))Co_xMn_((2/3-2x/3))]O_2为研究对象,针对材料特殊的充放电机理,深入地研究了材料的内部结构、动力学性能和电化学反应机制等问题。首先,我们采用溶胶凝胶法合成了亚微米尺寸的Li[Li_(0.2)Co_(0.4)Mn_(0.4)]O_2材料,利用拉曼散射确定了富锂层状正极材料具有单相固溶体结构而不是LiCoO_2和Li2MnO3两种物质的纳米复合结构。恒电流间歇滴定法(GITT)定量计算表明,材料的锂离子扩散系数在首次充电至4.45V时达到最小值10~(-19)cm~2s~(-1),说明此时材料中氧气的释放、锂离子的脱出、以及结构的重排是动力学受限的过程。随着材料结构重排的结束,在首次充电完成时,形成新的层状结构Li_xMO_2,同时扩散系数明显增大。其次,我们研究了材料在低温下的电化学性能。电化学阻抗谱研究表明材料在-20°C下电荷转移阻抗急剧增加,同时,X-射线光电子能谱及循环伏安分析表明材料中的Mn~(4+)离子基本未被激活。上述原因导致材料在低温下电化学容量降低。最后,我们通过对材料在不同截止电压下进行充放电测试,发现在2.0-4.6V电压区间内,材料在首次充电过程中的氧气释放反应基本结束,首次放电容量高达213mAh g~(-1),同时循环性能相对稳定。因此,这个区间是富锂层状正极材料适宜的充放电电压区间。此外,我们还对材料进行了首次高电压及低倍率的预充电处理。通过对材料在第一次充电过程中进行高压预充电处理,激活了材料中的Mn~(4+)离子,使其参与到后续电化学过程中。在此基础上,将材料在低电压范围内进行充放电循环,可在获得较高容量的同时,显著提升材料的循环稳定性。通过这种预充电技术,使富锂层状正极材料在目前商用电解液允许的电压范围内最大限度地发挥了其高比容量特性,有力地促进了材料的实际应用。
Great efforts have been done on lithium-ion batteries since SONYintroduced the first commercial lithium-ion battery in1991. Nowadays,conventional cathode materials such as layered LiCoO_2, spinel LiMn2O4, andolivine LiFePO4have been successfully applied in lithium ion batteries. Thesecathode materials typically deliver capacities of100-160mAh g-1. To satisfythe requirements for electric vehicles and hybrid electric vehicles, it is desiredto develop new cathode materials with superior performance such as highercapacities, lower cost, and better thermal stability. Recently, a series ofLi-riched layered materials, which can be simplified as Li[Li_xM_(1-x)]O_2(M=Mn,Ni, Co, Cr), have been studied as promising cathode materials for nextgeneration lithium ion batteries because of their low cost, low toxicity, highdischarge capacities. However, there are lots of arguments on true crystalstructure of such materials, not enough lucubrating on kinetics character andmechanism during the charge-discharge processes. Moreover, Li-richedlayered materials have to be charged over4.5V for the high specific energy,but the commercial electrolyte could not worke for long at such high voltage.Therefore, this work is devoted to research on the charge mechanism, crystalstructure and the electrochemical properties of Li[Li_((1/3-x/3))Co_xMn_((2/3-2x/3))]O_2 cathode materials.
     Firstly, we successfully prepared Li[Li_(0.2)Co_(0.4)Mn_(0.4)]O_2at900°C for15hours using the sol-gel method. We studied the structure properties of thematerial using varies techniques including X-ray diffraction(XRD), Fouriertransform infrared spectroscopy (FTIR) and Raman scattering,based on whichwe determined Li[Li_(0.2)Co_(0.4)Mn_(0.4)]O_2material was a solid solution rather thana composite of nano Li2MnO3and LiCoO_2. The additional shoulder band at670cm-1should be attributed to the local distortion, because that the Li+andMn4+superlattice was substituted by Co~(3+). FTIR and X-ray photoelectronspectrum (XPS) showed there was a little Li2CO3in the surface layer of thematerials resulting from the oxidation reaction of the residual Li.
     Secondly, we studied the electrochemical kinetics of the material usingGalvanostatic intermittent titration technique (GITT) and Electrochemicalimpedance spectroscopy (EIS). It is observed that the material showed lowestLi~+diffusion coefficients (10~(-19)cm~2s~(-1)), increased resistance of solidelectrolyte interface (SEI) film and huge charge-transfer resistance at the firstcharge plateau because of the high kinetic barriers associated with theconcurrent Li+diffusion,oxygen loss and structural rearrangement. Thesecomplicated reactions slowed down the electrochemical kinetics process. Atthe end of first charge, the material changed to a LixMO2layered structure,and the diffusion coefficients increased in evidence.
     Then, we compared the electrochemical properties of the material at-20°C and room temperature by charge-discharge cycling, cyclic voltammetry(CV), XPS and EIS. The resultes showed that the Mn4+was actived at roomtemperature, and deoxidized to Mn3+during the discharge process. The Mn~(3+)was prone to dissolve into the electrolyte, resulting in bad cycle performance. EIS study showed that the charge transfer resistance severely increased withthe temperature dropped to-20°C, which was due to insufficient oxygen loss,and the material showed a low capacity. XPS and CV analysis showed that theinactive Mn~(4+)ions in the electrode suppressed the dissolution of manganeseand the Jahn-Teller distortion of the material lattice, both of which resulted instable structure and excellent cycle life at low temperature.
     Finally, we studied the electrochemical properties at different voltagewindows, our experiments showed more sufficient oxygen loss and higherdischarge capacities were obtained when the material charged to4.8V, but thebig charge transfer resistance at high voltage decreased the cycle performance.The material showed a high discharge capacity of213mAh g-1and excellentcycle life in the voltage window of2.0-4.6V, so we determined this voltagewindow was a proper choice for Li-riched layered material. Moreover, weprecharged the materials with high voltage and low rate before cycling. CVshowed that the Mn4+was actived during the precharge treatment, andparticipated in the flowing cycles in the narrow voltage window, so thedischarge capacity and cycle performance were enhanced. This prechargetreatment technique brought high discharge capacity in the voltage window,which was fit for the commercial electrolyte for Li-ion Batteries.
     On all accounts, this work gives us a comprehensive understanding on thepreparation of Li[Li_((1/3-x/3))Co_xMn_((2/3-2x/3))]O_2cathode materials, as well as itsstructural and electrochemical properties.
引文
1李国欣.新型化学电源导论[M].上海:上海复旦大学出版社,1992.
    2Tarascon J M, Armand M. Issues and challenges facing rechargeable lithiumbatteries [J]. Nature,2001,414:359-367.
    3郭炳焜,徐徽,王先友,肖立新.锂离子电池[M].长沙:中南大学出版社,2002.
    4姜涛.聚阴离子型正极材料Li3V2(PO4)3和Na2FePO4F的制备与性质研究[D].长春:吉林大学,2010.
    5黄可龙,王兆翔,刘素琴.锂离子电池原理与关键技术[M].北京:化学工业出版社,2007.
    6黄祖飞. LiMnO2体系结构与性能的第一原理研究[D].长春:吉林大学,2006.
    7庄大高.锂离子电池正极材料LiFePO4合成方法及电化学性能研究[D].杭州:浙江大学,2006.
    8刘大亮.锂离子电池负极材料Li3-xMxN的制备及表征[D].长春:吉林大学,2009.
    9Whittingham M S. Lithium batteries and cathode materials [J]. Chem. Rev.,2004,104:4271-4301.
    10Wakihara M. Recent development in lithium batteries [J]. Mater. Sci. Eng.R,2001,33:109-134.
    11Mizushima K, Jones P C, Wiseman P J. LixCoO2(0≤x≤1): A new cathodematerial for batteries of high energy density [J]. Mat. Res. Bull.,1980,15:783-789.
    12张世超.锂离子电池关键材料的现状与发展[J].新材料产业,2004,2:32-40.
    13Jones C D, Rossen E, Dahn J R. Structure and electrochemistry ofLixCryCo1-yO2[J]. Solid State Ionics,1994,68:65-69.
    14Zhai X J, Zhou Y G, Fu Y, Lithium ion battery cathode material LiCoO2synthesized by microwave method [J]. J. Rare Earths,2005,23:85-88.
    15刘景,温兆银,吴梅梅.锂离子电池正极材料的研究进展[J].无机材料学报,2002,17:1-9.
    16Garcia S C, Rodriguez M A, Couceiro A C. Influence of the synthesis anddoping on the morphologic, structural and electrochemical properties ofLiCo1-xMxO2(M=Ni, Al, Mg) oxides [J]. Bolttin de la Sociedad Espanola deCeramica y Vidrio,2004,43:780-786.
    17Kosova N, Devyatkina E, Slobodyuk A. Surface chemistry stud of LiCoO2coated with alumina [J]. Solid State Ionics,2008,179:1745-179.
    18Ritchie A G, Giwa C O, Lee J C, Bowles P, Gilmour A, Allan J, Rice D A,Brady F. Future cathode materials for lithium batteries [J]. J. Power Sources,1999,80:98-102.
    19ChenY,Wang G X,Konstantinov K. Synthesis and characterization ofLiNixMnyCo1-x-yO2as a cathode material for lithium-ion batteries [J].J. PowerSources,2003,119:184-188.
    20Wang Z X,Sun Y,Chen L. Electrochemical characterization of positiveelectrode material LiNi1/3Mn1/3Co1/3O2and compatibility with electrolyte forlithium-ion batteries [J] J. Electrochem.Soc.,2004,156: A914-A921.
    21Cho T H,Park S M,Yoshio M. Effcet of LiNi1/3Mn1/3Co1/3O2synthesiscondition on the structural and electrochemical properties of prepared bycarbonate co-precipitation method [J].J Power Sources,2005,142:306-312.
    22Ammundsen B, Paulsen J. Novel lithium ion cathode materials based onlayered manganese oxides [J]. Advanced Materials,2001,13:943-956.
    23Capitaine F,Gravereau P, Delmas C. A new variety of LiMnO2with alayered structure [J]. Solid State Ionics,1996,89:197-202.
    24Liu W, Farrington G C, Chaput F. Synthesis and electrochemical studies ofspinel phase LiMn2O4cathode materials prepared by the apechini process [J].J. Electrochem. Soc.,1996,143:879-884.
    25Xia Y, Yoshio M. An investigation of lithium ion insertion into spinelstructure Li-Mn-O compounds [J]. J. Electrochem. Soc.,1996143:825-833.
    26Thacheray M M. Spinel electrodes for lithium batteries [J]. J. Am. Ceram.Soc.,1999,82:3347-3354.
    27Gummow R J, Kock A, Thacheray M M. Improved capacity retention inrechargeable4V lithium/lithium-manganese oxide (spinel) cells [J]. SolidState Ionics,1994,69:59-67.
    28Xia Y, Zhou Y, Yoshio M. Capacity fading on cycling of4V Li/LiMn2O4cells [J]. J. Electrochem. Soc.,1997,144:2593-2600.
    29Jang D H, Shin Y J, Oh S M. Dissolution of spinel oxides and capacitylosses in4V Li/LixMn2O4cell [J]. J. Electrochem. Soc.,1996,143:2204-2211.
    30Arora P, White E R. Capacity fade mechanisms and side reactions inlithium-ion batteries [J]. J. Electrochem. Soc.,1998,145:3647-3667.
    31Tarascon J M, Coowar F, Amatuci G, Shokoohi F K, Guyomard D G. Thesystem materials and electrochemical aspects [J]. J. Power Sources,1995,54:103-108.
    32Lourdes H, Julian M, Luis S. Use of Li-M-Mn-O (M=Co, Cr, Ti) spinelsprepared by a sol-gel method as cathodes in high-voltage lithium batteries [J].Solid State Ionics,1999,118:179-185.
    33Sun Y K, Park G S, Lee Y S. Structural changes (degradation) of oxysulfideLiAl0.24Mn1.76O3.98S0.02spinel on high-temperature cycling [J]. J. Electrochem.Soc.,2001,148: A994-A998.
    34Shigemura H, Sakebe H, Kageyama H. Structure and electrochemicalproperties of LiFexMn2-xO4(0≤x≤0.5) spinel as5V electrode material forlithium batteries [J]. J. Electrochem. Soc.,2001,148: A730-A736.
    35Padhi A K, Najundaswamy K S, Goodenough J B. Phospho-olivines aspositive-electrode materials for rechargeable lithium batteries [J]. J.Electrochem. Soc.,1997,144:1188-1194.
    36Delmas C, Maccario M, Croguennec L, Cras F L, Weill F. Lithiumdeintercalation in LiFePO4nanoparticles via a domino-cascade model [J].Nature Mater.,2008,7:665-671.
    37Yamada A, Koizumi H, Nishimura S I, Sonoyama N, Kanno R, Yonemura M,Nakamura T, Kobayashi Y. Room-temperature miscibility gap in LixFePO4[J].Nature Mater.,2006,5:357-360.
    38Yamada A, Chung S C, Hinokuma K. Optimized LiFePO4for lithiumbattery cathodes [J]. J. Electrochem. Soc.,2001,148: A224-A229.
    39Andersson A S, Thomas J O. The source of first-cycle capacity loss inLiFePO4[J]. J. Power Sources,2001,97:498-502.
    40Ravet N. Improved iron based cathode material [C]. Honolulu:Electrochemical Society Fall Meeting,1999.
    41Ojczyk W, Marzec J, Swierczek K, Zajac W, Molenda M, Dziembaj R,Molenda J. Studies of selected synthesis procedures of the conductingLiFePO4-based composite cathode materials for Li-ion batteries [J]. J. PowerSources,2007,173:700-706.
    42Dominko R, Bele M, Goupil J M, Gaberscek M, Hazel D, Arcon I, Jamnik J.Wired porous cathode materials: A novel concept for synthesis of LiFePO4[J].Chem. Mater.,2007,19:2960-2969.
    43Tajimi S, Ikeda Y, Kazuyoshi U, Toda K, Sato M. Enhancedelectrochemical performance of LiFePO4prepared by hydrothermal reaction[J]. Solid Stated Ionics,2004,175:287-290.
    44Yan X D, Yang G L, Liu J, Xie H M, Pan X M, Wang R S. An effective andsimple way to synthesize LiFePO4/C composite [J]. Electrochem. Acta,2009,54:5770-5774.
    45Liu J, Wang J W, Yan X D, Zhang X F, Yang G L, Jalbout A F, Wang R S.Long-term cyclability of LiFePO4/carbon composite cathode material forlithium-ion battery applications [J]. Electrochem. Acta,2009,54:5656-5669.
    46Wang K, Cai R, Yuan T, Yu X, Ran R, Shao Z P. Process investigation,electrochemical characterization and optimization of LiFePO4/C compositefrom mechanical activation using sucrose as carbon source [J]. Electrochem.Acta,2009,54:2861-2868.
    47Shi S Q, Liu L J, Ouyang C Y. Enhancement of electronic conductivity ofLiFePO4by Cr doping and its identification by first-principles calculations[J].Phys. Rev. B,2003,68:195108-195112.
    48Shenouda A Y, Liu H K. Studies on electrochemical behaviour ofzinc-doped LiFePO4for lithium battery positive electrode [J]. J. AlloysCompd.,2009,477:498-503.
    49Wu S H, Chen M S, Chien C J. Preparation and characterization of Ti4+doped LiFePO4cathode materials for lithium-ion batteries [J]. J. PowerSources,2009,189:440-444.
    50Lu Z H, MacNeil D D, Dahn J R. Layered Cathode MaterialsLi[NixLi(1/3-2x/3)Mn(2/3-x/3)]O2for Lithium-Ion Batteries[J]. Electrochem.Solid-State Lett.,2001,4: A191-A194.
    51Yu L, Yang H, Ai X, Cao Y J. Synthesis and characterizations ofLi[CrxLi(1x)/3Mn2(1x)/3]O2(0.15≤x≤0.3) cathode materials in rechargeablelithium batteries[J].Phys. Chem. B,2005,109:1148-1154.
    52Johnson C S, Li N, Lefief C, Vaughey J T, Thackeray M M. Synthesis,characterization and electrochemistry of lithium battery electrodes:xLi2MnO3·(1-x)LiMn0.333Ni0.333Co0.333O2(0    53Lei C H, Bareno J, Wen J G, Petrov I, Kang S H, Abraham D P. Localstructure and composition studies of Li1.2Ni0.2Mn0.6O2by analytical electronmicroscopy[J].J. Power Sources,2008,178:422-433.
    54Tran N, Croguennec L, Labruge`re C, Jordy C, Biensan P, Delmasa C.Layered Li1+x[Ni0.425Mn0.425Co0.15]1xO2positive electrode materials forlithium-ion batteries [J]. J. Electrochem. Soc.,2006,153: A261-A269.
    55Park S H, Kang S H, Belharouak I, Sun Y K, Amine K. Physical andelectrochemical properties of spherical Li1+x(Ni1/3Co1/3Mn1/3)1xO2cathodematerials[J].J.Power Sources,2008,177:177-183.
    56Shin S S, Sun Y K, Amine K. Synthesis and electrochemical properties ofLi[Li(1-2x)/3NixMn(2-x)/3]O2as cathode materials for lithium secondary batteries[J].J. Power Sources,2002,112:634-638.
    57Tabuchi M, Nabeshima Y, Takeuchi T, Tatsumi K, Imaizumi J, Nitt Y. Fecontent effects on electrochemical properties of Fe-substituted Li2MnO3positive electrode material[J].Journal of Power Sources,2010,195:834-844.
    58Thackeray M M, Kang S H, Johnson C S, Vaughey J T, Benedek R,Hackney S A. Li2MnO3-stabilized LiMO2(M=Mn, Ni, Co) electrodes forlithium-ion batteries [J].J. Mater. Chem.,2007,17:3112-3125.
    59Armstrong A R, Holzapfel M, Novak P, Johnson C S, Kang S H, ThackerayM M, Bruce P G. Demonstrating oxygen loss and associated structuralreorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2[J].J.Am.Chem.Soc.,2006,128:8694-8698.
    60Lu Z H, Dahn J R. Understanding the anomalous capacity ofLi/Li[NixLi(1/3-2x/3)Mn(2/3-2x/3)]O2cells using in situ X-Ray diffraction andelectrochemical studies [J].J. Electrochem. Soc.,2002,149: A815-A822.
    61Arunkumar T A, Wu Y, Manthiram A. Factors influencing theirreversible oxygen loss and reversible capacity in layeredLi[Li1/3Mn2/3]O2-Li[M]O2(M=Mn0.5-yNi0.5-yCo2yand Ni1-yCoy) solidsolutions[J].Solid State Ionics,2009,180:50-56.
    62Lu Z H, Chen Z H, Dahn J R. Lack of cation clustering inLi[NixLi1/3-2x/3Mn2/3-x/3]O2(0    63Weill F, Tran N, Croguennec L, Delmas C. Cation ordering in the layeredLi1+x(Ni0.425Mn0.425Co0.15)1xO2materials (x=0and0.12)[J].J. Power Sources2007,172:893-900.
    64肖政伟.以不同原材料制备锂离子电池复合正极材料Li3V2(PO4)3的研究[D].长沙,2008.
    65Fu P, Zhao Y M, An X N, Dong Y Z, Hou X M. Structure andelectrochemical properties of nanocarbon coated Li3V2(PO4)3prepared bysol-gel method [J]. Electrochem. Acta,2007,52:5281-5285.
    66Yang J, Xu J J. Nonaqueous sol-gel synthesis of high-performance LiFePO4[J]. Electrochem. Solid-State Lett.,2004,7: A515-A518.
    67Tang A P, Wang X Y, Liu Z M. Electrochemical behavior of Li3V2(PO4)3/Ccomposite cathode material for lithium-ion batteries [J]. Mater. Lett.,2008,62:1646-1648.
    68Hsu K F, Tsay S Y, Hwang B J. Synthesis and characterization of nano-sizeLiFePO4cathode materials prepared by a citric acid-based sol-gel route [J]. J.Mater. Chem.,2004,14:2690-2695.
    69Mangani I R, Park C W, Yoon Y K, Beom J H.Kim J. Synthesis andcharacterization of Li[Li0.27Cr0.15Al0.05Mn0.53]O2cathode for lithium-ionbatteries [J]. J. Electrochem. Soc.,2007,154: A359-A363.
    70Park Y J, Hong Y S, Wu X, Kim M G, Ryu K S, Chang S H. Synthesis andelectrochemical characteristics of Li[CoxLi(1/3x/3)Mn(2/32x/3)]O2compounds[J]. J. Electrochem. Soc.,2004,151: A720-A727.
    71李畅,高电导率新型锂二次电池正极材料LiAlyCo(1-y)MgxO2的制备与表征[D].长春:吉林大学,2003.
    72Jiang M, Key B, Meng Y S, Grey C P. Electrochemical and structural studyof the layered,“Li-Excess” lithium-ion battery electrode materialLi[Li1/9Ni1/3Mn5/9]O2[J]. Chem. Mater.,2009,21:2733-2745.
    73Wu Y, A.Manthiram. Effect of surface modifications on the layered solidsolution cathodes (l-z)Li[Li1/3Mn2/3]O2-(z)Li[Mn0.5-yNi0.5-yCo2y]O2[J].SolidState Ion2009,180:50-56.
    74Park S H, Sun Y-K. Synthesis and electrochemical properties of layeredLi[Li0.15Ni(0.275x/2)AlxMn(0.575x/2)]O2materials prepared by sol-gel method [J].J. Power Sources,2003,119-121:161-165.
    75Gao J, Kim J, Manthiram A. High capacity Li[Li0.2Mn0.54Ni0.13Co0.13]O2-V2O5composite cathodes with low irreversible capacity loss for lithium ionbatteries [J].Electrochem. Commun.,2009,11:84-86.
    76Gao J, Manthiram A. Eliminating the irreversible capacity loss of highcapacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2cathode by blending with otherlithium insertion hosts [J]. J. Power Sources,2009,191:644-647.
    77Johnson C S, Li N C, Lefief C, Thackeray M M. Anomalous capacity andcycling stability of Li2MnO3-LiMO2electrodes (M=Mn, Ni, Co)in lithiumbatteries at50oC [J].Electrochem. Commun.,2007,9:787-795.
    1Koksbang R, Barke J, Shi H. Cathode materials for lithium rocking chairbatteries [J]. Solid State Ionics,1996,84:1-21.
    2Reimers J N, Dahn J R. Electrochemical and in situ X-ray diffraction studiesof lithium intercalation in LixCoO2[J]. J. Electrochem. Soc.,1992,139:2091-2097.
    3Johnson C S, Li N, Lefief C, Vaughey J T, Thackeray M M. Synthesis,characterization and electrochemistry of lithium battery electrodes:xLi2MnO3·(1-x)LiMn0.333Ni0.333Co0.333O2(0    4Lei C H, Bareno J, Wen J G, Petrov I, Kang S H, Abraham D P. Localstructure and composition studies of Li1.2Ni0.2Mn0.6O2by analytical electronmicroscopy [J]. J. Power Sources,2008,178:422-433.
    5Tran N, Croguennec L, Labruge`re C, Jordy C, Biensan P, Delmasa C.Layered Li1+x[Ni0.425Mn0.425Co0.15]1xO2positive electrode materials forlithium-ion batteries[J].J. Electrochem. Soc.,2006,153: A261-A269.
    6Park S H, Kang S H, Belharouak I, Sun Y K, Amine K. Physical andelectrochemical properties of spherical Li1+x(Ni1/3Co1/3Mn1/3)1xO2cathodematerials[J].J.Power Sources,2008,177:177-183.
    7Tabuchi M, Nabeshima Y, Takeuchi T, Tatsumi K, Imaizumi J, Nitt Y. Fecontent effects on electrochemical properties of Fe-substituted Li2MnO3positive electrode material[J].J.Power Sources,2010,195:834-844.
    8Gao Y, Yakovleva M V, Ebner W B. Novel LiNi1-xTix/2Mgx/2O2compoundsas cathode materials for safer lithium-ion batteries [J]. Electrochem.SolidState Lett.,1998,1:117-119.
    9Cho J,Kim G,Lim H S. Effect of preparation methods of LiNi1-xCoxO2cathode materials on their chemical strueture and electrode performance [J]. J.Electrochem. Soc.,1999,146:3571-3576.
    10Panlsen J M,Kieu L,Ammundsen B G,et al. Lithiated oxide materials andmethods of manufacture [P].2002, EP:1189296A2.
    11Gao Y, Yakovleva M V, Wang H H, et al.Method of producing layeredLithium meta1oxides free of loealized cubic spinal-like struetural phases[P].2003, US:6620400.
    12Jouanneau S,Ebennan K W,Dalln J R. Synthesis,characterization,andelectroehemieal behavior of improved Li[NixCo1-2xMnx]O2(0.1    13Ibidapo T A. Polymeric structure in some molten groups IIA and IIB metaldicarboxylates [J]. Macromolecules,1989,22:1480-1484.
    14Huang W W, Frech R. Vibrational spectroscopic and electrochemicalstudies of the low and high-temperature phases of LiCo(1-x)MxO2(M=Ni or Ti)[J]. Solid State Ionics,1996,86:395-400.
    15赵藻藩,周性尧,张悟铭,赵文宽,仪器分析[M].北京:高等教育出版社,1990.
    16Julien C M, Massot M. Lattice vibrations of materials for lithiumrechargeable batteries III. Lithium manganese oxides [J]. Mater. Sci. Eng. B,2003,100:69-/78.
    17吴刚,材料结构表征及应用[M].北京:化学工业出版社,2002.
    18Dahéron L, Dedryvère R, Martinez H, Ménétrier M, Denage C, Delmas C,Gonbeau D. Electron transfer nechanisms upon lithium deintercalation fromLiCoO2to CoO2investigated by XPS [J]. Chem.Mater.,2008,20:583-590.
    19Molenda J, Marzec J, wierczek K.S′, Ojczyk W, Ziemnicki M, Molenda M,
    1Levi M D, and Aurbach D. The mechanism of lithium intercalation ingraphite film electrodes in aprotic media. part1. High resolution slow scanrate cyclic voltammetric studies and modeling [J]. J. Electroanal. Chem.,1997,421:79-88.
    2张丽娟,某些锑_铋基金属间化合物的嵌锂特性研究[D].浙江:浙江大学材料系,2001.
    3McGraw J M, Bahn C S, Parilla P A, Perkins J D, Readey D W, Ginley D S.Li ion diffusion measurements in V2O5and Li(Co1-xAlx)O2thin-film batterycathodes [J]. Electrochem. Acta,1999,45:187-196.
    4陈权启,磷酸钒锂和磷酸铁锂锂离子电池正极材料研究[D].浙江:浙江大学化学系,2008.
    5詹世英,掺杂V2O5正极材料的合成及电化学性质表征[D].吉林:吉林大学材料系,2010.
    6Rui X H, Ding N, Liu J, Li C, Chen C H. Analysis of the chemical diffusioncoefficient of lithium ions in Li3V2(PO4)3cathode material [J]. Electrochem.Acta,2010,55:2384-2390.
    7Xie J, Kohno K, Matsumura T, Imanishi N, Hirano A, Takeda Y, YamamotoO. Li-ion diffusion kinetics in LiMn2O4thin films prepared by pulsed laserdeposition [J]. Electrochem. Acta,2008,54:376-381.
    8Shaju K. EIS and GITT studies on oxide cathodes O2-Li2/3+x(Co0.15Mn0.85)O2(x=0and1/3)[J]. Electrochem. Acta,2003,48:2691-2703.
    9Xie J, Imanishi N, Zhang T, Hirano A, Takeda Y, Yamamoto O. Li-iontransport in all-solid-state lithium batteries with LiCoO2using NASICON-type glass ceramic electrolytes [J]. J. Power Sources,2009,189:365-370.
    10Li Z, Du F, Bie X, Zhang D, Cai Y, Cui X, Wang C, Chen G, Wei Y.Electrochemical kinetics of the Li[Li0.23Co0.3Mn0.47]O2cathode materialstudied by GITT and EIS [J]. J. Phy. Chem. C,2010,114:22751-22757.
    11Levi M. Phase transitions and diffusion kinetics during Mg2+-and Li+-ioninsertions into the Mo6S8chevrel phase compound studied by PITT [J].Electrochimica Acta,2004,49:3201-3209.
    12Levi M, Markevich E, Aurbach D. Comparison between cottrell diffusionand moving boundary models for determination of the chemical diffusioncoefficients in ion-insertion electrodes [J]. Electrochem. Acta,2005,51:98-110.
    13Montella C. Apparent diffusion coefficient of intercalated species measuredwith PITT a simple formulation [J]. Electrochem. Acta,2006,51:3102-3111.
    14Levi M D, Wang C, Aurbach D. Two parallel diffusion paths model forinterpretation of PITT and EIS responses from non-uniform intercalationelectrodes [J]. J. Electroanal. Chem.,2004,561:1-11.
    15Johnson C S, Li N C, Lefief C, Thackeray M M. Anomalous capacity andcycling stability of Li2MnO3-LiMO2electrodes (M=Mn, Ni, Co)in lithiumbatteries at50oC [J].Electrochem. Commun.2007,9:787-795.
    16Park M, Zhang X, Chung M, Less G B, Sastry A M. A review of conductionphenomena in Li-ion batteries [J]. J. Power Sources,2010,195:7904-7929.
    17Shaju K M, Rao G V S, Chowdari B V R. Li-ion kinetics and polarizationeffect on the electrochemical performance of Li(Ni1/2Mn1/2)O2[J].Electrochem. Acta,2004,49:1565-1576.
    18Wei Y J, Nikolowski K, Zhan S Y, Ehrenberg H, Oswald S, Chen G, Wang CZ, Chen H. Electrochemical kinetics and cycling performance of nanoLi[Li0.23Co0.3Mn0.47]O2cathode material for lithium ion batteries [J].Electrochem. Commun.,2009,11:2008-2011.
    19Montoro L. The role of structural and electronic alterations on the lithiumdiffusion in LixCo0.5Ni0.5O2[J]. Electrochem. Acta,2004,49:3243-3249.
    20Weppner W, Huggins R A. Electrochemical methods for determining kineticproperties of solids [J]. Ann. Rev. Materi. Sci.,1978,8:269-311.
    21Koyama Y, Tanaka I, Nagao M, Kanno R. First-principles study on lithiumremoval from Li2MnO3[J]. J. Power Sources,2009,189:798-801.
    22查全性,电极过程动力学导论[M].北京:科学出版社,1976.
    23曹楚南,张鉴清,电化学阻抗谱导论[M].北京:科学出版社,2002.
    24田昭武,电化学研究方法[M].北京:科学出版社,1984.
    25Song J Y, Lee H H, Wang Y Y, Wan C C. Two-and three-electrodeimpedance spectroscopy of lithium-ion batteries [J]. J. Power Sources,2002,111:255-267.
    26Liu J, Manthiram A. Functional surface modifications of a high capacitylayered Li[Li0.2Mn0.54Ni0.13Co0.13]O2cathode [J]. J.Mater. Chem.,2010,20:3961-3967.
    27Zheng J M, Zhang Z R, Wu X B, Dong Z X, Zhu Z, Yang Y. The effects ofAlF3coating on the performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2positiveelectrode material for lithium-ion battery [J]. J. Electrochem. Soc.,2008,155:A775-A782.
    28Levi M, Gamolsky K, Aurbach D, Heider U, Oesten R. On electrochemicalimpedance measurements of LixCo0.2Ni0.8O2and LixNiO2intercalationelectrodes [J]. Electrochem. Acta,2000,45:1781-1789.
    29Nobili F, Croce F, Scrosati B, Marassi R. Electronic and electrochemicalproperties of LixNi1-yCoyO2cathodes studied by impedance spectroscopy [J].Chem.Mater.,2001,13:1642-1646.
    30Zhang D, Popov B N, White R E. Electrochemical investigation of CrO2.65doped LiMn2O4as a cathode material for lithium-ion batteries [J]. J. PowerSources,1998,76:81-90.
    1Johnson C S, Li N C, Lefief C, Thackeray M M. Anomalous capacity andcycling stability of Li2MnO3-LiMO2electrodes (M=Mn, Ni, Co)in lithiumbatteries at50OC [J].Electrochem. Commun.,2007,9:787-795.
    2Xu K. Nonaqueous Liquid Electrolytes for Lithium-Based RechargeableBatteries [J]. Chem. Rev.,2004,104:4303-4417.
    3Park Y J, Hong Y S, Wu X, Kim M G, Ryu K S, Chang S H. Synthesis andelectrochemical characteristics of Li[CoxLi(1/3x/3)Mn(2/32x/3)]O2compounds[J]. J. Electrochem. Soc.,2004,151: A720-A782.
    4Jang D H, Shin Y J, Oh S M. Dissolution of spinel oxides and capacitylosses in4V Li/LixMn2O4cell [J]. J. Electrochem. Soc.,1996,143:2204-2211.
    5Arora P, White E R. Capacity fade mechanisms and side reactions inlithium-ion batteries [J]. J. Electrochem. Soc.,1998,145:3647-3667.
    6Wang L, Huang Y, Jia D. LiPF6-EC-MPC electrolyte for LiMn2O4cathode inlithium-ion battery [J]. Solid State Ionics,2006,177:1477-1481.
    7Rui X H, Jin Y, Feng X Y, Zhang L C, Chen C H. A comparative study on thelow-temperature performance of LiFePO4/C and Li3V2(PO4)3/C cathodes forlithium-ion batteries [J]. J. Power Sources,2011,196:2109-2114.
    8Molenda J, Marzec J, wierczek K S′, Ojczyk W, Ziemnicki M, Molenda M,Drozdek M, Dziembaj R. The effect of3d substitutions in the manganesesublattice on the charge transport mechanism and electrochemical propertiesof manganese spinel [J].Solid State Ionics,2004,171:215.
    9Jang D H, Shin Y J, Oh S M. Dissolution of spinel oxides and capacitylosses in4V Li/LixMn2O4cell [J]. J. Electrochem. Soc.,1996,143:2204-2211.
    10Arora P, White E R. Capacity fade mechanisms and side reactions inlithium-ion batteries [J]. J. Electrochem. Soc.,1998,145:3647-3667.
    11Xia Y, Yoshio M. An investigation of lithium ion insertion into spinelstructure Li-Mn-O compounds [J]. J. Electrochem. Soc.,1996143:825-833.
    12Thacheray M M. Spinel electrodes for lithium batteries [J]. J. Am. Ceram.Soc.,1999,82:3347-3354.
    13Xia Y, Zhou Y, Yoshio M. Capacity fading on cycling of4V Li/LiMn2O4cells [J]. J. Electrochem. Soc.,1997,144:2593-2600.13滕岛昭,相泽益男,井上辙,电化学测试方法[M].陈震,姚建年译,北京:北京大学出版社,1995.
    15Liu H, Cao Q, Fu L J, Li C, Wu Y P, Wu H Q. Doping effects of zinc onLiFePO4cathode material for lithium ion batteries [J]. Electrochem. Commun.,2006,8:1553-1557.
    16Jin B, Jin E M, Park K H, Gu H B. Electrochemical properties ofLiFePO4-multiwalled carbon nanotubes composite cathode materials forlithium polymer battery [J]. Electrochem. Commun.,2008,10:1537-1540.
    1Park Y J, Hong Y S, Wu X, Kim M G, Ryu K S, Chang S H. Synthesis andelectrochemical characteristics of Li[CoxLi(1/3x/3)Mn(2/32x/3)]O2compounds[J]. J. Electrochem. Soc.,2004,151: A720-A782.
    2Xia Y, Yoshio M. An investigation of lithium ion insertion into spinelstructure Li-Mn-O compounds [J]. J. Electrochem. Soc.,1996143:825-833.
    3Thacheray M M. Spinel electrodes for lithium batteries [J]. J. Am. Ceram.Soc.,1999,82:3347-3354.
    4Xia Y, Zhou Y, Yoshio M. Capacity fading on cycling of4V Li/LiMn2O4cells [J]. J. Electrochem. Soc.,1997,144:2593-2600.
    5Jang D H, Shin Y J, Oh S M. Dissolution of spinel oxides and capacitylosses in4V Li/LixMn2O4cell [J]. J. Electrochem. Soc.,1996,143:2204-2211.
    6Arora P, White E R. Capacity fade mechanisms and side reactions inlithium-ion batteries [J]. J. Electrochem. Soc.,1998,145:3647-3667.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700