多组载荷作用下含缺陷容器的下限安定分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大多数结构物都承受着多组随时间变化的载荷作用,正确评估它们的下限安定承载能力对于保证结构安全运行具有重要的意义。由于数值计算上的困难,前人只求得了一些平面问题和轴对称壳等简单情况的解,对工程实际中常见的含体积型缺陷压力容器的安定承载能力缺乏定量的计算。本文从下限安定定理出发,建立了考虑多组载荷作用的轴对称与三维结构的安定分析有限元计算格式,可以考虑材料屈服限随温度的升高而弱化的影响。并采用一系列方法克服了优化变量多、约束数目大所造成的数值困难,具体研究了二维、三维体积型缺陷对结构承载能力的影响。
     本文采用温度参数法构造了安定分析所需的残余应力场,消去自平衡的约束条件。对多维应力空间中的非线性屈服条件采用线性化方案,将安定分析转化为线性规划问题,并讨论了具体应力状态下对线性化屈服面的选择办法,分析了计算误差的主要来源以及改进精度的措施。对于三维问题,利用调和函数应满足的唯一性定理,把结构内部的虚拟结点温度用边界结点温度来表示,大大降低了优化变量的数目,使工程中较大规模结构的安定分析得以实施。
     具体研究了在内压作用下,内、外凹坑和气孔等缺陷对球壳安定、极限承载能力的影响,以及外凹坑对圆柱壳塑性承载能力的影响。所得部分结果与实验对比符合良好,验证了方法的可靠性。并与现行规范进行了比较,提出了相应的建议。从理论上得到了在单组载荷作用下结构安定载荷的规律性,探讨了安定分析工程评定方法的适用范围。进一步对含缺陷轴对称结构在恒定压力、脉动压力、脉动温度的共同作用进行了安定分析,得到了三维载荷空间的安定域。
     本文系统研究了各种体积型缺陷对容器承载能力的影响,给出了一系列的计算图表、曲线,为完善压力容器的评定标准提供了较详细的数值结果和结论,对安定分析的理论应用于工程实际作出了有益的贡献。
Pressure vessels widely used in many fields of industry are usually subjected to multitypes of variable loads. It is very important to assess their shakedown carrying capacities for safety in operation. Because of large difficulties in numerical algorithm, shakedown analysis only for some simple problems has been solved up to now, which is still far away from engineering application. Especially, the investigations in the effects of 3-dimensional defects such as pits or gas holes on the limit carrying capacities of the pressure vessels are usually simplified to plane problems but not quantitative analysis. Due to the lower-bound shakedown analysis has important meaning for guarantee for the safety of structures, therefore in this thesis, plastic shakedown analysis in a finite element computational form is presented for axi-symmetric and 3-dimensional structures based on lower-bound shakedown theorem, and the effects of various kinds of 3-dimensional defects on the carrying capacities of spherical and cylindrical shells are investigated. The effects of multitypes of variable loads acting on the structures can be considered. The reduction of yield limit with the rising of material temperature is taken into account as well.In this thesis following steps are adopted to overcome the numerical difficulties. The pseudo-temperature field is put into a structure and the resulting thermo-elastic stress is considered as a residual-stress field. The nonlinear yield condition is piece wise linearized, so that shakedown analysis is transformed into a linear programming problem whose strategic variable is pseudo-temperature and object variable is loading multiplier.In axi-symmetric problems, two kinds of piece wise linearized schemes to the yield condition are presented, and the selection of the schemes based on the particular stress state is investigated, then the sources of computational errors are analyzed. In 3-dimensional problems, the pseudo temperature field is assumed as a harmonic function satisfying the uniqueness theorem. So the nodal temperature vector of the whole structure
    can be expressed by the boundary nodal temperature. Therefore, the quantity of strategic variables can be significantly decreased. Then the quantity of constraints is decreased by removing the unnecessary constraints of linearized yield conditions for the particular stress state. Therefore, the optimization on a very large scale can be solved by using 486 PC and the shakedown analysis is applicable to the engineering structures.By the above computational form, the effects of internal, external pits and gas holes on carrying capacities of spherical shells, and the effects of external pits on carrying capacities of cylindrical shells under internal pressure are investigated. The computational schemes and programs are proved to be reliable by comparison between the computational results and the experimental ones. Then several suggestions on carrying capacities of pressure vessels are presented after comparing the numerical results with current codes and standards. The shakedown behaviors of structures under single loading case are obtained based on the shakedown theorems. Further, the shakedown domains in 3-dimensional loading space are obtained through investigating the axi-symmetric structures subjected to the combination of three kinds of loads, constant and pulsative internal pressure, and pulsative temperature fields.In a word, a series of computational graphs, tables and curves presenting the relationship between defects and the carrying capacities of structures are given in the thesis, which can make an important improvement on the safety assessment methods of pressure vessels.
引文
[1] 陈钢,含凹坑压力容器极限与安定性数值分析,清华大学博士论文,1994年。
    [2] 国家标准《钢熔化焊对接接头射线照相和质量分级》(GB3323-87),1988年,劳动部锅炉压力容器安全杂志社,北京。
    [3] 陈钢,谢铁军,陈学东,《凹坑缺陷对压力容器强度的影响》专题报告,劳动部锅炉压力容器安全检测研究中心,1992,3,15。(内部资料)
    [4] 劳动部锅炉压力容器安全监察局,《在役压力容器检验和缺陷处理若干问题的参考意见》.1987,4,劳动部锅炉压力容器安全杂志社,北京
    [5] 劳动部锅炉压力容器安全监察局,《在用压力容器检验规程》,1990,中国劳动出版社,北京。
    [6] 陈钢,谢铁军,陈学东,《气孔、夹渣缺陷对压力容器静强度的影响》专题报告,劳动部锅炉压力容器安全检测研究中心,1992,3,15。(内部资料)
    [7] L.M.卡恰诺夫著,周承稠译,《塑性力学基础》第二版,1987年,高等教育出版社。
    [8] 徐秉业,‘安定性理论',中国大百科全书-力学卷,1985,8,中国大百科全书出版社,北京,p3。
    [9] Konig, Jan, A., Shakedown of Elastic-Plastic Structures, 1987, PWN, Warsaw, Poland.
    [10] Martin, J. B., Plasticity: Foudation and General Results, 1975, MIT Press, Cambridge, Mass.
    [11] Eubanks, R. A., Stress Concentration Due to a Semi-spherical Pit at a Free Surface, J. Appl. Mech. 1954, v21, n1, pp57-62.
    [12] Nisida, M. and Kim, P., Stress Concentration Caused by the Pressure of a Spherical Cavity or a Spherical-surfaced Hollow, Proc. 12th J. Nat. Cong. App. Mech. 1962, pp69-74.
    [13] Fujita, T., Sadayasu, et al, Stress Concentration Due to a Hemi-Spherical Pit at a Free Surface of a Thick Plate Under All-Round Tension. Trans. Jap. Soc. Mech. Eng. 1977, v43, pp2845-2857.
    [14] Fujita, Tsuchida, et al, Stress Concentration Due to a Hemi-Spherical Pit at a Free Surface of a Thick Plate Under Uniaxial Tension, Trans. Jap. Soc, Mech. Eng. 1981, v47, pp1175-1189.
    [15] Fujita. Tsuchida, E., On the Stress Concentration Around a Hemi-Prolate Spherical Pit in a Semi-Infinite Body, Trans. Jap. Soc. Eng., 1980, v46, pp525-542.
    [16] Noguchi, Nisitani, et al, Semi-Infinite Body with a Revolutional Pit Under Tension, JSME, Int. J. Series I, 1989, v32, n1. pp437-451.
    [17] W. Jiang, The Elastic-plastic Response of Thin-Walled Tubes Under Combined Axial and Torsional Loads: Part 1-Monotonic Loading, J Pressure Vessel Tech., 1993, vl5, n3, pp283-290.
    [18] W. Jiang, The Elastic-plastic Response of Thin-Walled Tubes Under Combined Axial and Torsional Loads: Part 2-Variable Loading, J Pressure Vessel Tech., 1993, v15, n3, pp291-296.
    [19] Fujita. T., Tsuchida. et al, Stress Concentration Due to a Hemi-Prolate Spherical Pit at a Free Surface of a Semi-Infinite Body Under All Round Tension, Trans. Jap. Soc, Mech. Eng. 1979, v45, pp1338-1352.
    [20] C. B. Ling, Stresses in a Circular Cylinder Having a Spherical Cavity Under Tension, Quart. of Appl. Math. 1952, v10, pp149-156.
    [21] C. B. Ling, Stress in a Stretched Slab Having a Spherical Cavity, J. Appl. Mech., 1959, v26. n2. pp235-240.
    [22] E. Sternberg, M. A. Sadousky, On the Axisymmetric Problem of the Theory of Elasticity for an Infinite Region Containing Two Spherical Cavities, J. Appl. Mech., 1952, v16, n1 pp19-29.
    [23] H. Miyamoto, On the Problem of Elasticity Theory for an Infinite Region Containing Three Spherical Cavities, Proc. 6th. Jap. Nat. Cong. Appl. Mech., 1956, pp27-30.
    [24] E. Tsuchida. et al, On the Asymmetric Problem of Elasticity Theory for an Infinite Elastic Solid Containing Some Spherical Cavities, Bulletin ofthe JSME, 1979, v22, n164, pp2376-2388.
    [25] Jie, N., and Xu, C., On the Properties of Plastic Flow of Materials under Nonproportional Cyclic Loading, Int. J. Solid and Structures, 1991, v28, n4, pp403-412.
    [26] Xia, Z., and Ellyin, F., Nonproportional Multiaxial Cyclic Loading: Experiments and Constitutive Modeling, ASME J Appl. Mech. 1991, v58, pp 317-325.
    [27] R. Kitching, C. S. Lim & M, Robinson, Experimental Limit and Burst Pressures for Spherical Shells with Defects Adjacent to Nozzles, Int. J. Pres. Ves. & Piping., 1991, v46, pp167-194.
    [28] Kitching, R. and Zarrabi, K., Lower Bound to Limit Pressure for Cylindrical Shell with Part-through Slot, Int. J. Mech. Sci., 1981, v23, pp31-48.
    [29] Kitching, R. and Zarrabi, K., Limit and Burst Pressures for Cylindrical Shells with Part-through Slots, Int. J. Press. Vess. Pipings., 1982, v10, pp235-270.
    [30] Ruiz, C., Ductile Growth of a Longitudinal flaw in a Cylindrical Shell under Internal Pressure, Int. J. Mech. Sci., 1978, v20, pp277-281.
    [31] A. G. Miller, Review of Limit Loads of Structures Containing Defects, Int. J. Pressure Vessels & Piping, 1988, v32, n1-4, pp197-327.
    [32] J. Bree, Elastic-plastic Behaviour of Thin Tubes Subjected to Internal Pressure and Intermittent High-heat Fluxes with Application to Fast-Nuclear-Reactor Fuel Elements, J. Strain Analy., 1967, v2, pp226-238.
    [33] Gohkfeld, P. A., and Cherniavsky, O. F., Limit Analysis of Structure at Thermal Cycling, Sijthoff and Noordhoff Press, 1980.
    [34] 钱令希,王志必,板壳极限分析和安定分析-温度参数法,力学学报增刊,1989,v21,pp118-124.
    [35] T. H. Hyde, B. B. Sahari and J. J. Wesber, The Effect of Axial Loading and Axial Restraint on the Thermal Ratchetting of Thin Tubes, Int. J. Mech. Sci., 1985, v27, pp679-692.
    [36] J. Gros-Weege, D. Weichert, Elastic-Plastic Shells under Variable Mechanical and Thermal Loads, Int. J. Mech. Sci., 1992, v34, n11, pp863-880.
    [37] Karadeniz, A. and Ponter A. R. S., A Linear Programming Upper Bound Approach to the Shakedown Limit of the Thin Shells Subjected to Variable Thermal Loading. J. Strain Analysis, 1984, v19, n4, pp221-230.
    [38] Ponter, A. R. S., General Bounding Theorerhs for the Quasi-static Deformations of a Body of Inelastic Materials with Application to Metallic Creep, J. Appl. Mech., 1974, v41, pp947-952.
    [39] Ponter, A. R. S. and Karadeniz, S., the Influence of Transient Thermal Loading on the Bree Plate, a Simplified Method of Analysis, Nucl. Engrg. Design. 1984, v80, pp359-374.
    [40] 雷雨田,王勖成,一个简单的描述循环塑性的本构模型。力学学报,1988,v20,n2,pp154-160.
    [41] Wang X. C., Lei Y. T., Some Suggestions for the Simulation of the Inelastic Behavior of Metallic Alloys Under Cyclic Loading, Int. Sere Inelastic Behavior Solids: Models & Utilization, 1988, France, pp 128-133.
    [42] Duthie, G., White, G. C., Tooth, A. S., An Analysis for Cylindrical Vessels under Local loading-Application to the saddle supported vessel problem, J Strain Analysis, 1982, v17. pp157-168.
    [43] Konig, Shakedown Analysis of Elastic-Plastic Structures: A Review of Resent Developments, Nuclear Engineering and Design, 1981, v66 n1 pp81-95.
    [44] Polizzotto, C., A Unified Treatment of Shakedown Theory and Related Boundary Technique, Solid Mech. Archives, 1982, v7, n1 pp19-75.
    [45] Konig, J. A., Maier, G., Adaptation of Rigid-Work-Hardening Discrete Structures Subjected to Loads and Temperature Cycles and Second order Geometric Effects, Computer Meth. Appl. Mech. Engrg., 1976, v28, pp37-50.
    [46] Neal, B. G., Plastic collapse and shakedown theorems of structures of strainhardening materials, J. Aero. Sci., 1950, v17, pp297-306.
    [47] Konig, J. A., On Shakedown of Strain-Hardening of Structures, ZANM, 1983, v63, pp177-178.
    [48] Polizzotto, C., Workhardening Adaptation of Rigid-Plastic Structures, Meccanica, 1975, vl0, pp280-288.
    [49] 冯西桥,刘信声,不同应变强化模型下结构安定性研究,力学学报,1994,v26,n6,pp719-727.
    [50] 杜森田,徐秉业,董云峰,弹塑性强化结构在考虑二阶几何效应下的动力安定理论,固体力学学报,1993,v14,n2,pp107-114.
    [51] Maier, G., A Shakedown Matrix Theory Allowing for Workhardening and Secondorder Geometric Effects, Proc. Symp. Foundations of Plasticity, Warsaw, 1972, ed. A. Sawczuk, pp417-433.
    [52] H. Stumpt, Theoretical and Computational Aspects in the Shakedown Analysis of Finite Elastio-Plasticity, Int. J. of Plasticity, 1993, v9, n5, pp583-602.
    [53] Siemaszko, A., and Konig J. A., Analysis of Stability of Incremental Collapse of Shakedown Structures, J. Struct. Mech., 1985, v13, n3-4, pp301-321.
    [54] Weichert D., Shakedown at Finite Displacements: A Note On Melan's Theorem, Mech. Res. Comm., 1984, v11, n2, pp121-127.
    [55] Corradi, L., and Maier G., Inadaptation Theorems in Dynamics of Elastic- Workhardening Structures, Ing. -Archiv., 1973, v43, n1, pp44-57.
    [56] Ceradini, G., Dynamic Shakedown in Elastic-Plastic Bodies, J. Engrg. Mech. Div., Proc. ASCE. v106, EM3., 1980, pp481-499.
    [57] L. Corradi., and Maier. G., Dynamic Inadaptation for Elastic-Perfectly Plastic Continua, J. Mech. Phys. Solids, 1974, v22 pp401-413.
    [58] Polizzotto, C., Adaptation of Rigid-Plastic Continua Under Dynamic Loading, J. Struct. Mech., 1978, v6, n3, pp319-329.
    [59] 胡放宗,诸德培,周期载荷下强化结构的动态安定性分析,航空学报,1990,V11,n11,pp23-29,
    [60] 黄筑平,杜森田,动载荷作用下弹塑性随动强化结构的安定定理,力学学报,1985,v17,n1,pp445-452.
    [61] Corradi, L., Donato, O. D., Dynamic Shakedown Theory Allowing for Second order Geometric Effects, Meccanica, 1975, Jan, pp93-98.
    [62] Ho Hwa-Shaw, Shakedown in Elastic-Plastic System Under Dynamic Loading, J. Appl. Mech., 1972, v39, n2, pp416-421.
    [63] Polizzotto, C., Dynamic Shakedown of Elastic-Plastic Solids for a Set of Alternative Loading Histories, Int. J. Non-Linear Mechanics. 1984, v19, n4, pp363-371.
    [64] Ponter, A. R. S. and Leckie F. A., Bounding Solution for a Plate Subjected to Variable Surface Temperature, J. Appl. Mech., 1974, v42, pp941-946.
    [65] Cocks, A. C. F., and Ponter, A. R. S., Cyclic Thermal Loading in the Creep Range Ⅰ & Ⅱ, Int. J. Solids Struct. 1985, v21, n2, pp187-223.
    [66] DE. Buckthorpe, Shakedown- a Design Tool for High Temperature, Geo. J. of Research, 1993, v11, n1, pp24-38.
    [67] Kieiber, K. and Konig J. A., Incremental Shakedown Analysis in the Case of Thermal Effects, Int. J. Numer. Methods in Engrg., 1984, v20, pp1567-1573.
    [68] 杜森田,徐秉业,考虑外载和温度的运动安定定理,固体力学学报,1990,v11, n2,pp140—147.
    [69] 周青兰,关于安定定理的上限准则和简单的安定计算,清华大学硕士学位论文,1986。
    [70] Maier, G., A Matrix Structural Theory of Piecewise-Linear Plasticity with Interacting Yield Planes, Meccanica, 1970, v7, pp51-66.
    [71] Ponter, A. R. S., An Upper Bound On the Small Displacements of Elastic-Plastic Structures, Trans. ASME. Set. E, J. Appl. Mech., 1972, v39, pp959-963.
    [72] Dorosz, S., An Improved Upper Bounds to Maximum Deflection of Elastic-Plastic Structures at Shakedown, J. Struet. Mech., 1978, v6, n3, pp267-287.
    [73] Capurso, M., Displacement Bounding Principle in Shakedown of Structures Subjected to Cyclic Loads, Int, J. Solids Struct, 1974, v10, n1, pp77-92.
    [74] Capurso, M., Displacement Bounding Principle in the Dynamics of Elastic-Plastic Continua, J. Struct. Div., 1975, v101, pp259-270.
    [75] Feng, X. Q., Yu, S. W., Bounding Technique to Damage Factor in Shakedown of Structures Subjected to Variable Loads, AEPA'94, ed by Xu, B. Y., lAP, Beijing, 1994, pp 149-154.
    [76] A. Siemaszko, Inadaptation Analysis with Hardening and Damage, Eur. J. Mech. A/Solids, 1993, v12, n2, pp237-248.
    [77] A. Sawczuk, Shakedown Analysis of Elastic Plastic Structure, Nuclear Engineering and Design, 1974, v28, pp121-136.
    [78] 冯西桥,结构的安定理论及其应用,清华大学硕士学位论文,1991.
    [79] Maier, G., Munro, J., Mathematical Programming Application to Engineering Plastic Analysis, AMR., 1982, v35, n12, pp1631-1643.
    [80] Cyras, A. and Atkociunas, J., Mathematical Model of the Analysis of Elastic Plastic Structures Under Repeated Variable Loading, Mech. Res. Com., 1984, v11, n5, pp353-360.
    [81] Lekie, F. A., A Review of Bounding Techniques in Shakedown and Ratchetting at Elevated Temperature, WRC. Bull. 1982, v195, pp1-32.
    [82] 钱令希,钟万勰,论固体力学中的极限分析并建议一个一般变分原理,力学学报,1963,v6,n4,pp287-303.
    [83] 薛大为,建议一组关于极限分析的定理,科学通报,1975,v20,n4,pp175-181.
    [84] Mura, T., Lee, S. L., Application of Variational Principles of Limit Analysis, Quart. Appl. Math., 1963, V21, n3, pp243-248.
    [85] 钟万勰,极限分析中新的上下限定理,力学学报,1983,n4,pp341-351.
    [86] 钟万勰,极限分析中新的上下限定理及其算法,计算结构力学及其应用.1984,V1,pp21-27.
    [87] 钟万勰,关于极限分析中新的上下限定理中权因子的讨论,固体力学学报,1984,v1,n2,pp157-162.
    [88] Cassciano, R., Casini, L., A Mixed Formulation and Mixed Finite Element for Limit Analysis, Int. J. Num. Mech. Engrg., 1982, v18, pp211-243.
    [89] Temam, R. T., Mathematical Problems in Plasticity, in Computational Methods in Nonlinear Mechanics, North-Holland, Pub., 1980.
    [90] Zarka, J., Casier, J., Cyclic Loading on Elastic-Plastic Structures, Mechanics Today, S. Nemat Nasser Ed., 1979, Pergaman Press, Oxford, pp93-198.
    [91] Jiang, W., A Direct Method for the Shakedown Analysis of Structures Under Sustained and Cyclic Loads, J. Appl. Mech. 1992, v59, pp251-260.
    [92] YU-MMH, Moran B., Keer, L. M., A Direct Analysis of 3-D Elastic-plastic Rolling Contact, J. of Tribology, 1995, v117, n2, pp234-243.
    [93] Jiang, W., Simple Direct Method for Shakedown Analysis of Structure, J. of Engrg. Mech., 1995, v121, n2, pp309-321.
    [94] Belytschko, T., and Hodge, G., Plane Stress Limit Analysis by Finite Element, J. Engrg. Mech. Div., Proc. ASCE, 1970, v96, pp931-944.
    [95] Belytschko, T., Plane Stress Shakedown Analysis by Finite Element, Int. J. Mech. Sci., 1972, v14, pp619-625.
    [96] Alberto Peano, Limit Analysis via Stress Function, Limit Analysis Using Finite Elements, 1976, ASME Special Publication, pp67-86.
    [97] Lu, M. W., Chen, S. Z., Stress Function Method in Shakedown Analysis of Axisymmetric Shell, Acta Mechanica Solida Sinica, 1992, v5, n1, pp99-110.
    [98] Mackenzie, D., Shi, J., and Boyle, J. J., Finite Element Modelling for Limit Analysis by the Elastic Compensation Method, Computers & Structures, 1994, v51, n4, pp403-410.
    [99] Marriott, D. L., Evaluation of Deformation or Local Control of Stress Under Inelastic Conditions Using Elastic Finite-Element Stress Analysis, Proc. ASME. PVP Conf., 1988, v136, Pittsburgh, DA, pp137-142.
    [100] Seshadri, R., Residual Stress Estimation and Shakedown Evaluation Using GLOSS Analysis, J. Pressure Vessel Technology, 1994, v116, pp290-294.
    [101] Seshadri, R., The General Local Stress and Strain(GLOSS) Analysis-Theory and Applications, ASME J. Pressure Vessel Technology, 25th Anniversary Issue, 1991, v113, pp219-227.
    [102] Erwin Stein and Genbao Zhang, Shakedown with Nonlinear Strain-Hardening Including Structural Computation Using Finite Element Method, Int. J. of Plasticity, 1992, v8, pp1-31.
    [103] 张明焕,杨海元,结构安定分析方法研究,应用力学学报,1994,v11,n4,pp83-90.
    [104] 王志必,工程结构的安定性和极限分析,大连工学院博士论文,1987。
    [105] Xue, M. D., Wang X. F., Xu B. Y., Lower Bound Analysis of the Spherical Shells Containing Defects, AEPA'94, Ed by Xu B. Y., IAP, Beijing, 1994, pp549-554.
    [106] Wang X. F., Xue, M. D., Xu B. Y., Finite Element Analysis of Axisymmetric Structures Under Variable Mechanical and Thermal Loads, IMMM'95, vⅡ, Ed by Xu B. Y., IAP, Beijing, 1995, pp617-622.
    [107] Maier, G., A Shakedown Theory in Perfect-Elastioplasticity with Associated and Nonassociated Flow-Laws: a Finite Element, Linear Programming Approach, Meccanica, 1969, v4, n3, pp1-11.
    [108] Corradi, L., Zevelani, A., A Linear Programming Approach to Shakedown Analysis of Structures, Comput. Meth. Appl. Mech. & Engrg., 1974, v3, pp37-53.
    [109] Engineering Plasticity by Mathematical Programming, Ed by M. Z. Cohn, and Maier, G., Proc. NATO. Advanced Study Institute University of Waterloo, Aug, 1977.
    [110] Zevelani-Rossi, A., A New Linear Programming Approach to Limit Analysis, Proc. Int. Conf. On Variational Meth. in Engrg., Chap8., 1973, Ed by A. Brebbia et al. Engl. Southampton Univ. Press, pp64-79.
    [111] 沈为平,极限分析的改进迭代方法,计算结构力学及其应用,1985,v2,n3,pp53-64.
    [112] Alberto Frandi & Francesco Genna, A Numerical Scheme for Integrating the Rate Plasticity Equations with "A Priori" Error Control, Comput. Meth. Appl. Mech. Engrg., 1987, v60, pp317-342.
    [113] Francesco Genna, A Nonlinear. Inequality Finite Element Approach to the Direct Computation of Shakedown Load Safety Factors, Int. J. Meth. Sci., 1988, v30, n10, pp769-789.
    [114] Munro, J. & Fonseca Da, Yield Line Method by Finite Element and Linear Programming, The Structual Engineer, 1978, v56b, n2, pp37-44.
    [115] Grierson, D. E., et al, Mathematical Programming and Nonlinear Finite Element Analysis, Comput. Meth. Appl. Mech. & Engrg. 1979, v17-18, pp497-518.
    [116] Nestor, Iouain, et al, An Iterative Algorithm for Limit Analysis with Nonlinear Yield Functions, Int. J. Solids Structures, 1993, v30, n10, pp1397-1417.
    [117] Nguyen Dang Hung, A Finite Element Formulation for Shakedown Problems Using a Yield Criterion of the Mean, Comput. Meth. Appl. Mech. Engrg., 1976, vS, pp179-192.
    [118] Nguyen Dang Hung, Direct Limit Analysis via Rigid-Plastic Finite Element, Comput. Meth. Appl. Mech. Engrg., 1976, vS, pp81-116.
    [119] Hayes, D. J., & Marcal P. V., Determination of Upper Bound for Problems in Plane Stress Using Finite Element Techniques, Int. J. Mech. Sci., 1967, v9, pp245-251.
    [120] Nguyen Dang Hung, and Morelle, P., Plastic Shakedown Analysis, Mathematical Programming in Structural Plasticity, 1990, North-Holland Publisher, pp181-205.
    [121] Karadeniz, S. & Ponter A. R. S., A Linear Programming Upper Bound Approach to the Shakedown Limit of Thin Shells Subjected to Variable Thermal Loading, J. of Strain Analysis, 1984, v19, n4, pp221-230.
    [122] Yang, W. H., A Variational Principle and an Algorithm for Limit Analysis of Beams and Plate, Comp. Meth. Appl. Mech. Engrg., 1982, v33, pp575-582.
    [123] 张丕辛,陆明万,黄克智,极限分析的无搜索数学规划算法,力学学报,1991,v23,n4,pp433-442.
    [124] Zhang Y. G., Lu M. W., Computational Shakedown Analysis of Plastic Bodies Under Variable Loading, AEPA'94, 1994, Ed. by Xu B. Y., IAP, Beijing, pp355-360.
    [125] 詹世革,轴对称结构上限分析的数值方法及其应用,清华大学硕士论文,1995.
    [126] Pycko, S. & Mroz, Z., Alternative Approach to Shakedown as a Solution of a Min-Max Problem, Acta Mechanica, 1992, v93, pp205-222.
    [127] Orkisz, J., & Harris, A,, Analysis of Residual Stress at Shakedown: a Hybrid Approach, Comput. & Struct., 1990, v35, n4, pp397-412.
    [128] Tin Loi F., Shakedown Analysis of Curved Beams, J. Struct. Mech., 1984, v12, n3, pp319-333.
    [129] Tin Loi F., Shakedown Analysis of Nonsandwich Structure, J. Struct. Mech., 1984, v12, n3, pp303-317.
    [130] Guralnick S. A., Erber T., Stefnis J., and Soudan O., Plastic Collapse, Shakedown and Hysteresis of Steel Structures, J. Struct. Engrg. 1986, v112, n12, pp2610-2627.
    [131] Panzeca T., and Polizzotto C., On Shakedown of Elastic-Plastic Solids, Meccanica, 1988, v23, pp94-101.
    [132] Alwis W. A. M. and Grundy P., On the Carrying Capacity of Rectanguular Plates under Moving Loads, Int. J. Mech. Sci., 1985, v27, n3, pp187-197.
    [133] Alwis W. A. M., Shakedown Analysis of Plates, Int. J. Mech. Sci., 1985, v27, n1.
    [134] 李克宇,刘信声,徐秉业,固支园板安定性的实验研究,应用力学学报,1988V6,n3,pp83-88.
    [135] Ponter A. R. S., and Carter K. F., The Ratchetting Behavior of Shells Subjected to Severe Thermal Cycling, in: Appled Solids Mechanics-2, Ed by Tooth A. S., 1987, Pineridge Press, Swansea, pp303-320.
    [136] 金永杰,赵小津,随动强化材料壳体的安定分析,应用力学和数学,1989,V10,n11,pp969-976.
    [137] 潘立功,刘信声等,变速旋转圆盘的弹塑性及安定性,机械工程学报,1990,v26,n2,pp86-92.
    [138] 徐秉业.刘信声,结构塑性极限分析,中国建筑工业出版社,,1988,北京
    [139] 陆明万,罗学富,弹性理论基础,清华大学出版社,1990,北京。
    [140] 陈宝林,最优化理论与算法,清华大学出版社,1989,北京。
    [141] 王勖成,邵敏,有限单元法基本原理与数值方法,清华大学出版社,1988,北京。
    [142] Polizzotto, C., On the Conditions to Prevent Plastic Shakedown of Structures: Part Ⅰ-Theory, ASME, J. Appl. Mech., 1993, v60, pp 15-19.
    [143] Polizzotto, C., On the Conditions to Prevent Plastic Shakedown of Structures: Part Ⅱ-The Plastic Shakedown Limit Load, ASME, J. Appl. Mech., 1993, v60, pp20-25.
    [144] 刘信声,冯西桥,考虑温度对材料性能影响时厚壁筒的安定分析,工程力学,1991,V8,n3,pp36-44
    [145] 含凹坑圆筒壳塑性承载能力的研究,研究报告,1995,清华大学工程力学系,(内部资料)
    [146] 孔祥谦.有限单元法在传热学中的应用,1986,科学出版社,北京
    [147] 吉洪诺夫,萨马尔斯基,数学物理方程,1956年1月,人民教育出版社,北京

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700