角反射器雷达干涉实验及在形变监测中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在过去的十多年中差分干涉测量技术(Differential Interferometry synthetic aperture radar, D-InSAR)有了很大的发展,广泛的应用在了地震观测、地面沉降监测、火山监测和冰川活动性观测等领域。但是,由于时间和空间的失相关和大气效应等因素的影响,传统的差分干涉测量的应用受到了较大的限制,造成数据利用率的下降和技术应用的盲区。永久散射体技术(Permanent Scatter,PS-InSAR)在一定程度上克服了传统差分干涉处理中遇到的问题,但同时也存在一定的缺点,它需要有一定数量和密度的稳定的反射点,而且对雷达数据数目的要求比较高,一般要求大于30景,才能达到较好的效果。为了克服上述的问题,基于角反射器的合成孔径雷达处理技术被提了出来,它在相干性低的区域的地表变形和特定目标的监测中具有很大的应用潜力。本文首先介绍了InSAR和D-InSAR的基本原理、数据处理流程和数据处理中的关键技术,并在此基础上介绍了PS-InSAR技术的原理和数据处理流程,阐明了PS-InSAR技术的优缺点。接着介绍了德国GFZ的夏耶博士提出的CR InSAR算法理论和处理流程。CR InSAR技术至关重要的一步是在雷达图像上识别出人工角反射器,而目前的实验还没有找到很好的方法解决这一问题。本文从角反射器的设计、制作和安装等过程入手,进行严格地质量控制,从而使角反射器能够在图像上被更有效地识别。我们根据角反射器点在雷达图像的特征等,结合目视判读和计算机自动识别方法,在雷达图像上识别出了人工角反射器所对应点像点。在实验区安装了7个角反射器,利用文中提出的方法分别在雷达图像上找到了相应点,安装角反射器后,这些点的后向散射强度明显增强,并保持较高的稳定性。为后续利用CR InSAR算法提取相应地区形变提供了目标点。最后根据高相干性理论算法,得到了该区域的人工角反射器点处的形变量并对其进行了分析,认为实验区在监测时间段内没有发生明显形变。
Recently ten years differential interferometry (Differential Interferometry synthetic aperture radar, D-InSAR) has been greatly developed, and it has a wide range of applications at the seismic observation, monitoring of ground subsidence, volcanic activity monitoring and observation of glaciers and other fields. However, because of the loss of time and space and atmospheric effects related to other factors, the traditional application of differential interferometry has more restrictions, resulting in a decline in the utilization of data and the blind spots in application. Permanent scatterer technique (Permanent Scatter, PS-InSAR) overcomes the traditional differential interference problems to some extent, but it also exists a disadvantage, which requires a certain amount of reflection points with high stability and density, and more than 30 scenes of radar data is required in order to achieve good results. In order to overcome the above problems, synthetic aperture radar technology based on the corner reflectors has been put forward, and it has great potential in the deformation monitoring at the surface regions with low deformation and the monitoring of specific objects. This article introduces the basic principles and the key technologies in data-processing of InSAR and D-InSAR, and based on this, the introduction of the PS-InSAR technique and data processing flow has been put forward to clarify the priorities and disadvantages of PS-InSAR technology. Then the algorithm and data processing method of CR InSAR proposed by Dr. Xia Ye (the GFZ, Germany) has been introduced. To identify artificial corner reflectors are essential in CR InSAR technology , and we have not yet found a good way to solve this problem with the present experiments. This article starts with the design, production and installation of the corner reflectors, so that the corner reflectors on the image can be identified effectively. We identified artificial corner reflectors corresponding pixel points in the radar images based on the characteristics of the corner reflector points in the radar images, combined with the visual interpretation and computer automatic method. We installed 7 corner reflectors in the experimental area and found the corresponding points using the method presented in this paper. After the installation of the corner reflectors, the scattering intensity increased and maintained a relatively high stability. As a result, it provided target points for the following extraction of the corresponding region. Finally, we got the deformation variable of the artificial corner reflectors in this area according to the theory of high-coherent algorithm, then get the conclusion that there were no apparently deformation occured during the monitoring period in the experimental area.
引文
[1] FerrettiA, C Prati and Rocca F. Nonlinear Subsidencerate EstimationsUsing Permanent Scatteres in Differential SAR Interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5): 2022~2212
    [2] Yuri Fialko, Simons, M. & Agnew, D. The complete (3-D) surface displacement field in the epicentral area of the 1999 Mw 7.1 Hector Mine earthquake, southern California, from space geodetic observations[J]. Geophys. Res. Lett., 2001, 28: 3063~3066
    [3] Rosen, P. A. S. Hensley, H. A. Zebker, F. H. Webb, and E.J. Fielding. Surface Deformation and coherence Measurements of Kilauea Volcano, Hawaii, from SIR-C Radar Interferometry[J]. J. Geophys. Res., 1996, 23: 109~123
    [4]张阿根,魏子新.中国地面沉降[M].上海科学技术出版社, 2005: 10~20
    [5]王超,张红,刘智,等.苏州地区地面沉降的星载合成孔径雷达差分干涉测量监测[J].自然科学进展.2002, 12(6): 621~625
    [6]王超,张红,刘智,等.基于D-InSAR的1993-1995年苏州市地面沉降监测[J].地球物理学报, 2002, (45): 44~253
    [7] Carnec.C.and H.Fabriol. Monitoring and Modeling Land Subsidence at the Cerro PrietoGeothermal Field. Baja California. Mexico. Using SAR Interferometry[J]. Geophys. Res. Let. 1999, (9): 1211~1214
    [8]张拴宏.合成孔径雷达干涉测量(InSAR)在地面形变监测中的应用[J].灾害与防治学报, 2004, 15(l): 112~118
    [9] Sang-Wan Kim, Chang-Oh Kim, etc. Surface deformation in Mokpo area observed with synthetic aperture radar interferometry[C]. Geoscience and Remote Sensing Symposium, 2005. IGARSS '05. Proceedings. 2005 IEEE International. 2005, (1): 3~5
    [10] C. Colesanti, A. Ferretti, F. Ferrucci, C. Prati, F. Rocca, Monitoring Known Seismic Faults using the Permanent Scatters (PS) Technique[C]. Proceedings of IEEE International Geoscience and Remote Sensing Symposium. IGARSS 2000, Hawaii, USA
    [11] C. Colesanti, A. Ferretti, C. Prati, F. Rocca. Monitoring landslides and tectonic motions with the Permanent Scatterers Technique[J]. ENGINEERING GEOLOGY 2003, 68( 1-2): 3~14
    [12] D. Massonnet, et al. The Displacement Field of the Landers Earthquake Mapped by Radar Interferometry[J]. Nature, 1993, 34(6433): 138~142
    [13] P.Rosen et al.Synthetic Aperture Radar Interferometry[J]. Proc. IEEE, 2000, 88(3): 333~382
    [14]郭华东.雷达对地观测理论与应用[M].北京:科学出版社, 2000; 10~50
    [15]廖明生.雷达干涉测量一一原理与信号处理基础[M].测绘出版社, 2003: 150~180
    [16]魏钟锉.合成孔径雷达卫星[M].北京,科学出版社, 2001: 20~60
    [17]舒宁.微波遥感原理[M].武汉,武汉测绘科技大学出版社, 2000: 10~50
    [18]程三友.差分干涉测量在地面沉降中的应用研究[J].东华理工学院学报, 2004, 27(4): 355~360
    [19]张拴宏.合成孔径雷达干涉测量(InSAR.)在地面形变监测中的应用[J].灾害与防治学报, 2004, 15(l):112~118
    [20]荆燕. D-InSAR技术在地震同震形变研究中的应用[J].测绘科学, 2004, 29(4): 64~68
    [21]姜岩,高均海.合成孔径雷达干涉测量技术在矿山开采地表沉陷监测中的应用[J].矿山测量, 2003, 1: 5~7
    [22]吴立新,高均海,葛大庆,等.工矿区地表沉陷D. InSAR监测试验研究[J].东北大学学报. 2005, 26(8): 778~781
    [23]陈基伟.利用GPS-InSAR合成方法进行地面沉降研究的现状与展望[J].测绘科学, 2003, 28(4): 69~72
    [24]张洁,胡光道.基于合成孔径雷达干涉测量技术的地面沉降研究综述[J].地质科技情报, 2005, 24(3): 104~108
    [25]单新建,马瑾,王长林等.利用差分干涉雷达测量技术(D-InSAR)提取同震形变场[J].地震学报, 2002, 24(4): 413~420
    [26]刘国祥,丁晓利,陈永奇等.使用卫星雷达差分干涉技术测量香港赤腊角机场沉降场[J].科学通报, 2001, 46(14): 1224~1228
    [27] Ye Xia, H. Kaufmann, Guo Xiaofang.Differential SAR interferometry using corner reflectors[C]. Proceedings of IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2002. Toronto, Ont., Canada.
    [28]孙洪.合成孔径雷达图像处理[M].北京,电子工业出版社, 2005: 221~240
    [29] Xia Ye, H.Kaufmann, and X.F.Guo.Landslide Monitoring in the Three Gorges Area Using D-InSAR and Corner Reflectors[J]. Photogrammetric Engineering & Remote sensing, 2004, 70 (10): 1167~1172
    [30] Yuri Fialko, David Sandwell, Mark Simons & Paul Rosen. Three-dimensional deformation caused by the Bam, Iran, earthquake and the origin of shallow slip deficit[J]. Nature, 2005: 435
    [31]姜文亮. PS InSAR技术监测断层活动性应用研究[D].中国地震局地壳应力研究所, 2005
    [32] R.Touzi, A.Lopes, J.Bruniquel, and P.W.Vachon. Coherence estimation for SAR imaginery[C]. IEEE Transactions on Geoscience and Remote Sensing, 1999, l.37(l): 135~149
    [33] Li Zhenhong, Correction of Atmospheric Water Vapour Effects on Repeat-Pass SAR Interferometry Using GPS, MODIS and MERIS Data, Doctorial thesis[C]. Department of Geomatic Engineering, University College London, 2005
    [34] Hanssen, R. Atmospheric heterogeneities in ERS tandem SAR interferometry[J]. Delft University Press, Delft, the Netherlands, 1998: 136
    [35] Li, Z., J.-P. Muller, and P. Cross. Comparison of precipitable water vapor derived from radiosonde, GPS, and Moderate-Resolution Imaging Spectroradiometer measurements[J].Journal of Geophysical Research, 108 (D20), 4651, doi:10.1029/2003JD003372, 2003.
    [36] Li, Z., J.P. Muller, P. Cross, P. Albert, J. Fischer, and R. Bennartz. Assessment of the potential of MERIS near-infrared water vapour products to correct ASAR interferometric measurements[J] . Sensing, under review, 2004
    [37] Sandwell, D.T. and E.J. Price. Phase gradient approach to stacking interferograms[J]. J.Geophys.Res. 1998,(103): 30,183-30,204
    [38] FerrettiA, C Prati and F Rocca. Permanent Scatterers in SAR Interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39 (1) : 8~20
    [39] Ramon F. Hanssen. Subsidence Monitoring Using Contiguous and PS-InSAR: Quality Assessment Based on Precision and Reliability[C]. Proceedings, 11th FIG Symposium on Deformation Measurements, Santorini, Greece, 2003.
    [40] Ferretti A,Prati C, Rocca F. Nonlinear subsidence rate estimation using permanent scatters in differential SAR interferometry[J] . IEEE Transactions on Geoscience and Remote Sensing, 2000 ,38 (5):2202~2212
    [41] Colesanti, C., A. Ferretti, F. Novali, C. Prati, and F. Rocca (2003). SAR monitoring of progressive and seasonal ground deformation using the permanent scatterers technique[J]. IEEE Trans. Geosci. Remote Sens., 41: 1685~1701
    [42]白俊.干涉雷达中的永久散射体和交叉干涉技术的研究与应用[D].中国科学院研究生院硕士学位论文, 2005: 35~38
    [43]薛笑荣. SAR图像并行处理与角反射器检测[D].北京大学博士后出站报告, 2005
    [44]张华永.久散射体干涉测量关键技术研究[D].北京大学硕士学位论文. 2005: 14~15.
    [45]陈强,丁晓利,刘国祥等.PS-InSAR公共主影像的优化选取[J].测绘学报, 2007, 36(4): 397~399
    [46]刘晓萌,常占强,张景发等. D-InSAR处理中失相干问题的研究[J].河北师范大学, 2007, 31(2): 260~263
    [47]李德仁,廖明生,王艳.永久散射体雷达干涉测量技术[J].武汉大学学报, 2004, 29(8): 664~668
    [48]何敏,何秀凤.利用InSAR相干系数探测地震引起的城市破坏程度[J].高技术通讯, 2008, 18(4): 414~417
    [49]张磊,陈艳玲,陈俊平. SAR回波信号及InSAR干涉相位的统计特性研究[J].天文学进展, 2007, 25(2): 169~176
    [50]岳焕印,郭华东,王长林.干涉SAR相干系数估计的快速算法[J].高技术通讯, 2005, 15(2): 11~14
    [51]扬成生,侯建国,季灵运等. InSAR中人工角反射器方法的研究[J].测绘工程, 2008, 17(4): 12~14
    [52]王涛,詹华明,高光辰等. PS-InSAR技术监测天津蓟县滑坡预研究[J].遥感信息, 2008, (3): 81~86
    [53]薛洪新,沈卫东,刘选俊等.强散射体的RCS分析[J].光电技术应用, 2008, 23(4): 14~17
    [54]罗海滨,何秀凤.给予DInSAR方法监测南京地表沉降的结果与分析[J].高科技通讯,2008,18(4): 418~421
    [55]何庆成,方志雷,李志明等. InSAR技术及其在沧州地面沉降监测中的应用[J].地学前沿, 2006, 13(1): 179~184
    [56]路旭,匡绍君,贾有良等.用InSAR作地面沉降监测的试验研究[J].大地测量与地球动力学, 2002, 22(2): 66~70
    [57]Massonne D, Holzer T, Vadon H. Land subsidence caused by the East Mesa geothermal field, Calfornia, observed using SAR interferometry[J]. Geophysical Research Letter, 1997. 24(8): 901~904
    [58] Wegmuller U, Strozzi T, Wiesmarm A, et a1. Land subsi—dence mapping with ERS interferometry: Evaluation of maturity and operational readiness[C]. FRINGE’99, Belgium. 1999: 10~12
    [59]岳建平,方露.城市地面沉降监控技术研究发展[J].测绘通报, 2008, 3: 1~4
    [60]黄声享,尹晖,蒋征.变形监测数据处理[M].武汉:武汉大学出版社, 2002: 110~150
    [61]岳建平,田林亚.变形检测技术与应用[M].北京:国防工业出版社, 2007: 10~30
    [62]姚国清,母景琴. D-InSAR技术在地面沉降监测中的应用[J].地学前沿, 2008, 15(4): 241~243
    [63] Chang X W, Yang X, Zhou T. A modified LAMBDA method for integer least-squares estimation [J]. Journal of Geodesy, 2005, 79 (9) : 552~565
    [64]常占强,宫辉力,张景发等. D2InSAR与PS2InSAR的理论模型、技术特点及应用领域[J].河北师范大学学报, 2008, 32(1): 113~116
    [65] MASSONNET D, BRIOL P, ARNAUD A. Deflation of Mount Etna Monitored by Spaceborne Radar Interferometry [J]. Nature, 1995, 375: 567~570
    [66] JOU GHIN I R, WINEBRENNER D P, FAHNESTOCK M A. Observations of Ice2sheet Motion in Greenland Using Satellite SAR Interferometry[J]. Geophys Res Lett, 1995, 22(5) :571~574
    [67]何伟,周清锋,杨礼平等. D-InSAR技术在西安地面沉降监测中的应用[J].地质学刊, 2008, 32(3): 206~209
    [68]陈基伟. PS-InSAR技术地面沉降研究与展望[J].测绘科学, 2008, 33(5): 88~90
    [69]何庆成,刘文波,李志明.华北平原地面沉降调查与监测[J].高校地质学报, 2006, 12(2): 195~209
    [70]杨成生,侯建国,季灵运等. D-InSAR技术用于西安地区地面沉降监测的研究[J].测绘工程, 2008, 17(3): 34~36

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700