基于激光测试技术的数控机床误差识别与补偿研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以研究基于激光测试技术的数控机床误差识别与补偿研究为主要内容,首先分析了国内外数控机床几何误差和热误差的检测技术与补偿技术的发展现状,对数控机床的误差进行了详细的分析和辨识。在比较了4种常用的几何误差检测方法后,使用Renishaw激光干涉仪对数控机床的线性定位误差进行了测量。然后,使用高精度的CCD激光位移传感器和涡电流位移传感器对机床主轴热变形进行了实时测量,同时,使用以ARM控制板为核心的测温系统对机床的关键部位进行了温度测量,并对机床的测温点进行了优化布点。在介绍了基于最小二乘法的多元线性回归建模方法后,建模了机床的热变形实时预测模型。最后,对机床的线性定位误差进行了丝杠螺距补偿和丝杠间隙补偿,基于开放式数控系统,使用PMAC控制卡对数控系统的G代码指令进行了实时修改,实现了机床热误差的实时补偿。该补偿方法在实际加工中被证实具有良好的补偿效果。全文共分七章:
     第一章,提出了本课的题研究背景和意义,详细介绍了国内数控机床误差检测与补偿技术的发展现状,概括了本论文的主要工作。
     第二章,介绍了数控机床的误差来源、误差的分类,对一台三轴立式铣床进行了详细的误差分析,提出了数控机床的几何误差和主轴热误差的辨识方法。这些工作为数控机床的误差检测提供了理论基础。
     第三章,介绍了4种典型的几何误差检测方法:一维球列测量法、球柄仪测量法、平面正交光栅测量法和激光干涉仪测量法,在对这4种检测方法进行比较后,选用Renishaw激光干涉仪对一台三轴立式铣床的线性定位误差进行了测量。这些工作内容为数控机床几何误差补偿提供了可靠的实验数据。
     第四章,介绍了数控机床热误差检测系统的特点,详细分析了机床测温系统和热变形测量系统的软硬件结构。本文突破性的把高精度CCD激光位移传感器应用到数控机床误差检测中,为数控机床热误差补偿提供了可靠的实验数据。
     第五章,介绍了曲线拟合的最小二乘法,多输入单输出的多元线性回归法,为数控机床的误差补偿提供了良好的数学模型。利用基于最小二乘法的多元线性回归建模方法为数控机床的热误差建立了数学建模,通过对真实数据和估计数据的残差进行分析后,发现该模型具有良好的预测精度。
     第六章,介绍了数控机床误差补偿的基本概念和相关工作原理,对数控机床的几何误差和热误差分别进行了补偿。该补偿方法在实际加工中被证实具有良好的补偿效果。
     第七章,对本论文的研究工作和研究成果进行了总结,展望了未来的研究工作。
Research on the errors recognition and compensation technology for the Numerical Control machine tools based on laser testing technology is the main content of this paper.First, the development actuality of the measurement technology and compensation technology of geometry errors and thermal errors in the machine tools both in and abroad China is analysed.Errors of the numerical control machine tools are particular analysed and recognised.Then,the laser interferometer of Renishaw is used to measure the linear positioning errors.The system of the temperature measurement controlled by the ARM board is used to inspect the temperature of the machine tools,and the inspection points of temperature are optimized. The thermal distortion of the machine tools spindle is real-time measured by the high accuracy CCD laser displacement sensors.After expounding the modeling method of multiple linear regression based on least square algorithm,the thermal distortion model is modelled.At last ,the the linear positioning errors are compensated by the compensation of the thread pitch and thread clearance . The thermal distortion of the spindle is real-time compensated by modifing the G code with the PMAC control system.According to the experiment method,the compensation is validated very effective.This paper all has seven chapters:
    Chapter one: The research focus and significance are put forward in this chapter. A picture of the developing course and trend of the measurement technology and compensation technology of geometry errors and thermal errors in machine tools both in and abroad China.And the mainly work of the paper is simply presented.
    Chapter two: This chapter presents errors origin and sort of the machine tools.Errors of a three-axis vertical numerical control milling machine is detailed analysed and recognised. Errors analysis and recognition is the basis theory of the errors measurement.
    Chapter three: This chapter presents several typical measurement methods of the geometry errors:one-D ball bar,double ball bar、KGM、laser interferometer.And the laser interferometer is used to measure the linear positioning errors of a milling machine.This measurement provides credible data for the geometry errors compensation of mahine tools.
    Chapter four: Measurement research of thermal errors based on laser displacement sensor.Thermal measurement method in mahine tools.This chapter presents the characteristics of the thermal measurement system.The hardware and software of the temperature measurement system and thermal measurement system is detailed analysed. This measurement provides credible data for the thermal errors compensation of mahine tools.
    Chapter five: This chapter presents multiple linearity regression based on least square algorithmn. least square algorithm and modeling method.This chapter provides a good mathematics model for the errors compensation of machine tools.
    Chapter six: This chapter presents the basic concept and principle of the compensation in machine tools.Geometry errors and thermal errors in machine tools are compensated. According to the experiment method,the compensation is validated very effective.
    Chapter seven: This chapter offers a concluding remark for the research project, and indicates the prospects of the development of the measurement technology and compensation technology of geometry errors and thermal errors in machine tools.
引文
1.张志君,南伟荣,数控机床的使用浅谈,机电新产品导报,2005(1):22-26
    2.周万春,马强,张晓民,论机床制造业现状及发展前景,中州大学学报,2005(4):114-116
    3.谢伟,CIMT2005国产加工中心展品评述,数控机床市场,2005(6),8-10
    4.倪军,数控机床误差补偿研究的回顾与展望,中国机械工程,1997(8),29-32
    5.杨建国,数控机床误差综合补偿技术及应用,上海交通大学博士学位论文
    6.李书和,机床误差的快速检具,组合机床与自动化加工技术,1997(3):42-45
    7.刘焕牢,师汉民,李斌,李曦,二维球杆仪测量装置的研制,工具技术,2005(1) 57-59
    8.李玉炜,数控机床精度测量及其补偿计算,组合机床与自动化加工技术,1998(1):20-23
    9.沈云波,机床误差的正交光栅检测及分离,河南:河南科技大学学报,2003(9),37-39
    10. Anthony Chukwujekwu Okafor, Yalcin M. Ertekin, Vertical machining center accuracy characterization using laser interferometer Part 1. Linear positional errors, 2000 (6), 394-406
    11.章青,自由曲面的数控机床在线检测及误差补偿技术研究,天津,硕士学位论文,2000 (12)
    12.陈欢,四轴数控机床在线检测软件包的开发,天津,硕士学位论文,2002(12)
    13.王广彦,基于加工中心在线检测关键技术研究,河北,硕士学位论文,2002(3)
    14. Seung-Han Yang a, Ki-Hoon Kim a, Yong Kuk Park, measurement of spindle thermal errors in machine tool using hemispherical ball bar test. Machine tools & manufacture. 36(2003) 333-340
    15. S. Yang, K. Kim, A reverse kinematic approach for error analysis of a machine tool using hemispherical helix ball bar test, Trans. NAMRI/SME 30 (2002) 223-230
    16. Jin-Hyeon Lee, Seung-Han Yang, Statistical optimization and assessment of a thermal error model for CNC machine tools. Machine tools & manufacture, 11(2001). 145-154
    17. Jenq-Shyong Chen, Wei-Yao Hsu, Characterizations and models for the thermal growth of a motorized high speed spindle. Machine tools & manufacture. 2(2003). 1163-1170
    18. Hong Yang a,, Jun Ni, Adaptive model estimation of machine-tool thermal errors based on recursive dynamic modeling strategy. Machine tools & manufacfure. 29(2004). 1010-1021
    19. D. S. Lee a, J. Y. Choi a, D. -H. Choi, ICA based thermal source extraction and thermal distortion compensation method for a machine tool. Machine tools & manufacture. 3(2003). 589-597
    20. R. Ramesh, M. A. Mannan *, A. N. Poo, Error compensation in machine tools. International jounal of machine tools & manufacture. 14(2000). 1257-1284
    21. A. C. Okafor, Yalcin M. Ertekin, Derivation of machine tool error models and error compensation procedure for three axes vertical machining center using rigid body kinematics. Machine tools & manufacture. 40(2000). 1199-1213
    22. Anthony Chukwujekwu Okafor*, Yalcin M. Ertekin, Vertical machining center accuracy characterization using laser interferometer. Journal of Materials Processing Technology. 105(2000) 407-420
    23.杜正春,杨建国,关贺等,制造机床热误差研究现状与思考,制造业自动化,2002(10),1—3
    24.粟时平,多轴数控机床精度建模与误差补偿方法研究,北京:机械电子工程,2001(1):4-8
    25.周晓宏,数控加工中的误差来源及其对策,湖南,制造业自动化,2002(8)
    26. Shih-Ming Wang, Measurement methods for the position error of a multi-axis machine(J), Tools manufacture: 1999, (39): 16-25
    27.刘焕牢,数控机床几何误差和误差补偿关键技术,湖北:机械工程师,2003(1):16-18
    28.范晋伟,数控机床通用空间几何误差建模方法与精密加工指令的生成技术研究,江苏:机械制造与自动化 2001(4):154-157
    29.任永强,五轴数控机床综合误差建模分析,上海:上海交通大学机械工程学院,2003 (1):70-75
    30.李彩霞,张风艳,马宏波,四坐标、五坐标数控机床加工的误差分析,黑龙江,林业机械与木工设备,2001(5)
    31.刘又午,刘丽冰,赵小松等,数控机床误差补偿技术研究,中国机械工程,1998年第9卷第12期,48—52
    32.刘又午,章青等.数控机床误差补偿技术及应用.制造技术与机床(连载),1988(12)—1999(6)
    33.张永丹,加工中心热误差建模与补偿技术研究,天津大学硕士毕业论文,2002
    34.张志飞,刘又午,张永丹等,加工中心热误差补偿研究,制造技术与机床,2001(1):27-29
    35. Jun Ni, CNC Machine Accuracy Enhancement Through Real-Time Error Compensation, Journal of Manufacturing Science and Engineering, 1997 (119): 717-724
    36.章青,数控机床定位误差建模、参数辨识及补偿技术的研究,天津大学博士学位论文,1995
    37.杨庆东,数控机床热误差补偿建模方法,制造技术与机床,2000(2):10-13
    38.杨庆东,机床动态热性能研究和误差补偿,重庆工业高等专科学校学报,1999(3) 232-234
    39.穆塔里夫·阿赫迈德,项伟宏,郑力,加工中心主轴热误差实验分析与建模,组合机床与自动化加工技术,2002(9):15-20
    40.袁凯凤,王怀奥,董广强,加工精度分析中的多元相关分析法,1998(3):102-106
    41.孟宗,基于激光干涉技术的轴径测量原理的研究,仪器仪表学报,2005(8):47~48
    42.高赛,曾理江,殷纯永,基于单光束干涉仪的机床主轴热误差实时测量,计量学报,2001 (1):1—6
    43.于金,赵树国,于治明,数控机床热变形关键点的辨识与补偿方法的研究,机械设计与制造,2000(12):73—74
    44.应济,陈子辰,重型机床的热变形控制研究,机械科学与技术,1998(7):623—625.
    45.窦小龙,杨建国,李晔,温度测点优化在机床主轴热误差建模中的应用,检测,2002(12):57—59
    46.陈应舒,张杰,孙伏,涡电流传感器在周向振动钻床运动参数测试中的应用,机电工程技术,2004(2):72-73
    47.王廷江,涡流及其应用,现代物理知识,2003(10):38-39
    48.李琳,杨美传,电涡流位移传感器同向差动测量方法及应用.中国教育技术装备,2002(9):27-29
    49.汪云,张幽彤,刘兴华,胡军华,车用电涡流位移传感器研究,襄樊学院报,2001(3):59-63
    50.袁道成,王洋,适于在线测量的激光位移传感器,计量技术,2002(5):3-7
    51.王以忠,张大卫,来新民,黄田,线性激光位移传感器的结构优化设计.天津大学学报,1999(1):33-37
    52.禹延光,孙晓明,马强,强锡富,差动式半导体激光位移传感器模型,传感技术学报,1999(9):184-189
    53.闫军,传输时间激光测距传感器,传感器世界,2002(8):2-6
    54.刘焕牢,师汉民,李斌,李曦,二维球杆仪测量装置的研制,工具技术,2005(1):57-59
    55.于金,赵树国,于治明,数控机床热变形关键点的辨识与补偿方法的研究,机械设计与制造,2000(12):73—74
    56.应济,陈子辰,重型机床的热变形控制研究,机械科学与技术,1998(7):623—625
    57.窦小龙,杨建国,李晔,温度测点优化在机床主轴热误差建模中的应用,检测,2002(12):57—59
    58.袁道成,王洋,适于在线测量的激光位移传感器,计量技术,2002(5):3—7
    59.王以忠,张大卫,来新民,黄田,线性激光位移传感器的结构优化设计.天津大学学报,1999(1):33-37
    60.禹延光,孙晓明,马强,强锡富,差动式半导体激光位移传感器模型,传感技术学 报,1999(9):184-189
    61.闫军,传输时间激光测距传感器,传感器世界,2002(8):2-6
    62.王志贤,最优状态估计与系统辨识,西北工业大学出版社,2004(6):181-219
    63.刘春风,何亚丽等,应用数值分析,冶金工业出版社,2005(2):51-67
    64.陈魁,试验设计与分析,清华大学出版社,2005(7):21-38
    65.邓自立,最优估计理论及其应用,哈尔滨工业大学出版社,2005(6):48-96
    66.陈玉详,张汉亚,预测技术与应用,机械工业出版社,1985:13-42
    67.盛伯浩,数控机床误差的综合动态补偿,产品与技术,2002(6):55—60
    68.李彩霞,张风艳,马宏波,四坐标、五坐标数控机床加工的误差分析,黑龙江,林业机械与木工设备,2001(5):17-18
    69.章青,卢腾镞,张志飞,刘又午,五坐标联动数控机床的误差建模及仿真,天津,机械设计,2001(8):13-17
    70.李圣怡,戴一帆,超精密加工机床新发展,北京,机械工程学报,2003(8):3-9
    71.周晓宏,数控加工中的误差来源及其对策,湖南,制造自动化,2002(8):20-23
    72.张虎,数控加工中心误差G代码补偿技术.华中科技大学学报,2002(2):14-16
    73.陶晓杰,王治森,机床误差的补偿方法探讨,制造业自动化,2005(5):18-22
    74.詹友基,乐清洪,贾敏忠,机床误差及其误差补偿技术,福建工程学院,2004(12):409—415
    75. FUNGE HK, CHAN JCK. ARX modeling and compensation of roundness errors in taper turning[J], Int J Adv Manuf Technol, 2000(16): 404-412.
    76.李书和,张奕群,王东升等,数控机床热误差的建模与预补偿,计量学报,1999(1):49-52

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700