微灌系统灌水均匀系数合理取值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微灌灌水均匀度是微灌工程规划设计中的一项重要参数,直接决定了微灌系统灌溉质量的优劣。本文首先提出了微灌毛管局部水头损失计算方法,在此基础上应用步进法水力学解析原理,建立了考虑水力、制造和微地形偏差的微灌均匀系数计算模型,同时建立了灌水量和作物产量的函数关系,分析了支管单元系统年费用的计算方法,通过数值模拟方法,模拟了不同微灌支管单元的均匀系数和产投比(作物产值与系统年费用比值),并以均匀系数为决策变量,以产投比最大为目标函数,构建了适宜于不同作物的微灌均匀系数优化模型。通过上述研究,主要得到以下结论:
     (1)毛管局部水头损失hj由灌水器流量q、灌水器插头断面面积A1、灌水器个数N及毛管内径D决定;局部水头占沿程水头损失的比例与灌水器流量q、灌水器插头断面面积A1、灌水器个数N成正比关系,与毛管内径D和灌水器间距Se成反比关系。
     (2)在灌水小区不同参数情况下,局部水头占沿程水头损失的比值变化范围较大,本文数据分析中最低可达到0.02,最大可达到1.10,在某些极端情况下,会出现局部水头损失大于沿程水头损失的现象。在计算毛管局部水头损失时,不能仅按照规范中要求的占沿程水头损失的10%-20%估算,否则将造成较大误差,使得实际均匀度偏离要求的均匀度,建议通过本文推导的计算公式推算毛管局部水头损失。
     (3)产投比随均匀系数的增大先增大后减小,存在一个极大值。以西瓜为例,经过分析得到最优均匀系数为0.78。当均匀系数大于合理取值范围(0.73-0.83)时,其微小地增加会引起产投比的急剧下降。均匀系数由0.83增长到0.93,产投比降低了58.57%,因此,微灌工程设计中不能一味追求高的灌水均匀系数,否则会造成经济上的不合理。
     (4)灌水器制造偏差、微地形偏差和支管入口压力等因素对均匀系数均有影响,通过对影响因素与均匀系数的关系分析,建议灌水器生产过程中,将制造偏差系数控制在0.00-0.10范围内。对于微压滴灌系统或者当支管入口压力较小时,建议微地形偏差系数Sz不大于0.01m。对于微地形偏差不大于0.09m的平坦地形,建议支管入口压力取值在6m以下,但对于灌水器设计工作水头或灌水器最小工作水头的精确合理取值,还需要进一步的系统的优化设计。
     (5)开发了均匀系数优化设计与分析软件,该软件能够针对不同作物选取合理均匀系数取值,并进行基于步进法的灌水器流量与压力推算,作物产量与系统年费用的模拟。可用于分析管网参数对均匀度及产投比的影响。并生成AutoCAD设计图及文本文档。
Uniformity is an important criterion to measure the irrigation quality of micro-irrigationsystem. Also it’s a key parameter in the procedure of micro-irrigation system design. In orderto get the reasonable micro-irrigation uniformity for different plants, this paper firstlyproposed the equation for emitter local head loss calculation, on the basis of which,established the uniformity calculation model considering hydraulic, manufacturer andmicro-topography deviation through hydraulics analytical theory of forward step method,analyzed the relationship between irrigation water amount and yield. On the same time, theuniformity and output-input ratio(the ratio of output and irrigation annual investment) fordifferent submain unit was simulated, moreover, regarding uniformity as decision variable,the maximum output-input ratio as objective function, micro-irrigation uniformityoptimization model for different plants was established. Through the above research, theconclusion are listed as follows:
     (1) The effecting factors of lateral local head loss were emitter flow rate, emitter plugsection area, emitter number and lateral diameter. Lateral local head loss was withproportional relation to emitter number, emitter plug section area and emitter flow rate andwith inverse relation to lateral diameter.
     (2) The proportion of lateral local head loss to frictional loss changed from0.02to1.10,which was determined by emitter plug section area, number, flow rate, spacing and diameter.In some extreme cases, the local head loss was larger than the frictional head loss. Therefore,in micro-irrigation design, using Eq.(2-4) to calculate local head loss was recommended.
     (3) The output-input ratio increased and then decreased when uniformity increased.There was a maximum value for output-input ratio. Taking watermelon as example, thereasonable uniformity is0.78, a tiny increase in uniformity would cause a sharp decline ofoutput-input ratio when it was beyond reasonable value range. When uniformity increasedfrom0.83to0.93, the output-input ratio would decreased by58.57%. Therefore, blindlypursuit high irrigation uniformity was not acceptable in micro-irrigation otherwise wouldcause the economic loss.
     (4) Emitter manufacture variation, micro-topography deviation and manifold inletpressure effected the uniformity and output-input ratio dramatically. Through the analysis ofrelationship between uniformity and effecting factors, the emitter manufacture variation coefficient should be controlled in the range of0.00-0.10. The micro-topography deviationcoefficient should not be larger than0.10for micro-pressure drip irrigation or when themanifold inlet pressure is small. Manifold inlet pressure could be lower than6m when fieldslope is smaller than0.09cm. The exact optimized value of manifold inlet pressure should beexplored further.
     (5) The software for micro-irrigation aid design was developed, which can select theoptimized value of uniformity for different plant, calculate the pressure and flow rate of eachemitter, calculate the crop yield and system investment, generate the pipe line layout diagram.
引文
GB/T50485-2009.2009.微灌工程技术规范.北京:中国计划出版社
    SL103-1995.微灌工程技术规范.北京:中国计划出版社
    白丹.1992.多孔管沿程压力分析.农业机械学报,23(3):49~55
    白丹.1995.微灌田间管网的混合整数规划模型.农业机械学报,26(1):45~49
    白丹.1996.树状给水管网的优化.水利学报,(11):52~55
    陈渠昌,郑耀泉.1994.灌水器局部损失水头的估算.内蒙古水利,(04):420~423
    陈渠昌,郑耀泉.1995.微灌工程设计灌水均匀系数的选定.农业工程学报,11(2):128~132
    范兴科,吴普特,牛文全,张林,王芳.2008.低压滴灌条件下提高系统灌水均匀度的途径探讨.灌溉排水学报,27(1):18-20
    方永忠.1996.生成树变换法求输配水系统最短供水路线.中国给水排水,(4):10~14
    傅琳.1998.微灌技术发展中的问题:节水灌溉.北京.中国农业出版社
    胡笑涛,康绍忠,马孝义.2000.地下滴灌灌水均匀度研究现状及展望.干旱地区农业研究,18(2):115~117
    李宝珠.2007.微灌工程干管环状管网模式研究.[硕士学位论文].杨凌:西北农林科技大学
    李久生,尹剑锋,张航.2010.滴灌均匀系数对土壤水分和氮素分布的影响.农业工程学报,26(12):27~33.
    李久生,尹剑锋,张航.2011.滴灌均匀系数和施氮量对白菜生长及产量和品质的影响.农业工程学报,27(1):36~43
    李久生.1996.喷灌均匀系数对作物产量影响的模拟研究.农业工程学报,12(4):102~106.
    刘建旭.2009.小型环状管网水力计算方法研究.华北水利水电学院学报,(6):63~66
    刘坤.2010.作物水分生产函数常用模型及灌溉制度优化概述.安徽农业科学,38(11):5521~5522
    罗安荣,梁银丽,朱艳丽.2010.温室樱桃番茄水分效应及水分生产函数.灌溉排水学报,29(4):123~125.
    吕宏兴,裴国霞,杨玲霞.2007.水力学.北京.中国农业出版社:122~123.
    牛文全,吴普特,范兴科.2004.微灌系统综合流量偏差率的计算方法.农业工程学报,20(6):85~88.
    宋仁元.1996.“输配水管网供水安全”专题研讨会技术小结.城市供水,(2):4~8.
    苏德荣.1991.微灌系统压力变化对出流均匀度影响的概率分析.水利学报,(12):31~35
    谭明,陈天胜,马卫兵.2003.滴灌系统设计均匀度问题的分析.节水灌溉,(5):18~23.
    汪志农.2000.灌溉排水工程学.北京:中国农业出版社
    王国明,詹宇胜,叶灵.2003.环状给水管网节点流量算法.合肥工业大学学报.(6):1209~1212
    王建众.2008.滴管灌水均匀性实验研究.[硕士学位论文].杨凌:西北农林科技大学
    吴小靖.2004.以均匀度为目标的喷灌工程规划设计计算机辅助设计系统.[硕士学位论文].江苏:扬州大学
    杨建康,陈学敏.1990.微灌系统田间管网允许压力差的最优分配方法.水利学报,(7):8~22
    翟胜,梁银丽,王巨媛.2005.干旱半干旱地区日光温室黄瓜水分生产函数的研究.农业工程学报,21(4):136~139.
    张国祥,申亮.2005.微灌灌水小区水力设计的经验系数法.节水灌溉,(6):20~23
    张国祥,吴普特.2005.滴灌系统滴头设计水头的取值依据.农业工程学报,21(9):20~22
    张国祥.2002.廉价节能高效滴灌系统研究报告.杨凌:国家节水灌溉杨凌工程技术研究中心
    张国祥.2006.考虑三偏差因素的滴灌系统流量总偏差率.农业工程学报,22(11):27~29.
    张林,范兴科,吴普特,牛文全,喻黎明.2009.均匀坡度下考虑三偏差的滴灌系统流量偏差率的计算.农业工程学报,25(4):7~13
    张林,吴普特,牛文全,范兴科.2007.均匀坡度下滴灌系统流量偏差率的计算方法.农业工程学报,23(8):40~44
    张天举,仵峰,邓忠,范永申.2007.不同坡度下压力对滴灌毛管均匀度的影响试验.水利水电科技进展,27(3):24~26
    张志澍.1996.灌水器的工作水头对微灌系统灌水均匀度的影响.内蒙古水利,(1):45~50
    张志新.2007.微灌工程规范设计原理与应用.北京:中国水利水电出版社
    赵保成,张超品.2003.大棚滴灌系统设计中的几个问题探讨.节水灌溉,1:12~16
    郑纯辉,康跃虎,王丹.2005.微灌系统优化设计方法.干旱地区农业研究,23(1):28~33
    郑健,蔡焕杰,王健.2009.日光温室西瓜产量影响因素通径分析及水分生产函数.农业工程学报,25(10):30~34.
    郑耀泉,陈昌渠.1994.微灌均匀度参数之间的关系及其应用.灌溉排水,13(2):7~9
    郑耀泉,宁堆虎.1991.滴头制造偏差的模拟与微灌系统随机设计方法的研究.水利学报,(7):1~6.
    朱德兰,吴普特,王剑.2011.滴头制造偏差对灌水均匀度及毛管造价的影响.排灌机械工程学报,29(2):2~5.
    朱德兰,吴普特,王健.2006.微灌滴头设计工作压力取值理论研究.西北农林科技大学学报(自然科学版),34(10):191~196
    朱德兰,吴普特.2006.微地形影响下滴灌均匀度设计指标研究.排灌机械,24(1):22~26
    朱德兰.2005.微灌系统优化设计研究及其软件系统开发.[博士学位论文].中国科学院水土保持研究所
    Bagarello V Ferro V, Provenzano G, Pumo D.1997.Evaluating pressure losses in drip-irrigationlines.Journal of the Irrigation and Draining Engineering.(3):1~7
    Bagarello V, Ferro V, Provenzano G, Pumo D.1997. Evaluating pressure losses in drip-irrigation lines.Irrig Drain Eng ASCE,123(1):1–7.
    Bralts V F, Edwards D M.1986. Field evaluation submain units. ASAE,26(6):1659~1664
    Bralts V F, Wu I P, Gitlin H M.1986. Manufacturing variation and drip irrigation uniformity. ASAE,26(6):1659~1664
    Fujiwara O.1987. Method for optimal design of branched networks on flat terrain. J. envir.Engrg.,ASCE,114(6):1464~1475
    Gurol Y.2010. Total energy loss assessment for trickle lateral lines equipped with integrated in-lineand on-line emitters. Irrig Sci,(28):341~352.
    Howell T A, Hilter E A.1974. Designing trickle irrigation laterals for uniformity, Journal of TheIrrigation and Drainage Division,ASCE,100(4):443~454
    Keller J, Karmeli D.1974. Trickle irrigation design parameters. Trans. ASAE,17(4):678~784
    Kirnak H.2004. Determination of hydraulic Performance of Trickle Irrigation Emitter used inIrrigation System in the Harran Plain. Turk J Agric,(28):223~230.
    Provenzano G, Pumo D.2005. Simplified procedure to evaluate head losses in drip irrigation laterals.Irrig Drain Eng ASCE,131(6):525~532.
    Provenzano G, Pumo D.2006. Experimental analysis of local pressure losses for microirrigationlaterals. Irrig Drain Eng ASCE,132(2):193~194.
    Wei Z Y.2003. Rapid development technique for drip irrigation emitters. Rapid Prototyping Journal,(9):104~110.
    Wu I P, Barragan J.2000. Design criteria for Microirrigation systems. Transactions of the ASAE,43(5):1145~1154.
    Wu I P, Gitlin H M.1975. Energy gradient line for drip irrigation laterals. Irrig Drain. Eng ASCE,101(4):323~326.
    Zhu D L, Wu P T, Merkley G P.2010. Drip irrigation lateral design procedure based on emissionuniformity and field micro-topography variation. Irrigation and Drainage,59(3):535~546.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700