非均匀地质介质的电磁波频散实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
宽频带电磁波在地质介质传播时会发生频散。频散效应,对宽带电磁波勘探既是干扰,也是可资利用的信息。本文采用物理实验的方法研究不同介质的频散效应,以期为频散效应的利用提供实践基础。论文的主要内容与成果如下:
     1.物理模型实验研究
     以NI公司的高频信号发射与采集硬、软件为核心,搭建了一个宽带(100KHz--2.8GHz)波动信号采集分析系统;用连续排列的43个水泥块和3个铸铁块分别模拟高阻介质和低阻介质,模型块的尺度为100cm×10cm×50cm;在模型上方55cm处发射、接收电磁波,实验测定了各模型在无覆盖和15cm厚水层覆盖情况下对0.5 GHz,1.0 GHz,1.5 GHz电磁波的反射强度。通过对测量结果的计算分析,获得了如下认识:
     (1)在无水层覆盖时,水泥模块对1.0GHz电磁波的反射强度相对于0.5GHz的反射强度减少了51.98%,反射振幅频散率为1.0396/GHz;1.5GHz电磁波的反射强度相对于1.0GHz的反射强度减少了41.97%,反射振幅频散率0.8394/GHz,反射振幅的频散呈非线性变化。铸铁模块对1.0GHz电磁波的反射强度相对于0.5GHz的反射强度减少了43.73%,反射振幅频散率为0.8746/GHz;1.5GHz电磁波的反射强度相对于1.0GHz的反射强度减少了了38.55%,反射振幅频散率为0.7710/GHz,反射振幅的频散也呈非线性变化。在测量的频段内,低阻铸铁模块的频散幅度小于高阻水泥模块的频散,但随频率的增加,反射强度的衰减相对较缓。
     (2)在有水层覆盖时,水泥模块对1.0GHz电磁波的反射强度相对于0.5GHz的反射强度减少了59.92%,反射振幅频散率为1.1984/GHz;1.5GHz电磁波的反射强度相对于1.0GHz的反射强度了减少38.91%,反射振幅频散率为0.7782/GHz。铸铁模块对1.0GHz电磁波的反射强度相对于0.5GHz的反射强度了减少48.79%,反射振幅频散率为0.9758/GHz;1.5GHz电磁波的反射强度相对于1.0GHz的反射强度减少了31.79%,反射振幅频散率为0.6358/GHz。水覆盖层的存在,提高了低频段的频散幅度,但减小了高频段的频散幅度。
     2.现场物理模型实验研究
     使用TerraSIRch SIR-3000地质雷达系统,用0.1GHz,0.4 GHz,0.9 GHz三个频率测量在土壤中埋深100cm的铸铁管的反射强度。
     通过计算,铸铁管对0.4GHz电磁波的反射强度相对于0.1GHz的反射强度减少了0.1423%,反射振幅频散率为0.004745/GHz;0.9GHz电磁波的反射强度相对于0.4GHz的反射强度减少了0.4487%,反射振幅频散率为0.008974/GHz,反射振幅的频散呈非线性变化,随频率的增加,反射强度的衰减加快。
The process of wideband electromagnetic wave propagation in geologic mediums occur frequency-dispersion phenomenon. Frequency-dispersion phenomenon is not only disadvantage but also advantage. By physical experiment studying on frequency-dispersion response of wideband electromagnetic wave over different medium in the thesis, it offers practical experience in using frequency-dispersion phenomenon. The main achievements of the thesis are as follows:
     1. Physical model experiment studying indoor
     Construct wideband (100KHz--2.8GHz) electromagnetic wave signal analyzing system base on NI company's key hardware and software of high frequency signal transmitting and receiving. Simulate high resistance medium by forty-three concrete modules (100cmxl0cmx50cm) continuously arranged and low resistance medium by three cast iron modules (same scale). Transmit and receive electromagnetic wave at the height of 55cm over the model. Measure each module reflective intensity of 0.5GHz, 1.0GHz, 1.5GHz electromagnetic wave in the condition of non-overcast and overcast water layer of 15 cm thickness. By analyzing and computing observe data, the main conclusion of the experiment indoor are as follows:
     (1) On non-overcast water layer, for concrete modules, reflective intensity of frequency 1.0GHz is less 51.98% than reflective intensity of frequency 0.5GHz, and reflective amplitude frequency-dispersion rate is 1.0396/GHz between 1.0GHz and 0.5GHz ; reflective intensity of frequency 1.5GHz is less 41.97% than reflective intensity of frequency 1.0GHz, and reflective amplitude frequency-dispersion rate is 0.8394/GHz between 1.5GHz and 1.0GHz . Concrete modules' frequency-dispersion of reflective amplitude variety non-linear . For cast iron modules, reflective intensity of frequency 1.0GHz is less 43.73% than reflective intensity of frequency 0.5GHz, and reflective amplitude frequency-dispersion rate is 0.8746/GHz between 1.0GHz and 0.5GHz ; reflective intensity of frequency 1.5GHz is less 38.55% than reflective intensity of frequency 1.0GHz, and reflective amplitude frequency-dispersion rate is 0.7710/GHz between 1.5GHz and 1.0GHz . Cast iron modules' frequency-dispersion of reflective amplitude variety non-linear, too. Low resistance cast iron modules' the value of frequency-dispersion is less than high resistance concrete modules' in the same frequency difference. The attenuation of reflective intensity become weaker in the high frequency band than in low frequency band.
     (2) On overcast water layer, for concrete modules, reflective intensity of frequency 1.0GHz is less 59.92% than reflective intensity of frequency 0.5GHz, and reflective amplitude frequency-dispersion rate is 1.1984/GHz between 1.0GHz and 0.5GHz ; reflective intensity of frequency 1.5GHz is less 38.91% than reflective intensity of frequency 1.0GHz, and reflective amplitude frequency-dispersion rate is 0.7782/GHz between 1.5GHz and 1.0GHz . For cast iron modules, reflective intensity of frequency 1.0GHz is less 48.79% than reflective intensity of frequency 0.5GHz, and reflective amplitude frequency-dispersion rate is 0.9758/GHz between 1.0GHz and 0.5GHz ; reflective intensity of frequency 1.5GHz is less 31.79% than reflective intensity of frequency 1.0GHz, and reflective amplitude frequency-dispersion rate is 0.6358/GHz between 1.5GHz and 1.0GHz . Because of the overcast water layer, the value of frequency-dispersion in the low frequency band become stronger, however, the value of frequency-dispersion in the high frequency band become weaker.
     2. Physical model experiment studying local
     Measure the different frequency of 0.1 GHz, 0.4 GHz, 0.9 GHz reflective intensity of the cast iron pipe embodied in soil of 100 cm depth by TerraSIRch SIR-3000 Ground Probe Radar system.
     By analyzing and computing observe data, for cast iron pipe, reflective intensity of frequency 0.4GHz is less 0.1423% than reflective intensity of frequency 0.1GHz, and reflective amplitude frequency-dispersion rate is 0.004745/GHz between 0.4GHz and 0.1GHz ; reflective intensity of frequency 0.9GHz is less 0.4487% than reflective intensity of frequency 0.4GHz, and reflective amplitude frequency-dispersion rate is 0.008974/GHz between 0.9GHz and 0.4GHz . Cast iron pipe frequency-dispersion of reflective amplitude variety non-linear, and The attenuation of reflective intensity become stronger in the high frequency band than in low frequency band.
引文
[1]R.E.谢里夫编,黄绪得译,勘探地球物理百科词典[M],地质出版社,1990.p.75
    [2]Hipp,J.E.,1974,Soil electromagnetic parameters as functions of frequency,soil density,and soil moisture[J]:Proc.IEEE,62,98-103.
    [3]董晓龙、汪文秉,1997,瞬态电磁学的新进展[J],电子科技导报,No.12
    [4]Neil V Budko 2002,Linearized electromagnetic inversion of inhomogeneous media with dispersion[M],Inverse Problems 18.1509-1523
    [5]James D.Irving et al.,2003,Removal of wavelet dispersion from ground-penetrating radar data[J],Geophysics,Volume 68(3),pp.960-970
    [6]Junxing Cao,et al.,2003,Conductivity Tomography at two frequencies[J],Geophysics,Vol.68(2),p.516-522
    [7]Yee K.S.1966,Numerical solution of initial boundary value problems involving Maxwell's equation in isotropic media[J].IEEE Trans.on AP.14(5),302-307.
    [8]谢处方,饶克谨,杨显清,赵家升,王园.电磁场与电磁波[M].北京:国防工业出版社,2003
    [9]马文蔚等.物理学[M].北京:高等教育出版社,1978
    [10]曾昭发,刘四新,王者江,薛建.探地雷达方法原理及应用[M].北京:科学出版社,2006
    [11]李大心.探地雷达方法与应用[M].北京:地质出版社,2006
    [12]曹俊兴.非均匀介质电磁成像[M].成都:四川科学技术出版社,2000
    [13]陆基孟.地震勘探原理[M].山东:石油大学出版社,1993
    [14]Chew W.C.非均匀介质中的场与波.聂在平,柳清伙译[M].北京:电子工业出版社,1992
    [15]J.L.罗斯 固体中的超声波[M].何存富,吴斌,王秀彦译.北京:科学出版社,2004
    [16]王秉中,计算电磁学[M].北京:科学出版社,2005
    [17]毕德显,电磁场理论.[M].北京:电子工业出版社,1985
    [18]Nabighian,Misac N.勘查地球物理电磁法[M],赵经祥,王艳君译.北京:地质出版社,1992
    [19]刘君华等.基于LabVIEW的虚拟仪器设计[M].北京:电子工业出版社,2003
    [20]程学庆等等.LabVIEW图形化编程与实例应用[M].北京:中国铁道出版社,2005
    [21]杨乐平等.LabVIEW程序设计与应用[M].北京:电子工业出版社,2002
    [22]汪敏生等译.LabVIEW基础教程[M].北京:电子工业出版社,2002
    [23]罗宵等译.软件工程方法在LabVIEW中的应用[M].北京:清华大学出版社,2006
    [24]戴敬,王世立.LabVIEW基础教程[M].北京:国防工业出版社,2002
    [25]康华光,陈大钦.电子技术基础(模拟部分,第4版)[M].北京:高等教育出版社,2000
    [26]E.McConnell.Future of virtual instrumentation[J].Sensors.1997
    [27]National Instruments Corporation.LabVIEW user's manual[C].1998
    [28]National Instruments Corporation.LabVIEW Tutorial[C].
    [29]http://www.ni.com/china/
    [30]陈迈涛,王幼钊.利用虚拟仪器技术设计的网络化旋转机械状态检测系统[J]电子技术应用,2001,(3):33-35
    [31]Rick Bitter,Taqi Mohiuddin,Matt Nawrocki.LabVIEW Advanced Programming Techniques[M].CRC Press,2001
    [32]泛华测控,泛华测控服务与产品选型手册[C]..2006
    [33]National Instruments Corporation,基于计算机的测试测量和自动化应用方案2007年优秀论文合订本[C],上海,2007
    [34]National Instruments Corporation,基于计算机的测试测量和自动化应用方案2006年优秀论文合订本[C],上海,2006
    [35]National Instruments Corporation,基于计算机的测试测量和自动化应用方案2005年优秀论文合订本[C],上海,2005
    [36]National Instruments Corporation,MEASUREMENT and AUTOMATION 07CATALOG[C]2007
    [37]Rawnsley D.J.,Hummels D.M.,Segee B.E,Virtual instrument bus using network programming[J].IEEE Instrumentation and Measurement Technology Conference,1997,694-699
    [38]Minneman Michaei.P.Blurring boundary between standard and virtual instruments,Proceedings of the Technical Program-Nation Electronic Packging and Production Conference[C],1995,500-511
    [39]Santori Michael.An instrument that isn't really[J].IEEE Spectrum 1990,27(8);36-39
    [40]Simmonds Bill.Engancing reality to make the ideal instrument[J].Assembly Automation,1995,9-11
    [41]阎石.数字电路基础[M].北京:高等教育出版社,2000
    [42]詹赞.基于虚拟仪器思想的数字存储示波器的设计与实现:[D].武汉:武汉科技大学,1999
    [43]陕西海泰电子有限责任公司,《虚拟仪器产品与技术》[R]2000
    [44]http://www.ni.com/china/
    [45]http://www.siwi.com.cn/product/index2.aspx
    [46]http://www.step-servo.com/leetro_web_page/first.asp
    [47]http://www.acepillar.com/module/
    [48]孙复初.汉英科学技术辞海(精选本)[M].北京:国防工业出版社,2006
    [49]雷宛,肖宏跃,邓一谦.工程与环境物探教程[M].北京:地质出版社,2006
    [50]http://www.lrel.cn/

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700