疏肝健脾固髓方治疗多发性硬化的临床及机制的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:研究多发性硬化患者外周血T细胞亚群的变化规律,探讨T细胞亚群作为多发性硬化病情变化指标和治疗依据的可能性。通过EAE模型探讨疏肝健脾固髓方治疗多发性硬化的机制。
     方法:将MS患者按照疾病分期进行分类,统计各病期外周血T细胞亚群的变化。运用聚类分析,探讨多发性硬化的证候特点。疏肝健脾固髓方治疗多发性硬化动物模型后检测其外周血炎症细胞因子蛋白的表达情况并观察病理改变。
     结果:1.临床研究
     1.1多发性硬化病人在激素治疗期的CD4+T细胞亚群与病程发病早期、激素影响期、稳定期相比比例增高,差异有显著意义(P<0.05);激素治疗后CD3+CD19-T细胞与激素治疗期相比比例降低,差异有显著意义(P<0.05)。其余各T细胞亚群在各病期的比较均无显著性差异(P>0.05)。
     1.2临床症状研究中大部分病人中均有不同程度的肝郁脾虚证候特点,如情绪低落(50.8%)、两胁不适(22.2%)、胸闷(31.7%)、心烦(41.3%)、神疲乏力(65.1%)、纳少(28.6%)、恶心(12.7%)、呃逆(12.7%)、嗳气(14.3%)、腹胀(22.2%)、胃脘痞满(28.6%)。聚类分析症状,分为三类:第一类:第一簇的症候表现为水饮、第二簇为痰浊、第三簇为脾虚。第二类:第一簇为心肾阴虚、第二簇为阴虚火旺。第三类为阳虚证的表现。第四类为阴阳两虚。
     2.实验研究
     2.1采用MOG35-55免疫C57BL小鼠建立EAE的慢性迁延型模型,发现小鼠首次发病时间在免疫后的14-17天,临床评分为1分左右。发病的高峰期一般在19-29天,临床评分在1-2.5分之间。随后进入慢性迁延期,临床评分维持在1-2分。个别小鼠发现了复发缓解的现象,并且随着时间的延长,复发的频率和症状评分逐渐降低,在3个月左右的时间后可能也与慢性迁延期的小鼠一样会达到一个平台期。
     2.2疏肝健脾固髓方治疗多发性硬化的机制探讨
     2.2.1在C57BL小鼠EAE模型显示,IL-21、IL-17F均为致炎性因子,呈现先升高后降低的变化规律,表明2者在疾病的早期发挥作用。激素组2者的升高不明显,中药组IL-17F则为下降趋势。
     2.2.2在EAE中TNF-α主要作用是致炎性的,表现为逐渐升高,但在激素组和中药组则为先下降后升高,尤其在4周时下降较为明显。
     IFN-γ为致炎性因子,在EAE中呈现逐渐升高的趋势,但在激素组和中药组呈现先下降后略微升高的趋势,且在第4周下降最为明显。
     提示激素和中药可能在疾病发作前期发挥抗炎作用,而急性发作后期抗炎作用逐渐减退。
     2.2.3IL-10和IL-4均为抑炎性因子,在EAE中呈现逐渐升高的趋势,在中药组亦表现升高,尤其在8周时IL-10升高更加明显,激素组则没有升高趋势。提示随着病程进展,EAE在急性期炎症损害髓鞘的同时,也启动了抗炎机制。激素在抗炎的同时也抑制了抑炎性的细胞因子的产生,而中药保护了抑制炎性的内源性积极因素,对于后期的修复和减少复发有利。
     2.2.4动物病理切片显示,EAE组脑组织和脊髓组织切片均可见炎症细胞浸润,血管增生等炎症表现。而在正常组脑组织切片中血管很少增生,未见炎症细胞浸润。
     结论:
     1.多发性硬化发作期总T细胞和CD4+T细胞相对较高,T细胞的这一规律可能为成为多发性硬化病情变化的指标。
     2.疏肝健脾固髓方治疗多发性硬化的机制可能是降低了致炎性细胞因子的表达,并保护抑炎性细胞因子的表达达到控制炎症的作用。虽然抑制炎症细胞因子的作用不及皮质激素,但对于抑炎细胞因子具有保护作用为其特点,这似可以对疏肝健脾固髓方控制急性期症状作用不如激素,而具有减少多发性硬化复发作用的临床现象的解释。
     3.小鼠EAE模型可作为多发性硬化药物抗炎作用靶点筛选模型,TNF-α、IFN-γ、 IL-21、IL-17F和IL-10、IL-4等指标较为敏感,可以用于药物筛选和判断疗效。为进一步的MS药物治疗和药物筛选提供了实验依据。
     4.在采用MOG35-55免疫C57BL小鼠建立的EAE慢性迁延型模型中出现的个别复发缓解现象,提示小鼠自身免疫情况可能存在较大的差异,在应用EAE这一经典模型时仍需要注意到可能对急性发作期药物筛选造成干扰。相反,而这一现象有可能为复发缓解型模型的来源提供新的研究思路。
Objective Studing the correlativity of peripheral blood T cells subsets in patients with multiple sclerosis of and the stage of disease.Investigate the possibilities of T-cell subs ets as indicators of multiple sclerosis changes in condition and foudation of treatment. Explore the mechanism of Shuganjianpi Gusui Recipe treat MS by EAE modal.
     Methods
     MS patients wound be classified according to the stage of disease, statistics variation of peripheral blood T cell subsets in differate stage. Using of cluster analysis to explore the characteristics of the syndrome of multiple sclerosis. Shuganjianpi Gusui Recipe treats animal model of multiple sclerosis, detected its peripheral inflammatory cytokine protein expression and observed the pathological changes.
     Results
     1. Clinical Research:
     1.1CD4+T cells subsets of MS in hormone treatment stage is higher than early onset desease, period of influence hormones, stable period, difference had statistical significance (P<0.05). There was significant difference while CD3+CD19-T subsets after hormone treatment is significantly lower than hormone treatment stage (.P<0.05). The rest of the T cell subsets in each stage of disease showed no significant difference(P>0.05).
     1.2In clinical studies, most MS patients with varying degrees of liver and spleen deficiency syndrome characteristics. For example, depression (50.8%), two flank discomfort (22.2%), tightness in the chest(31.7%), irritability (41.3%), lassitude (65.1%), decreased appetite(28.6%), nausea (12.7%), hiccups (12.7%), belching (14.3%), abdominal distension (22.2%), epigastric fullness (28.6%).Cluster analysis of symptoms is divided into three categories:the first category:the first cluster of symptoms manifested as shuiyin, the second cluster of phlegm, and the third cluster as spleen deficiency. The second category:the first cluster of the heart and kidney yin deficiency, the second cluster of yin difiency huowang. The third category is the yang deficiency. The fourth category is the yin and yang deficiency.
     2. Experimental Research:
     2.1MOG35-55immunization of C57BL mice obtained EAE chronic persistent model. Found that the mice first time of onset14-17days after immunization, clinical score for about1. The peak incidence on19-29days, it's clinical score between1and2.5. Subsequently moved to a chronic stage which having clinical score remained1to2. Few mice were found having relapse phenomenon, the frequency of recurrence and symptom scores decreased with time, in about three months the relapse-remitte mouse reached the same plateau with chronic mouse.
     2.2Mechanisms of Shuganjianpi Gusui Recipe animal model for multiple sclerosis:
     2.2.1In EAE model, IL-21, IL-17F as inflammatory cytokines, increased firstly and then decreased, indicating that they play a role early in the disease. In hormone group they elevated were not obvious, in the TCM group IL-17F was a downward trend.
     2.2.2In EAE, TNF-a as an inflammatory cytokine gradually increased, But in the hormone group and TCM group was first decreased and then increased, especially at4week was more evident. IFN-y as pro-inflammatory cytokines in EAE was gradually increased, but in the hormone group and TCM group decreased at first and then slightly rising, and the most significant decline at4weeks.
     Indicating TCM group and hormones group may play a role in inhibiting inflammatory at early onset of the disease and anti-inflammatory effect gradually diminishes at late stage.
     2.2.3IL-10and IL-4as the anti-inflammatory cytokines in EAE gradually increased, so do the same in TCM group.The increase in the TCM group more obvious, especially at8weeks, but the hormone group does not show this trend. Point to EAE showed myelin damage in the acute phase of inflammation, but also launched anti-inflammatory mechanism as progression of desease.
     Hormones inhibited inflammatory cytokine production, also inhibited the anti-inflammatory cytokine production. TCM protected the endogenous positive factors of anti-inflammatory cytokine, did favor for the repair and reduce recurrence late.
     2.2.4Animal Pathology revealed, EAE brain tissue and spinal cord tissue slices showed obvious inflammatory cell infiltration, vascular proliferation. Normal brain tissue slices showed little inflammatory cell proliferation, few vascular angiogenesis.
     Conclusion
     1. Total T cells and CD4+T cells is higher on exacerbation of Multiple sclerosis than other stage of MS, as this rule, T cells may be to be an indicator of condition changes in multiple sclerosis.
     2. The mechanism of Shuganjianpi Gusui Recipe treat multiple sclerosis may be reduces the expression of pro-inflammatory cytokines, and protection anti-inflammatory cytokines to control inflammation. Although inhibition of pro-inflammatory cytokines is less than hormones, but for anti-inflammatory cytokines have a protective effect as its features of TCM. This seems to be explain that Shuganjianpi Gusui Recipe control of acute symptoms weeker than hormones, which have a reduced role in multiple sclerosis clinical recurrence.
     3. EAE mouse model can be used as screening target of anti-inflammatory drugs model of multiple sclerosis, TNF-a, IFN-y, IL-21, IL-17F and IL-10, IL-4are more sensible, can be used to screening drugs and determine the drugs'efficacy, provides an experimental basis for further study in MS drug therapy and drug screening.
     4. MOG35-55immunization of C57BL mice obtained EAE chronic persistent model. Few mice were found having relapse phenomenon, point to there may be a big difference in murine autoimmune conditions. In the application of this classic model of EAE is still aware that the possibility of causing interference for drug screening of acute exacerbation.
引文
[1]Dutta R, Trapp BD, et al. Pathogenesis of axonal and neuronal damage in multiple sclerosis[J].Neurology,2007,68(22 Suppl 3):S22-31; discussion S43-54. Review.
    [2]Frohman EM, Racke MK, Raine CS. Multiple sclerosis --the plaque and its pathogenesis[J]. N Engl J Med,2006,354(9):942-955.
    [3]Lassmann H, Bruck W, Lucchinetti, CF. The immunopathology of multiple sclerosis:an overview[J]. Brain Pathol,2007,17(2):210-218.
    [4]McFarland HF, Martin R. Multiple sclerosis:a complicated picture of autoimmunity[J]. Nat Immunol,2007,8(9):913-919.
    [5]Steinman, L. A molecular trio in relapse and remission in multiple sclerosis[J]. Nat Rev Immunol,2009,9(6):440-447.
    [6]Bielekova B, Goodwin B, Richert N, et al. Encephalitogenic potential of the myelin basic protein peptide(amino acids 83-99)in multiple sclerosis:results of a phase Ⅱ clinical trial with an altered peptide ligand[J].Nat Med,2000,6(10):1167-1175.
    [7]Markovic-Plese S, Pinilla C, Martin R. The initiation of the autoimmune response in multiple sclerosis[J].Clin Neurol Neurosurg,2004,106(3):218-222
    [8]Langrish CL, Chen Y, Blumenschein WM, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation[J]. J Exp Med,2005,201(2):233-240.
    [9]Ivanov II, Mckenzie BS, Zhou L, et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells[J]. Cell,2006,126(6): 1121-1133.
    [10]Tzartos JS, Friese MA, Craner MJ, et al. Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated with active disease in multiple sclerosis[J]. Am J Pathol,2008,172(1):146-155.
    [11]Martin AJ, Zhou L, Miller SD.MicroRNA-Managing the TH-17 Inflammatory Response[J].Nat Immunol,2009,10(12):1229-1231.
    [12]Lees JR, Golumbek PT, Sim J, et al. Regional CNS responses to IFN-gamma determine lesion localization patterns during EAE pathogenesis[J]. J Exp Med,2008,205(11):2633-2642.
    [13]Segal BM. Th17 cells in autoimmune demyelinating disease[J]. Semin Immunopathol, 2010,32(1):71-77.
    [14]Kroenke MA, Carlson TJ, Andjelkovic AV, et al. IL-12-and IL-23-modulated T cells induce distinct types of EAE based on histology, CNS chemokine profile, and response to cytokine inhibition[J]. J Exp Med,2008,205(7):1535-1541.
    [15]Goverman J. Autoimmune T cell responses in the central nervous system[J]. Nat Rev Immunol,2009,9(6):393-407.
    [16]Jager A, Dardalhon V, Sobel RA, et al. Thl, Th17, and Th9 effector cells induce experimental autoimmune encephalomyelitis with different pathological phenotypes[J]. J Immunol,2009,183(11):7169-7177.
    [17]Steinman L. A rush to judgment on Th17[J]. J Exp Med,2008,205(7):1517-1522.
    [18]于周,吕志宇,李作孝.35例多发性硬化患者Th17细胞及相关细胞因子的检测[J].重庆医学,2011,40(7):644-645.
    [19]Park H, Li Z, Yang XO, et al. A distinct lineage of CD4+T cells regulates tissue inflammation by producing interleukin 17 [J].Nat Immunol,2005,6(11):1133-1141.
    [20]Michel ML, Mends-da-Cruz D, Keller AC, et al. Critical role of ROR-gammat in a new thymic pathway leading to IL-17-producing invariant NKT cell differentiation[J].Proc Nat Acad Sci USA,2008,105(50):9845-9850.
    [21]Chen Z, Laurence A, Oshea JJ, et al. Signal transduction pathways and transcriptional regulation in the control of Th17 differentiation[J].Semin Immunol,2007,19(6):400-408.
    [22]Sutton C, Brereton C, Kepgh B, et al. A crucial role for interleukin (IL)-in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis[J].Exp Med,2006, 203(7):1685-1691.
    [23]Elizabeth C. Nowak,Casey T. Weaver,Henrietta Turner.IL-9 as a mediator of Th17-driven inflammatory disease[J]. J Exp Med,2009,206(8):1653-1660.
    [24]Gyulveszi G, Haak S, Becher B.IL-23-driven encephalo-tropism and Th17 polarization during CNS-inflammation in vivo[J].Eur J Immunol,2009,39(7):1864-1869.
    [25]Kebir H, Kreymborg K, Iferganetal I, et al. Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation[J].Nature Medicine, 2007,13(10):1173-1175.
    [26]Axtell RC, de Jong BA, Boniface K, et al. T helper type 1 and 17 cells determine efficacy of interferon-beta in multiple sclerosis and experimental encephalomyelitis[J].Nat Med,2010,16(4):406-412.
    [27]Venken K, Hellings N, Thewissen M. Compromised CD4+CD25high regulatory T-cell function in patients with relapsing-remitting multiple sclerosis is correlated with a reduced frequency of FOXP3-positive cells and reduced FOXP3 expression at the single cell level[J].Immunology,2008,123(1):79-89.
    [28]熊英琼,王朝东,谢旭芳等.多发性硬化及视神经脊髓炎患者外周血CD4+CD25+调节性T细胞的检测及其临床意义—附53例报告[J].新医学,2008,39(10):639-641
    [29]Kohm AP, Carpentier PA, Miller SD.Regulation of experimental autoimmune encephalomyelitis(EAE) by CD4+CD25+regulatory T cells[J].Novartis Found Symp,2003, 252:45-52.
    [30]Seddiki N, Santner-Nanan B, Tangye SG, et al. Persistence of naive CD45RA+regulatory T cells in adult life[J]. Blood,2006,107(7):2830-2838.
    [31]Liu R, Bai Y, Vollmer TL,et al.IL-21 receptor expression determines the temporal phases of experimental autoimmune encephalomyelitis[J].Exp Neurol.2008,211(1):14-24.
    [32]Ford ML, Evavold BD. Specificity, magnitude, and kinetics of MOG-specific CD8+T cell responses during experimental autoimmune encephalomyelitis[J]. Eur J Immuno,2005,35(1): 76-85.
    [33]Yu JZ, Ding J, Ma CG, et al. Therapeutic potential of experimental autoimmune encephalomyelitis by Fasudil,a Rho kinase inhibitor[J].J Neurosci Res,2010,88(8):1664-1672.
    [34]Goverman JM. Immune tolerance in multiple sclerosis[J].Immunol Rev,2011,241(1): 228-240.
    [35]Berthelot L, Laplaud DA, Pettre S, et al. Blood CD8+T cell responses against myelin determinants in multiple sclerosis and healthy individuals[J].Eur J Immunol,2008,38(7): 1889-1899.
    [36]Ji Q, Perchellet A, Goverman JM. Viral Infection Triggers Central Nervous System Autoimmunity Via Activation of CD8+ T Cells expressing dual TCRs[J].Nat Immunol,2010, 11(7):628-634.
    [37]Zang YC, Li S, Rivera VM, et al. Increased CD8+ cytotoxic T cell responses to myelin basic protein in multiple sclerosis[J]. J Immunol,2004,172(8):5120:5127.
    [38]Serafini B, Rosicarelli B, Magliozzi R, et al. Dendritic cells in multiple sclerosis lesions: maturation stage, myelin uptake, and interaction with proliferating T cells[J]. J Neuropathol Exp Neurol,2006,65(2):124-141.
    [39]Junker A, Ivanidze J, Malotka J, et al. Multiple sclerosis:T-cell receptor expression in distinct brain regions[J]. Brain,2007,130(Pt11):2789-2799.
    [40]Bitsch A, Schuchardt J, Bunkowski S, et al. Acute axonal injury in multiple sclerosis. Correlation with demyelination and inflammation[J]. Brain,2000,123(Pt6):1174-1183.
    [41]Tennakoon DK, Mehta RS, Ortega SB, et al. Therapeutic induction of regulatory, cytotoxic CD8+ T cells in multiple sclerosis[J].J Immunol,2006,176(1):7119-7129.
    [42]Jiang H, Chess L. Regulation of immune responses by T cells[J].N Engl J Med,2006, 354(11):1166-1176.
    [43]Wekerle H.Lessons from multiple sclerosis:models, concepts, observations[J].Ann Rheum Dis,2008,67 Suppl 3:56-60.
    [44]Kovanen PE, Leonard WJ.Cytokines and immunodeficiency diseases:Critical roles of the gamma(c)-dependent cytokines interleukins 2,4,7,9,15, and 21, and their signaling pathways[J].Immunol Rev,2004,202:67-83.
    [45]Suto A, Wurster AL, Reiner SL, Grusby MJ.IL-21 inhibits IFNgamma production in developing Thl cells through the repression of Eomesodermin expression [J].J Immunol,2006, 177(6):3721-3727.
    [46]Korn T, Bettelli E, Gao W, et al.IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells[J].Nature,2007,448(7152):484-487.
    [47]Vollmer TL, Liu R, Price M, et al.Differential effects of IL-21 during initiation and progression of autoimmunity against neuroantigen[J].J Immunol,2005,174(5):2696-2701.
    [48]Zhou L, Ivanov, II, Spolski R, et al.IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways[J].Nat Immunol 2007,8(9):967-974.
    [49]Wei L, Laurence A, Elias KM, O'Shea JJ.IL-21 is produced by Th17 cells and drives IL-17 production in a STAT3-dependent manner[J] J Biol Chem,2007,282(48):34605-34610.
    [50]Dienz O, Eaton SM, Bond JP, et al.The induction of antibody production by IL-6 is indirectly mediated by IL-21 produced by CD4+T cells[J].J Exp Med,2009,206(1):69-78.
    [51]Nurieva R, Yang O, Martinez G, et al.Essential autocrine regulation by IL-21 in the generation of inflammatory T cells[J].Nature,2007,448(7152):480-483.
    [52]Zhou L, Ivanov II, Spolski R, et al.IL-6 programs TH-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways [J].Nature Immunol,2007,8(9): 967-974.
    [53]Langrish CL, Chen Y, Blumenschein WM, et al.IL-23 drives a pathogenic T cell population that induces autoimmune inflammation[J].J Exp Med,2005,201(2):233-240.
    [54]Veldhoen M, Hocking RJ, Atkins CJ, et al.TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells[J].Immunity, 2006,24(2):179-189.
    [55]Harrington LE, Hatton RD, Mangan PR, et al.Interleukin 17-producing CD4 effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages [J].Nat Immunol, 2005,6(11):1123-1132.
    [56]Thakker P, Leach MW, KuangW, et al. IL-23 is critical in the induction but not in the effector phase of experimental autoimmune encephalomyelitis [J].J Immunol,2007,178(4): 2589-2598.
    [57]Park H, Li Z, Yang XO, et al.A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17[J].Nat Immunol,2005,6(11):1133-1141.
    [58]Sutton C, Brereton C, Keogh B, et al. A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis[J].JEM,2006,203 (7):1685-1691.
    [59]Kimura A, Naka T, Kishimoto T.IL-6-dependent and independent pathways in the development of interleukin 17-producing T helper cells [J].Proc Natl Acad Sci USA,2007, 104(29):12099-12104.
    [60]Gran B, Zhang G, Yu S, Li J, et al.IL-12p35-deficient mice are susceptible to experimental autoimmune encephalomyelitis:evidence for redundancy in the IL-12 system in the induction of central nervous system autoimmune demyelination[J].J Immunol,2002, 169(12):7104-7110.
    [61]Cua DJ, Sherlock J, Chen Y, et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain[J].Nature,2003,421(6924):744-748.
    [62]Fabis MJ, Scott GS, Kean RB, et al.Loss of blood-brain barrier integrity in the spinal cord is common to experimental allergic encephalomyelitis in knockout mouse models[J].Proc Natl Acad Sci USA,2007,104(13):5656-5661.
    [63]Phares TW, Fabis MJ, Brimer CM,et al. A peroxynitrite-dependent pathway is responsible for blood-brain barrier permeability changes during a central nervous system inflammatory response:TNF-alpha is neither necessary nor sufficient[J].J Immunol,2007,178(11):7334-734.
    [64]Caroline Sutton, Corinna Brereton, Brian Keogh, A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis[J].The Journal of Experimental Medcine,2006,203(7):1685-1691.
    [65]Kassiotis G, Kollias G.Uncoupling the proinflammatory from the immunosuppressive properties of tumor necrosis factor (TNF) at the p55 TNF receptor level:Implications for pathogenesis and therapy of autoimmune demyelination[J].J.J Exp Med 2001,193(4):427-434.
    [66]Van der Veen RC.Nitric oxide and Thelper cell immunity [J].Int Immunopharmacol,2001, 1(8):1491-1500.
    [67]Sean Riminton D, Korner H, Strickland DH, et al.Challenging cutokine redundancy: inflammatory cell mivement and clinical course of experimental autoimmune encephalomyelitis are normal in lymphotoxin-deficient, but not rumor necrosis factor-deficient mice[J] J Exp Med,1998,187(9):1517-1528
    [68]Wheeler RD, Owens T.The changing face of cytokines in the brain:perspectives from EAE[J].Curr Pharm Des,2005,11(8):1031-1037.
    [69]Lees JR, Golumbek PT, Sim J, et al.Regional CNS responses to IFN-gamma determine lesion localization patterns during EAE pathogenesis[J].J Exp Med,2008,205(11):2633-2642.
    [70]Wensky AK, Furtado GC, Marcondes MC, et al.IFN-gamma determines distinct clinical outcomes in autoimmune encephalomyelitis[J].J Immunol,2005,174(3):1416-1423.
    [71]Cruz A, Khader SA, Torrado E, et al. Cutting edge:IFN-gamma regulates the induction and expansion of IL-17-producing CD4 T cells during mycobacterial infection [J]. J Immunol 2006,177(3):1416-1420.
    [72]BattenM, Li J, Yi S, et al. Interleukin 27 limits autoimmune encephalomyelitis by suppressing the development of interleukin 17-producing T cells[J]. Nat Immunol 2006 7(9):929-936.
    [73]Stumhofer JS, Laurence A, Wilson EH, et al.Interleukin 27 negatively regulates the development of interleukin 17-producing T helper cells during chronic inflammation of the central nervous system[J].Nat Immunol,2006,7(9):937-945.
    [74]Komiyama Y, Nakae S, Matsuki T, et al. IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis[J].J Immunol,2006,177(1):566-573.
    [75]Renno T, Taupin V, Bourbonniere L, et al. Interferon-gamma in progression to chronic demyelination and neurologic deficit following acute EAE[J]. Mol Cell Neurosci 1998, 12(6):376-389
    [76]Schwandner R, Yamaguchi K, Cao Z.Requirement of tumor necrosis factor receptor-associated factor (TRAF)6 in interleukin 17 signal transduction[J].J Exp Med,2000, 191(7):1233-1240.
    [77]Yang XO, Chang SH, Park H, et al.Regulation of inflammatory responses by IL-17F[J].J Exp Med,2008,205(5):1063-1075.
    [78]Aggarwal S, Ghilardi N, Xie MH, et al. Gurney AL.Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17[J].J Biol Chem,2003,278(3):1910-1914
    [79]Park H, Li Z, Yang XO, et al.A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17[J].Nat Immunol,2005,6(11):1133-1141.
    [80]Bettelli E, Oukka M, Kuchroo VK, et al.TH-17 cells in the circle of immunity and autoimmunity[J].Nature Immunology,2007,8(4):345-350.
    [81]O'Connor RA, Prendergast CT, Sabatos CA, et al.Cutting edge:Thl cells facilitate the entry of Th17 cells to the central nervous systemduring experimental autoimmune encephalomyelitis[J].J Immunol,2008,181(6):3750-3754.
    [82]Hofstetter HH, Ibrahim SM, Koczan D, et al.Therapeuticefficacy of IL-17 neutralization in murine experimental autoimmune encephalomyelitis[J].Cell Immunol,2005,237(2): 123-130.
    [83]Komiyama Y, Nakae S, Matsuki T, et al. IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis[J].J Immunol,2006,177(1):566-573.
    [84]Trinchieri G.Interleukin-12 and the regulation of innate resistance and adaptive immunity[J].Nat Rev Immunol,2003,3(2):133-146.
    [85]Watford WT, Moriguchi M, Morinobu A, et al. The biology of IL-12:coordinating innate and adaptive immune responses[J].Cytokine Growth Factor Rev,2003,14(5):361-368.
    [86]Gately MK, Renzetti LM, Magram J, et al.The interleukin-12/interleukin-12-receptor system:role in normal and pathologic immune responses[J].Annu Rev Immunol,1998,16: 495-521.
    [87]Leonar JP, Waldburger KE, Goldman SJ. Prevention of experimental autoimmune encephalomyelitis by antibodies against interleukin 12[J]. J Exp Med,1995,181:381-386
    [88]Kim S, Voskuhl RR.Decreased IL-12 production underlies the decreased ability of male lymph node cells to induce experimental autoimmune encephalomyelitis[J].J immunol,1999, 162(9):5561-5568
    [89]Marusic S, Leach MW, Pelker JW, et al. Cytosolic phospholipase A2 a-deficient mice are resistant to experimental autoimmune encephalomyelitis[J].J Exp Med,2005,202(6):841-851.
    [90]Trinchieri G, Pflanz S, Kastelein RA.The IL-12 family of heterodimeric cytokines:new players in theregulation of T cell responses[J].Immunity,2003,19(5):641-644.
    [91]Hunter CA.New IL-12-family members:IL-23 and IL-27, cytokines with divergent functions[J].Nat Rev Immunol,2005,5(7):521-531.
    [92]Cua DJ, Sherlock J, Chen Y, et al.Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain[J].Nature,2003,421(6924):744-748.
    [93]Gran B, Zhang GX, Yu S, et al.IL-12p35-deficient mice are susceptible to experimental autoimmune encephalomyelitis:evidence for redundancy in the IL-12 system in the induction of central nervous system autoimmune demyelination[J].J Immunol,2002,169(12):7104-7110.
    [94]Becher B, Durell BG, Noelle RJ.Experimental autoimmune encephalitis and inflammation in the absence of interleukin-12[J].J Clin Invest,2002,110(4):493-497.
    [95]Ichikawa, M., C. S. Koh, A. Inoue, et al.Anti-IL-12 antibody prevents the development and progression of multiple sclerosis-like relapsing-remitting demyelinating disease in NOD mice induced with myelin oligodendrocyte glycoprotein peptide[J].J Neuro mmunol,2000, 102(1):56-66.
    [96]Szabo SJ, Sullivan BM, Peng SL, Glimcher LH.Molecular mechanisms regulating Thl immune responses[J].Annu Rev Immunol,2003,21:713-758.
    [97]Bruno G, Niansheng C, Zhang GX, et al. Early administration of IL-12 suppresses EAE through induction of interferon-gamma [J]. J Neuroimmunol,2004,156(1-2):123-131.
    [98]Trinchieri G, Pflanz S, Kastelein RA.The IL-12 family of heterodimeric cytokines:new players in the regulation of T cell responses [J].Immunity,2003,19(5):641-644.
    [99]Zhang GX, Bruno G.Induction of experimental autoimmune encephalomyelitis in IL-12 receptor-/-deficient mice:IL-12 responsiveness is not required in the pathogenesis of inflammatory demyelination in the central nervous system[J].J Immunol,2003,170(4): 2153-2160
    [100]Vandenbroeck K, Alloza I, Gadina M, et al.Inhibiting cytokines of the interleukin-12 family:recent advances and novel challenges[J].J Pharm Pharmacol,2004,56(2):145-160.
    [101]Mark A. Kroenke, Thaddeus J. Carlson, Anuska V. Andjelkovic,et al. IL-12- and IL-23-modulated T cells induce distinct types of EAE based on histology, CNS chemokine proile, and response to cytokine inhibition[J].JEM,2008,205(7):1535-1541
    [102]Fischer HG, Reichmann GBrain dendritic cells and macrophages/microglia in central nervous system inflammation[J].J Immunol,2001,166(4):2717-2726.
    [103]King IL, Dickendesher TL, Segal BM.Circulating Ly-6C+ myeloid precursors migrate to the CNS and play a pathogenic role during autoimmune demyelinating disease [J].Blood, 2009,113(14):3190-3197.
    [104]Von Zahn J, Moller T, Kettenmann H, Nolte C.Microglial phagocytosis is modulated by pro-and anti-inflammatory cytokines[J].Neuroreport,1997,8(18):3851-3856.
    [105]Hamilton J.A.Colony stimulating factors, cytokines and monocyte-macrophages-some controversies[J].Immunol,1993,14(1):18-24.
    [106]Owens T, Tran E, Hassan Zahraee M, Krakowski M.Immune cell entry to the CNS-a focus for immunoregulation of EAE[J].Res Immunol,1998,149(9):781-789.
    [107]Shinohara H, Yano S, Bucana CD, Fidler IJ. Induction of chemokine secretion and enhancement of contact-dependent macrophage cytotoxicity by engineered expression of granulocyte-macrophage colony-stimulating factor in human colon cancer cells[J].J Immunol, 2000,164(5):2728-2737.
    [108]Gerard C, Rollins BJ.Chemokines and disease [J].Nat Immunol,2001,2(2):108-115.
    [109]Kroenke MA, Carlson TJ, Andjelkovic AV, Segal BM. IL-12-and IL-23-modulated T cells induce distinct types of EAE based on histology, CNS chemokine profile, and response to cytokine inhibition[J].J Exp Med,2008,205(7):1535-1541.
    [110]Sonderegger I, Iezzi G, Maier R, et al. GM-CSF mediates autoimmunity by enhancing IL-6-dependent Thl7 cell development and survival[J].J Exp Med,2008,205(10):2281-2294.
    [111]Codarri L, Gyulveszi G, Tosevski V, et al. RORγt drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation[J].Nat Immunol,2011,12(6):560-567.
    [112]ElBehi M, Ciric B, Dai H, et al.The encephalitogenicity of T(H)17 cells is dependent on IL-1-and IL-23-induced production of the cytokine GM-CSF[J].Nat Immunol,2011,12(6): 568-575.
    [113]Karola Poppensiekera, David-Marian Ottea, Britta Schiirmann. CC chemokine receptor 4 is required for experimental autoimmune encephalomyelitis by regulating GM-CSF and IL-23 production in dendritic cells[J].PNAS,2012,109(10):3897-3902.
    [114]McQualter JL, Darwiche R, Ewing C, et al. Granulocyte macrophage colony-stimulating factor:a new putative therapeutic target in multiple sclerosis[J].J Exp Med,2001,194(7): 873-882.
    [115]Ponomarev ED, Shriver LP, Maresz K, et al. GM-CSF production by autoreactive T cells is required for the activation of microglial cells and the onset of experimental autoimmune encephalomyelitis[J].J Immunol,2007,178(1):39-48.
    [116]Sonderegger I, Iezzi G, Maier R, et al.GM-CSF mediates autoimmunity by enhancing IL-6-dependent Thl7 cell development and survival[J].J Exp Med,2008,205(10):2281-2294.
    [117]Jonathan L, McQualter, Rima Darwiche, Christine Ewing, et al.Granulocyte Macrophage Colony-stimulating Factor:A New Putative Therapeutic Target in Multiple Sclerosis[J].J Exp Med,2001,194(7):873-881.
    [118]Mark A. Kroenke, Stephen W. Chensue, Benjamin M. Segal. EAE mediated by a non-IFN-y/non-IL-17 pathway[J].Eur J Immunol,2010,40(8):2340-2348.
    [119]Zhou M, Ouyang W.The function role of GATA-3 in Thl and Th2 differentiation[J]. Immunol Res,2003,28(1):25-37.
    [120]Glimcher LH, Murphy KM. Lineage commitment in the immune system:the T helper lymphocyte grows up [J]. Genes Dev,2000,14(14):1693-1711.
    [121]Zheng W, Flavell RA. The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells [J]. Cell,1997,89(4):587-596.
    [122]Ponomarev ED, Maresz K, Tan Y, Dittel BN. CNS-derived interleukin-4 is essential for the regulation of autoimmune inflammation and induces a state of alternative activation in microglial cells [J]. J Neurosci,2007,27(40):10714-10721.
    [123]Kim JJ, Yang JS, VanCott TC, et al. Modulation of antigen-specific humoral responses in rhesus macaques by using cytokine cDNAs as DNA vaccine adjuvants[J].J Virol,2000, 74(7):3427-3429.
    [124]Balashov K E, Comabella M, Ohashi T, et al.Defective regulation of IFN-gamma and IL-12 by endogenous IL-10 in progressive MS[J].Neurology,2000,55(2):192-198.
    [125]Issazadeh S, Mustafa M, Ljungdahl A, et al.Interferon gamma, interleukin 4 and transforming growth factor beta in experimental autoimmune encephalomyelitis in Lewis rats: dynamics of cellular mRNA expression in the central nervous system and lymphoid cells [J].J Neurosci Res,1995,40(5):579-590.
    [126]Waubant E, Gee L, Bacchetti P, et al. Relationship between serum levels of IL-10, MRI activity and interferon beta-la therapy in patients with relapsing remitting MS[J]. J Neuroimmunol,2001,112(1-2):139-114.
    [127]Moore K W, Vieira P, Fiorentino DF, et al. Homology of cytokine synthesis inhibitory factor (IL-10) to the Epstein-Barr virus gene BCRFI[J]. Science,1990,248(4960):1230-1234
    [128]Chaudhry A, Samstein RM, Treuting P, et al. Interleukin-10 signaling in regulatory T cells is required for suppression of Th17 cell-mediated inflammation [J]. Immunity,2011, 34(4):566-578.
    [129]Yao Z, Kanno Y, Kerenyi M, et al. Nonredundant roles for Stat5a/b in directly regulating Foxp3[J].Blood,2007,109(10):4368-4375.
    [130]Heo YJ, Joo YB, Oh HJ, et al. IL-10 suppresses Th17 cells and promotes regulatory T cells in the CD4+T cell population of rheumatoid arthritis patients [J]. Immunol Lett,2010,127(2):150-156.
    [131]McGeachy MJ, Stephens LA, Anderton SM.Natural recovery and protection from autoimmune encephalomyelitis:Contribution of CD4+CD25+regulatory cells within the central nervous system[J].J Immunol,2005,175(5):3025-3032.
    [132]Young DA, Iowe LD, Booth SS, et al. IL-4, IL-10, IL-13, and TGF-beta from an altered peptide ligand-specific Th2 cell clone down-regulate adoptive transfer of experimental autoimmune encephalomyelitis[J].J Immunol,2000,164(7):3563-3572.
    [133]Samoilova EB, Horton JL, Chen Y. Acceleration of experimental autoimmune encephalomyelitis in interleukin-10-deficient mice:roles of interleukin-10 in disease progression and recovery [J].Cell Immunol,1998,188(2):188-124.
    [134]Cua DJ, Groux H, Hinton DR, et al.Transgenic interleukin 10 prevents induction of experimental autoimmune encephalomyelitis[J].J Exp Med,1999,189(6):1005-1010.
    [135]Cannella B, Gao YL, Brosnan C, et al. IL-10 fails to abrogate experimental autoimmune encephalomyelitis[J]J Neurosci Res,1996,45(6):735-746.
    [136]Cua D J, Hutchins B, LaFace DM, et al.Central nervous system expression of IL-10 inhibits autoimmune encephalomyelitis[J].J Immunol,2001,166(1):602-668.
    [1]韩群英,郑若昆,郑绍周等.多发性硬化的中医思考[J].江苏中医药,2008,40(1):72-74.
    [2]孙怡,杨任民.实用中西医结合神经病学[M].北京:人民卫生出版社,1999:324
    [3]周莉,樊永平,叶明.59例不同中医证型多发性硬化患者的病理机制的研究[J].中国中西医结合杂志,2007,27(7):599-601.
    [4]石丽华,王庆武.中西医结合对防治多发性硬化症复发的疗效初探[J].广西中医药,2004,27(2):14.
    [5]周俊亮.多发性硬化中医治疗的分型与疗效[J].中国临床康复,2005,9(17):188.
    [6]连彦芬,王彦奎.辨证分型治疗多发性硬化体会[J].河北中医,2008,30(7):718-719.
    [7]刘晓艳,孙怡.补肾固髓片治疗多发性硬化的临床与实验研究[J].中国中西医结合杂志,2001,21(1):12-16.
    [8]李青,詹青,琚坚.詹文涛教授辨证治疗多发性硬化经验[J].北京中医药大学学报,2003,10(1): 18
    [9]邱仕君.邓铁涛教授对多发性硬化症的辨证经验[J].新中医,2000,32(8):9
    [10]王殿华,李永利,平阳.益髓灵胶囊治疗多发性硬化60例临床观察[J].山东中医杂志,2005,24(3):151-152
    [11]王惠.一贯煎治疗多发性硬化症15例[J].光明中医,1996,(4):39-41.
    [12]孙塑伦,李秀琴.温阳补肾法在神经系统疾病治疗中的应用[J].吉林中医药,1987(2):9-11.
    [13]高敏,林木灿,张凯娜等.地黄合剂(胶囊)治疗急性复发期多发性硬化38例临床观察[J].湖南中医杂志,2008,24(6):16-17.
    [14]陈金亮,王殿华,李永利.龟鹿益髓胶囊治疗多发性硬化症120例临床观察[J].中国中医基础医学杂志,2008,14(7):533-534.
    [15]梁健芬.补肾健脾化淤法预防多发性硬化复发疗效观察[J].实用中医药杂志,2000,16(8):3-4.
    [16]张晓雪.补肾益气活血汤治疗多发性硬化49例临床观察[J].中国中医药科技,2009,16(4):270-271.
    [17]樊永平.化瘀通络为主治疗脑部疑难病症[J].江苏中医,2001,22(5):15-17.
    [18]周佩娟,郑余银.肝活血法治疗多发性硬化合并周围神经病变的临床研究[J].广州中医药大学学报,2009,26(6):529-531.
    [19]陈韫炜.黄芪桂枝五物汤加味治疗多发性硬化30例[J].湖南中医杂志,2006,22(5):50-51.
    [20]陈阳.辨证治疗多发性硬化32例临床观察[J].国医论坛,1997,12(6):28.
    [21]梁健芬,董少龙,姚春.中西医结合治疗多发性硬化疗效观察[J].辽宁中医杂志,2000,27(5):221.
    [22]余尚贞.中药治疗多发性硬化6例[J].中医杂志,2001,42(4):209
    [23]徐辉,郝小波,陈尽好等.中西医结合三步法治疗多发性硬化[J].新中医,2010,42(9): 9-10.
    [24]孟闯,付菊花,马云枝马云枝教授治疗多发性硬化经验[J].中国民间疗法,2010,18(12):10-11.
    [25]张福顺.刘公望教授针药并用治疗多发性硬化经验[J].上海针灸杂志,2008,27(11):1-2.
    [26]崔花顺,秦亮甫,陈申旭等.秦氏“头八针”为主针药结合治疗多发性硬化20例[J].辽宁中医杂志,2011,38(2):338-340.
    [27]乔波,张春红.石学敏院士治疗多发性硬化随诊体会[J].上海针灸杂志,2011,30(7):449.
    [28]汪海燕,杨白燕.醒脑开窍针刺法治疗多发性硬化病案举隅[J].吉林中医药,2008,28(8):596.
    [29]聂卉,房丽,梅晨健.针刺背俞穴治疗多发性硬化12例[J].中国针灸,2001,21(4):223.
    [30]徐丽宏.多发性硬化治验举隅[J].吉林中医药,1996,6:12.
    [31]杨兆刚.针刺治疗多发性硬化69例[J].上海针灸杂志,1995,14(3):122.
    [32]邓海珊.多发性硬化案[J].针灸临床杂志,2007,23(10):17.
    [33]朱明,弗利克斯克莱·弗兰克.海外病案2例[J].北京中医药大学学报,2001,24(6):72-73.
    [34]丁金榜,丁辉.针灸治疗多发性硬化症1例[J].上海针灸杂志,1997,16(4):23.
    [35]刘瑞华.雷公藤片对多发性硬化患者外周血T淋巴细胞亚群的影响[J].中国神经免疫学和神经病学杂志,2000,7(3):157-160.
    [36]楚兰,马莉,杨洁等.火把花根片对多发性硬化患者外周血T淋巴细胞亚群的影响[J].中风与神经疾病杂志,2003,20(2):178-179.
    [37]高敏,高聪,杨宁.地黄合剂对多发性硬化患者外周血及脑脊液中T淋巴细胞亚群的影响[J].中药药理与临床,2001,17(5):41-43.
    [38]宋丽君,樊永平.补肾为主辨证论治对急性期多发性硬化患者血浆细胞因子的影响[J].中华中医药杂志,2010,25(5):745-748.
    [39]樊永平,王平,张星虎等.二黄方治疗多发性硬化急性发作的机制研究[J].中华中医药杂志,2007,22(1):25-29.
    [40]周莉,樊永平,王蕾等.左归丸与右归丸对EAE大鼠血浆Th1/Th2平衡的影响[J].中 西医结合心脑血管病杂志,2009,7(11):1304-1306.
    [41]樊永平,宋丽君,叶明等.左归丸和右归丸对实验性自身免疫性脑脊髓炎大鼠中枢神经系统IL-10、TGF-β蛋白表达的研究[J].首都医科大学学报,2010,31(2):233-240.
    [42]樊永平,宋丽君,龚海洋等.左归丸和右归丸对实验性自身免疫性脑脊髓炎大鼠中枢神经系统IFN-γ、MMP-9免疫组化表达的影响[J].中华中医药杂志,2009,24(11):1446-1450.
    [43]王蕾,赵晖,樊永平.补肾对脑脊髓炎大鼠生长相关蛋白-43及微管相关蛋白-2的影响[J].首都医科大学学报,2008,28(6):748-751.
    [44]王蕾,樊永平,龚海洋等.左归丸和右归丸对实验性变态反应性脑脊髓炎大鼠髓鞘及轴突再生的影响[J].中国实验方剂学杂志,2008,14(4):42-45.
    [45]樊永平,周莉,龚海洋.滋阴与温阳法对实验性自身免疫性脑脊髓炎大鼠病程及其血浆细胞因子的影响[J].北京中医药大学学报,2008,31(3):171-175.
    [46]叶明,樊永平,王蕾.左归丸与右归丸对EAE大鼠淋巴细胞亚群和NK细胞的影响[J].中华中医药杂志,2009,24(3):310-313.
    [47]刘妍,张平,李明等.补肾方对实验性自身免疫性脑脊髓炎小鼠T辅助细胞1,17和调节性T细胞的影响[J].中国实验方剂学杂志,2011,17(3):116-120.
    [48]刘晓艳,孙怡,王岚芬等.补肾固髓片对实验性变态反应性脑脊髓炎动物发病和血中IL-2、IL-6、TNF和MBP的影响[J].中国中医基础医学杂志,2000,6(10):10-13.
    [49]尚晓玲,邢广宇,张金涛等.益肾达络饮对实验性自身免疫脑脊髓炎IFN-γ、IL-4的影响[J].中医药管理杂志,2006,14(4):49-50.
    [50]尚晓玲,高颖,尹岭等.益肾达络饮对实验性自身免疫性脑脊髓炎MCP-1的影响[J].天津中医药,2006,23(5):405-408.
    [51]尚晓玲,高颖,尹岭等.益肾达络饮对实验性自身免疫性脑脊髓炎p淀粉样前体蛋白的影响[J].中国中医基础医学杂志,2008,14(9):664-666.
    [52]高颖,关东升,娄丽霞等.益肾达络饮对实验性自身免疫性脑脊髓炎p38MAPK信号转导通路的影响[J].中华中医药杂志,2011,26(2):267-270.
    [53]尚晓玲,高颖,王硕仁.实验性自身免疫性脑脊髓炎小鼠p38的变化及益肾达络饮的影响[J].辽宁中医杂志,2009,36(3):478-481.
    [54]樊永平,刘秀贞,王蕾等.二黄方对EAE大鼠外周血NK细胞和细胞因子的影响[J].北京中医药大学学报,2007,30(3):165-168.
    [55]张志慧,陈金亮,王殿华.龟鹿益髓胶囊对实验性脑脊髓炎和脊髓血管内皮中黏附因子、脾脏T淋巴细胞增殖及血清细胞因子的影响[J].中国中医基础医学杂志,2008,14(6):423-425.
    [56]贲莹,张凤华,贺明.加味温胆汤对实验性自身免疫性脑脊髓炎大鼠病程及其血清细胞因子的影响[J].河北中医药学报,2011,23(3):7-8.
    [57]孙红梅,白丽敏,宋发贤等.温阳补肾方对EAE豚鼠脊髓内NF-κB p65表达的影响[J].北京中医药大学学报,2002,25(3):36-38.
    [58]周宇倩.中药干预与多发性硬化T细胞免疫功能的相关性分析[D].北京:北京中医药大学,2011,36.
    [59]周宇倩,毛文琴,张晓君等.疏肝健脾固髓方对多发性硬化复发的影响初步报告[J].中国中西医结合杂志,2013,33(1):31-34.
    [60]毛文晴.益气解郁方加减对多发性硬化复发及细胞免疫功能影响的初步研究[D].北京:中国中医科学院,2007,45.
    [1]Glass CK, Saijo K, Winner B, et al. Mechanisms Underlying Inflammation in NeurodegenerationfJ].Cell,2010,140(6):918-934.
    [2]任晓,吴卫平,徐全刚,等.多发性硬化患者CD4+T细胞表型与病情变化的关系[J].临床荟萃,2008,23(15):1080-1082.
    [3]Chris H.Polman,Stephen C.Reingold, Brenda Banwell. Diagnostic Criteria for Multiple Sclerosis:2010 Revisions to the McDonald Criteria[J].Ann Neurol,2011,69(2):292-302.
    [4]Silviu Sbiera,Thomas Dexneit,Sybille D.Reichardt,et al.Influence of Short-Term Glucocorticoid Therapy on Regulatory T Cells In Vivo[J].PLoS One,2011,6(9):e24345.
    [5]王荣华.初发期与缓解期系统性红斑狼疮患者外周血中CD4+CD25+T细胞表达的变化[D].石家庄:河北医科大学,2012,1.
    [6]三味工作室编写.世界优秀统计软件SPSSV10.0 for Windows实用基础教程.北京:北京希望电子出版社,2001:303-332.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700