折流式旋转床性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
旋转床(又称超重机或RPB)是八十年代初发展起来的一种利用离心力场强化传质与反应的、新型的、高效化工分离设备,它可用于吸收、解吸、精馏、萃取等一些分离过程,在工业上有着极为广阔的应用和发展前景。前人对旋转床的流体力学性能、传质性能和功率消耗进行了大量研究,但绝大部分以填料式旋转床为主,且以吸收、脱吸等单元操作居多,而应用于精馏的研究甚少。
     折流式旋转床是新近开发的一种超重力旋转床,其核心部分是折流式转子,由动盘和静盘组成,在动、静盘上按一定间距同心安装了一定数量的折流圈,然后将两个盘嵌套在一起形成供汽、液流通的折流式通道。这种结构的折流式转子可使液体不断碰撞雾化,汽液停留时间适当延长,液体分布均匀,这些均是折流式旋转床的传质效率显著提高的重要原因。
     折流式旋转床经小液量下的试验表明,其具有较好的分离效果,有望应用于精馏。本文主要是在具有适合工业应用意义的操作条件下进行了冷模和热模试验,研究网孔式和百叶窗式两种不同结构的单层折流式旋转床的气相压降特性和电功率消耗特性,以及双层折流式旋转床的传质性能。实验结果表明:
     (1)折流式旋转床的干床压降大于湿床压降;气相压降随气量和转速的
    
    浙江工业大学硕士学位论文摘要
    增大而增大,随液量的加入而迅速减小,当液量继续增大到一定值时,
    气相压降随液量的变化不大。
    (2)折流式旋转床的电功率消耗随气体流量增大而增大,但趋势比较平
    缓。在小液体流量下,电功率消耗有随气体流量增加先略有减小后又
    增加的过程,随液体流量和转速的增大而增大,液体流量和转速是影
    响电功率消耗的敏感参数。
    (3)全回流下,网孔式和百叶窗式两种结构的折流式旋转床的传质效率
    均随回流液量的增加而下降,随旋转速度的增加而增加,随后变化不
    大,但百叶窗式旋转床受液量的影响比较敏感。
    (4)网孔式折流式旋转床在回流量大于ZOOL/h、转速在I000r/min左右
    时,理论板为9一10块左右。
    (5)得到了网孔式和百叶窗式两种结构折流式旋转床气相压降和电功
    率消耗对气体流量、液体流量、转速的经验关联式,回归结果与实验
    结果比较吻合,误差在士10%左右。
    (6)通过对网孔式和百叶窗式两种结构折流式旋转床性能的比较可以
    得出,网孔式折流式旋转床的综合性能要优于百叶窗式,故在工业应
    用上宜采用网孔式折流旋转床,转速宜在I000r/min左右。
A rotating packed bed (also called Higee or RPB) using centrifugal force to intensify mass transfer and chemical reaction, is a new type of high-performance equipment which was developed in the early eighties. It has wide application and bright prospect in industries, such as absorption, stripping, distillation, extraction and other separation processes. Some researches on performance of hydrodynamics, mass transfer and power consumption of the rotating bed have been studied, but mainly on absorption and stripping unit operation in the PRB, few researches on distillation.
    The zigzag rotating bed is a type of the latest developed Higee ,the key part is zigzag rotator. The rotator consists of immobile disk and rotational disk. A number of circular baffle plates are homocentrically installed on the immobile disk and rotational disk respectively at certain distance, inlaying the two disks together to form zigzag channels for liquid and gas flowing. Gas-liquid mass transfer intensification is primarily based on the results of great effective mass transfer area generated in liquid constant atomization, the proper residence time of gas and liquid, and the uniform distribution of the liquid.
    The laboratory experiments of the zigzag rotating bed showed that
    
    
    the separation effect of the unit was better, it is hopeful that the zigzag rotating bed is applied to distillation. In this thesis , the gas pressure drop and power consumption characteristics of the single-layer mesh and shutter types zigzag rotating bed were studied through the cold model (air /water system) test, and the mass transfer performance of the two structure two-layer zigzag rotating bed were investigated through the hot model (real system) test, under the operation conditions which was suitable for industry applying. The experimental results show that:
    (1) The pressure drop of the dry zigzag rotating bed is higher than that of wet one. The pressure drop increases when the gas flow rate and rotating speed enhanced, however the pressure drop initially decreases rapidly then keeps constantly almost when liquid introduced to the rotor.
    (2) The electric power consumption increases slowly as gas flow rate enhanced, however under low liquid flow rate condition, there is a process that the electric power consumption initially decreases slightly, then increases again with the gas flow rate enhanced, both liquid flow rate and rotating speed are sensitive factor of the electric power consumption.
    (3) The mass transfer efficiency of the two-layer mesh and shutter type zigzag rotating bed decrease with liquid flow rate, and increase with rotating speed then vary a little under total reflux and the same operation conditions. But liquid flow rate largely influences the mass transfer efficiency of shutter type.
    
    (4) 9 to 10 theoretical trays can be obtained when the reflux is over 200L/h and rotating speed is 1000r/min in the mesh type zigzag rotating bed.
    (5) The empirical correlation equation of the pressure drop and the electric power consumption of the two types zigzag rotating bed was derived by regression concerning on gas flow rate, liquid flow rate and rotating speed. The results of regression are agree well with those of experiment about a relative error of 10%.
    (6) The characteristics of the mesh type zigzag rotating bed are better than those of shutter type. So the mesh type is suitable, and the optimum rotating speed is about 1000r/min in industries.
引文
1、计建炳,王良华,徐之超,鲍铁虎,李瓯.折流式超重力旋转床装置[P].中国专利:ZL 01 2 68009.5
    2、鲍铁虎.超重力旋转床流体力学和传质性能的研究[D].浙江工业大学,2002
    3、徐欧管.超重力旋转床流体力学和传质性能的研究[D].浙江工业大学,2003
    4、鲍铁虎,徐之超,计建炳等.新型旋转床性能研究[J].石油化工设备,2002,31(2):16~18
    5、徐欧管,计建炳,鲍铁虎等.折流式旋转床的精馏研究[J].浙江化工,2003,34(2):3~5
    6、化学工程手册第13篇,气液传质设备[M].化学工业出版社,1989;P2~120
    7、瑾编.利用超重力场的高强度气液传质设备——HIGEE[J].硫酸工业,1991.63
    8、张政,张军,郑冲.旋转床填料空间的液相传质分析[J].工程热物理学报,1998,19(1),P86~89
    9、李振虎,郭锴,陈建铭等.旋转填充床气相压降特性研究[J].北京化工大学学报,1999,26(4)5~10
    10、简弃非,邓先和,邓颂九.碟片式旋转床气液传质特性实验研究[J].化学工程,1998,26(3).P11~14
    11、陈昭琼,熊双喜,伍极光.螺旋型旋转吸收器(Ⅱ)烟气脱硫传质系数[J].化工学报,1996,47(6),P758~761
    12、Krich.E.;实验指南——工厂蒸馏导论(中译本)第一版[M].化学工业出版社,北京,1988,P387~396
    13、Chambers. H.H., and R. C Walls, Trans, Inst. Chem. Engrsn. 32. P596 (1954)
    14、Vivian J.E.., Brian P.C.T. and Krukonis V.J., 'The Influence of Gravitational Force on Gas Absorption in a Packed Column', AICHE[J].11[6], 1088 (1965)
    15、Todd D.B. and Maclean D.C., 'Centrifugad Vapor-Liquid Contacting' [J]. British Chemical Engineering, 14[11],598 (1969)
    16、European Patent 0023745 (1981)
    
    
    17、European Patent 0024097 (1981)
    18、Herb Shot, New Mass-Transfer Find is a matter of gravity[J]. Chem. Eng. 1983, 2, P23~29
    19、European Patent 0084410 (1983)
    20、US Patent 4283255 (1981)
    21、US Patent 4382045 (1983)
    22、US Patent 4382900 (1983)
    23、Fowler R. and Khan A.s. 'VOC Removal with a Rotary Air Stripper'. AIChE Annual Meeting, New York, Nov., 15~17 (1987)
    24、Ai-Shabank., Balasundaram V. Howarth C.R., Ramshaw C. and Peel J.R.A., 'The Hydrodynamic and Mass Transfer Characteristics of a Large Centrifugal Water Deoxygenator', Personal Communication
    25、中华人民共和国专利 91109255.2
    26、中华人民共和国专利 91111028.3
    27、中华人民共和国专利 91229204.0
    28、中华人民共和国专利 92100093.0
    29、中华人民共和国专利 92102061.9
    30、中华人民共和国专利 95215430.7
    31、周绪美,郭锴,王玉红等.超重力场技术用于油田注水脱氧的工业研究[J].石油化工,1994(12)807~811
    32、王玉红,郭锴,陈建峰,郑冲.超重力场技术及其应用金属矿山[J].1999,274,P25~29
    33、陈建峰,王玉红,郭锴,郭奋,郑冲.超重力反应结晶法制备纳米立方形CaCO_3颗粒Ⅰ,实验研究[J].金属学报,1999,35(2)197~182
    34、王玉红,陈建峰,郑冲.超重力反应结晶法制备纳米立方形CaCO_3颗粒Ⅱ,模型化研究[J].金属学报,1999,35(2)183~186
    35、郭锴,柳松年等.超重力工程技术应用的新进展[J].化工进展,1997(1)1~5
    36、万冬梅.超重机技术用于工业尾气脱硫过程的研究[D].北京化工大学,1995
    37、王刚.旋转床中拟塑性非牛顿流体性质的研究[D].北京化工大学,1995
    
    
    38、J R Burns, C Ramshaw. Chem. Eng. Sci., 1996, 51(8):1347
    39、张军,郭锴,郭奋等.旋转床内液体流动的实验研究[J].高校化学工程学报,2000,14(4):378-381
    40、K Guo, F Guo, Y Feng et al. Chem. Eng. Sci.,2000,55:1699-1706
    41、F Guo, C Zheng, K Guo et al. Chem. Eng. Sci.,1997,52:3852-3859
    42、Mujal S, Dudukovic M P, Plagat Ramachandran Mass-transfer in Rotating Packed Beds-Ⅰ, Development of Gas-liquid and liquid-Solid Masstransfer Correlations[J], Chem. Eng. Sic., 1989, 44 (10), P2245~2256
    43、Mujal S, Dudukovic M P, Plagat Ramachandran Mass-transfer in Rotating Packed Beds-Ⅱ, Development of Gas-liquid and liquid-Solid Mass- transfer Correlations[J], Chem. Eng. Sic., 1989, 44 (10), P2257~2268
    44、A Basic, M P Dudukovic. Hydrodynamics and Mass Transfer in Rotating Packed Beds. Heat and Mass Transfer in Porous Media. Elsevier Sciences Publishers, 1992:651
    45、A Basic, M P Dudukovic. AIChE J. 1995,41(2):301
    46、J R Burns, J N Jamil, C Ramshaw. Chem. Eng. Sci.,2000,55:2401-2415
    47、Keyvani M, Gardner NC. Operating characteristics of rotating beds[J]. Chemical Engineering Progress. 1989,85(9):48~52
    48、郭锴.超重力机转子填料内液体流动的观测与研究[D].北京化工大学,1996
    49、Mujal S, Dudukovic M P, and Ramachandran, P.A., Mass-transfer in a Rotating Packed Bedswith Countercurrent Gas-liquid Flow, 77th Annual AIChE Meting, Chigago, [I]inois, Nov.,1985, 10-15
    50、朱慧铭.超重力场传质过程的研究及在潜艇内空气净化的应用[D].天津大学,1991
    51、郭奋.错流旋转床内流体力学与传质特性的研究[D].北京化工大学,1996
    52、王玉红.旋转床超重力装置的液泛和传质研究[D].北京化工大学,1992
    53、C L Martin, Martlli. AIChE Spring Meeting, 1992, 8:2-9
    54、沈浩,施南赓.用离心传质机对含氨废水进行吹脱[J].南京化工学院学报,1994,16(4):60-65
    55、H Liu, C Lin, S Wu. Ind. Eng. Chem. Res.,1996,35(1):3590-3596
    
    
    56、Kunar M P. and Rao D 'studies on a high-gravity gas-liquid contacator'[J], Ind. Eng. Chem. Res., 1990, 29 (5), 817
    57、李树华.关于旋转填充床压降特性的研究[D].北京:北京化工大学,1999
    58、陈海辉,邓先河,简弃非.同心环碟片填料旋转床气相压降实验研究[J].华南理工大学学报(自然科学版),1999,27(3):66-72
    59、陈海辉,邓先知,张建军等.化学吸收法测定多级离心雾化旋转床有效相界面积及体积传质系数[J].化学反应工程与工艺,1999,15(1):92-103
    60、陈海辉,简弃非,邓先和.化学吸收法测定旋转床有效相界面积[J].华南理工大学学报,1999,27(7):32-38.
    61、郭奋,郑冲,李振虎等.燃煤烟气脱硫技术交流会论文集.青岛:中国环境科学学会,1998:111-119
    63、郭奋,赵永华,崔建华等.旋转填充床内支撑对液膜控制传质过程的影响[J].华北工学院学报,2001,22(6):420-424.
    64、F Guo, Y Zhao, J Cui et al. BHR Group Limited. Better Processes for Better Products. United Kingdom: The Fluid Engineering Center, 2001:107-113.
    65、Ramshaw C., HIGEE Distillation-An Example of Process Intensification, The Chemical Engineer, 1983, Feb. 13-14
    66、陈文炳,金光海,刘传富.新型离心传质设备的研究[J].化工学报,1989,(5):635-639
    67、沈浩,施南赓.离心传质机主轴在运转时所需功率的工程计算[J].石油化工设备技术,1997,18(6):5~8
    68、陈建峰主编.超重力技术及应用——新一代反应与分离技术[M].北京:化学工业出版社,2002
    69、柳松年,宋云华,杜婉瀛,郑冲.超重力场分离机的功率测定与分析[J].北京化工大学学报,1998,25(1):39~45
    70、柳松年,宋云华,杜婉瀛,郑冲.超重力场分离机的功率分析[J].北京化工大学学报,1997,25(1):51~56

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700