体内氚测量与代谢动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氚(3H)是一种广泛存在于自然界的宇生放射性核素,也是核工业生产过程产生的人工核素,会产生公众照射剂量和职业照射剂量。反应堆运行过程中,氚化水(HTO)是主要的放射性液态和气态流出物,氚也是辐射工作人员的放射性内污染的主要核素之一。人体体内氚浓度的测量以及氚致辐射剂量的研究是氚公众照射和职业照射危害评估及其防护的主要参考依据。本论文从三方面对体内氚的测量和氚代谢动力学做了较系统的研究。
     我们与一轻水压水堆核电厂合作,现场采集部分摄氚工作人员的尿样,实验研究了影响体内氚浓度测量准确性的因素,系统比较了尿样不处理、加高锰酸钾蒸馏去色和直接蒸馏去色三种样品预处理方法以及内标准法和外标准法两种计数效率刻度方法的准确性和适用性。通过系统实验研究,认为使用低本底液闪仪采用原始尿样结合外标准法刻度效率方法比较适合大批量摄氚人群的体内氚浓度的快速准确测量。
     通过现场实验研究了氚的生物半排期和体内有机氚的比例。实验结果表明,体内氚半排期平均为10.6天,并且与工作人员的生理状况和生活习惯等因素有关。正常情况下体内有机氚约相当于氚化水的8.3%~14.1%,在体肤意外接触氚的情况下,体内有机氚的含量会骤增,最大达到氚化水的32倍,有机氚对氚致内照射剂量的贡献不应忽略。根据实验测得的体内氚浓度数据,计算了氚致待积剂量。
     在实际工作中,某些摄氚辐射工作人员往往在一段时间内持续摄氚,我们应用核素代谢动力学模型研究了持续摄氚条件下体内氚的累积、代谢和待积有效剂量。理论计算和分析表明,一次性体内氚浓度测量将低估持续摄氚所致的实际剂量,在持续摄氚情况下,应计算持续摄氚量所致的待积有效剂量。
Tritium, a very common cosmogenic radionuclide in nature and an artificial nuclide which can be produced in nuclear industry, will result in the public exposure dose and professional exposure dose. During nuclear power plants are running correctly, HTO, whether in liquid or gaseous state, is a very important radioactive effluence and the effluence of tritium is one of the nuclides which result in internal irradiation in radiation worker. Measurement of density of internal tritium and the research of tritium lead to dose is the main reference of the public exposure and the hazardous evaluation and protect of professional exposure of tritium. This experiment research the measurement of internal tritium and metabolic dynamics from three aspects.
     Cooperate with a light water reactor nuclear power plant , we collect some urine samples of workers who intake tritium, research the factors which influence the exacts of measurement of urine tritium, and compare three sample pretreatment methods,urine without deal, adding KMnO4 to distill stripping and directly distill stripping, and compare the exact and applicability of the counting efficiency of internal standard method and external standard method. Through systematic empirical study, we think that using low background Multi-purpose Scintillation Counter and adopting primitive urine sample with external standard scale efficiency method is more suitable for the quickly exact measurement of internal tritium density of a large number people taking tritium.
     Through the field experimentation, we research the biology elimination half-time of tritium and the ratio of the internal organism tritium. The experiment gets the half life of tritium in the human body is on an average of 10.6 days. Related With the staff’s physical conditions and living habits. The concentration ratio of organically bond tritium to free tritium water is from 8.3% to 14.1% in the normal work condition, and when the workers intake tritium unexpectedly, the concentration of organically bond tritium will increase sharply, the biggest times is 32 as more as free tritium water, so the proportion of organically bond tritium can not be neglected.We calculate the cumulative accumulated-effective dose of tritium based on the data of internal tritium density.
     In practical work, some radiation worker continued to taking tritium for a period of time, so we use nuclide metabolic dynamics model to research the accumulation of internal tritium, metabolism and the accumulated-effective doses under a sustained intake of tritium conditions. Theoretical calculations and analysis show that one time measuring the concentration of tritium will underestimate the actual dose of intake tritium. So, under a sustained intake of tritium condition, we should calculate the cumulative accumulated-effective dose.
引文
1. U.S. Department of Energy . Primer on Tritium Safe Handling Practices DOE-HDK-1079-94,Washington D.C.,1994.
    2. 朱寿彭,李章.放射毒理学[M].北京:原子能出版社,1992.6,480~481.
    3. Bonner T.W.Phys.Rev.,1938,v.53,p.711.
    4. International Commission on Radiological Protection . ICRP Publication 2 ,Pergamum Press,London,1969.
    5. 上野阳里.Uptake of triturated water and its distribution in Mammalian Bodes(In Japanese).Radioisotopes,1982.3,1(6):39A.
    6. 杨怀元.氚的安全与防护[M].北京:原子能出版社,1996.
    7. 杨茂春.压水堆核电站氚的辐射风险分析[J].辐射防护通讯,2000.6,20(3):1~2.
    8. 钱剑秋.CANDU核电机组的特点和发展[J].核科学与工程,2003.9,23(3):195.
    9. 王文海,何国祥.CANDU6核电站氚的控制和排放[J].核科学与工程,2001.6,21(2):1.
    10. 任天山,赵秋芬,陈炳如等.中国环境水氚浓度及其变化[J].中华放射医学与防护杂志,2001.l0,21(5):381~387.
    11. International Commission on Radiological Protection.Protection of the public in the event 0f major radiation accidents .ICRP Publication 40,Pergamum Press,London,1986.
    12. 任天山,赵秋芬,陈炳如等.我国食物和环境氚所致居民剂量[J].中华放射医学与防护杂志,2001.12,21(6):463~467.
    13. 李厚文.秦山核电厂氚的年生成量[J].核动力工程,2001.6, 22(3):285~289.
    14. 许贵.同位素氚在隧道水文地质评价中的应用[J].西部探矿工程,2004,11:111~114.
    15. 田砚亭,满荣州.利用氚化水测量树木蒸腾量和生物量方法的介绍[J].北京林业大学学报,1984.3.
    16. 黄建学,任室清,晃德胜,等.氚污染工作人员体内氚排出规律的观察[J].辐射防护,1985,5(2):81~86.
    17. 王兰新,张太明,阮太明,等.尿中氚化水和总氚的对比分析测定研究[J].四川环境,2002,21(4):27~29.
    18. 马忠乾,杨宏秀.氚的物理和化学[M].北京:中国环境科学出版社,1991,63~77.
    19. 凌球,郭兰英,李冬馀.核电站辐射测量技术[M].北京:原子能出版社,1998.6,181~185.
    20. 中华人民共和国国家标准:水中氚分析方法,GB12375-90.中国国家质量监督检验检疫总局.
    21. 强亦忠.简明放射化学教程[M].北京:原子能出版社,1999.6,59~61.
    22. 白书明.干旱地区空气中氚浓度测定方法研究[J].冰川冻土,2004.4,26(2):232~233.
    23. 贾国纲.土壤样品中氚化水的测量[J].辐射防护,1995,15(4):266-270.
    24. 温雪莲,吴斌,杨海兰,等.土样中含氚量测定方法[J].辐射防护通讯,2002.12,22(6):26~28.
    25. 石正坤,但贵萍,苑国琪,等.土壤中全氚的测定[J].核化学与放射化学,2001.5 ,23(2):125~27.
    26. 郑晓敏,吴宗梅.松针中组织自由水氚的测量[J].辐射防护,1993.7,13(4):308~309.
    27. 吴宗梅,郑晓敏.液体闪烁计数法测定共沸蒸馏生物氚活度[J].核电子学与探测技术,1994.3,14(2):109~112.
    28. 杜秀领,贾国纲.氧化蒸馏一液闪法测定尿中氚[J].辐射防护,1998.1,18(1).
    29. Yoko Watanabe,Jun Kuwabara.Ultraviolet photolysis of urine for suppression of color quenching prior to liquid scintillation counting of tritium[J].Anal Bioanal Chem 2006,384:547~550.
    30. Norio Nogawa,Yoshihiro Makide.A sub-boiling distillation method for the preparation of low carbon content water from urine samples for tritium measurement by liquid scintillation counting[J].Applied Radiation and Isotopes,1999,50:985~988.
    31. Eakins JD,Hutchinson WP,Lally AE.The Radiological Hazard From Tritium Sorbed on Metal Surfaces[J].Health Physics,1975,28:213.
    32. Butler F E.Assessment of Radioactivity in Man,Vol ⅡIAEA,1964,431.
    33. Henry P,Assessment of Radioactive Contamination in Man,IAEA,1972,641.
    34. 曲治华,王朝清.氚安全防护进展[J].核物理动态,12(4),1995.12:85~86.
    35. 中国核工业总公司行业标准.氚内照射剂量测定大纲的最低要求.EJ 850-94,1994.
    36. Balonov,M.I.Health Phys.1984,47(5).
    37. Shigeo Yoshida,Isao Murata and Akito Takahashi.Assessment of Tritium Behavior in Man Uing a Modified Three-Compartment Model[J].Journal of Nuclear Science and Technology,2002.4,39(4):316~322.
    38. Ichimasa,Y..Proceedings of the second workshop on tritium[J].Radiobiology and Health Phys,Japan 1985.
    39. 吕慧敏.连续摄入氚化水氚化小麦后氚在大鼠体内分布代谢[J].中华放射医学与防护杂志,1991,11:320~322.
    40. Robin L.Hill,John R.Johnson.Metabolism and Dosimetry of Tritium[J].Health Physics,1993,65:628~647.
    41. E.L.Etnierl,C.C.Travis,D.M.Hetrick.Metabolism of Organically Bound Tritium in Man[J].Radiation Research,1984,100:487~502.
    42. W.S.Snyder,B.R.Fish,S.R.Bernard,et al.Urinary excretion of tritium following exposure of man to HTO—A two exponentialmodel[J].Phys.Med.Biol,1968,13:547.
    43. NCRP.Tritium and Other Radionuclide Labelled Organic Compounds Incorporated into Genetic Material.NCRP Report No.63,1979.
    44. M.Saito . A modified three-compartment model for tritium metalbolism in man.Radiat.Prot.Dosim,1992.42:17.
    45. 中华人民共和国核行业标准.氚内照射剂量估算与评价方法.EJ/T287-2000,2000.9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700