微生物降解室内气态化学污染物的理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
清洁的空气是人类维系健康与幸福生活的最基本需求。然而,目前的室内空气污染却在全球范围内对公共健康造成了非常严重的威胁。尽管近年来关于室内空气净化的改良技术和新兴技术层出不穷,但由于室内气态化学污染的特殊性与现有净化技术自身存在不足与局限性,至今仍不能满足改善室内空气品质的多方面要求。
     本课题针对室内环境中广泛存在的低浓度气态有机化学污染物,提出将经济环保的微生物降解技术引入室内气态有机化学污染物控制应用领域加以充分利用,并对该技术引入的可行性进行深入探讨。本课题的研究重点在于探讨室内环境中涉及的空气温度条件对微生物降解空气净化系统长期运行可能产生的影响。
     本课题选择了室内环境最广泛存在的甲醛作为研究的目标气体,根据固定化微生物填料自身特点,对过滤系统中微生物降解化学污染物的过程进行动力学分析,建立了可预测微生物过滤系统的在进气温度影响下运行性能的数学模型。不同的进气温度会通过影响气液相之间的物质传递过程和填料内微生物转化传入污染物的速率而最终影响过滤系统运行。理论模型计算结果显示,微生物过滤系统运行性能与进气温度呈负相关关系,当温度超过30℃后,过滤性能下降趋势加剧。分析认为温度升高导致气体在循环液中的溶解度降低是造成过滤系统性能下降的主要原因。
     同时,通过监测同一台过滤系统在不同进气工况下连续运行的过滤性能变化,系统地实验研究了进气温度对微生物过滤系统运行性能的影响。实验表明,气温在30℃左右时系统的净化性能最好,平均效率高于90%。当温度升高或降低后,净化效率略有下降,但基本可保持在75%-80%的可接受范围内。而且,从长期运行的性能来看,过滤系统在相对较高的进气温度条件下运行更加稳定。此外,当进口甲醛浓度低于0.6ppmv稳定运行时,系统在各进气温度条件下都可保证出口气体的甲醛浓度低于国家卫生标准规定的健康限值(0.1mg/m~3)。
     为了验证过滤系统中微生物降解的作用,实验将同一台过滤系统的填料替换为不含微生物的空白颗粒,在与温度影响研究相同的实验条件下对该系统的过滤性能进行了连续5天的监测。结果显示,由于缺少微生物降解的实质性去除作用,过滤系统在运行48h后开始出现过滤失效,位于反应器底部的填料层将率先出现向下游散发甲醛污染的情况。
Clean air is considered to be a basic requirement of human health and well-being. However, air pollution continues to pose a significant threat to health worldwide, and air pollution in indoor environment has been one of the key threats. Despite there have been many improvement or emerging technologies come forth to improve indoor air quality (IAQ), there still has not one technology of air pollution control can remove gaseous chemical pollutants from indoor environment absolutely and meet various IAQ requirements in all dimensions, in respect to the particularity of those pollutants in physical or chemical properties, and deficiencies in these existing technologies.
     This research aiming at removal of low-concentrations gaseous organic chemical pollutants, which exist widely in indoor environment, through introduction of biodegradation technology into application of indoor air pollution control, and the feasibility of this suggestion has been discussed in depth. The focus of this research is on the potential impacts of inlet gas temperatures, which are tent to be involved in HVAC system of buildings, on long-term performance of biodegradation system for air purification.
     Formaldehyde was selected as the objective and typical gaseous chemical pollutant in this research. Based on the characteristic of immobilized-microorganisms packing and kinetic analysis about biodegradation process of gaseous chemicals in the trickling biofilters, a mathematical model was developed to predict the operational performance of the trickling biofilter with the effects of different inlet temperature. The inlet temperature influence the operation of biofiltration indirectly with the paths of Henry’s constant H(T) and bacterial specific grow rateμ(T). According to the predicted results, operational performance of the trickling biofilter represented negative correlations with inlet gas, less gaseous formaldehyde were removed by trickling biofilter when the inlet temperature was increased. Especially for the state that inlet temperature was higher than 30℃, degradation of operation performance was intensified. It is analyzed that decrease of gas solubility in circulating liquid caused by increase of temperature was the main reason.
     At the same time, through the method that continuous monitoring the periodical run of one trickling biofilter packed with immobilized-microorganisms packing under different inlet conditions, a series of systematic studies were carried out about the effect of inlet temperature on biofiltration. Experimental data presented that, the best biofiltration results, more than 90% of average removal efficiency, appeared if the inlet temperature were around 30℃, and the removal efficiency reduced as soon as temperature deviate from 30℃neither higher nor lower, but it still keep in acceptable range of 75~80%. Additionally, trickling biofilter would operate more stable at relatively higher inlet temperature from the long term. Furthermore when inlet cons of formaldehyde was under 0.6ppmv, that the cons of outlet were not exceeded the healthy limits stated by GB/T18883-2002 (0.1mg/m3) was achieved under every kind of operational condition. It was found that the trickling biofilter ceased to be effective after 48h run, because lack of substantive removal process by biodegradation, and the bottom packing stage was appeared to failure in filtration of formaldehyde at first.
     For the sake of validating action of biodegradation in trickling biofilters, the same trickling biofilter, of which packing was replaced by blank beads without bacterium, was investigated again for 5 days under the same experimental conditions with previous ones.
引文
[1] World Health Organization. The World Health Report 2002: Reducing Risks, Promoting Healthy Life[R]. Geneva: Informa Healthcare, 2003.
    [2] Andersen I. Relationships between outdoor and indoor air pollution[J]. Atmospheric Environment (1967), 1972, 6(4): 275-278.
    [3] Thompson C R, Hensel E G, Kats G. Outdoor-indoor levels of six air pollutants[J]. Journal of the Air Pollution Control Association, 1973, 23(10): 881-886.
    [4] Mestl H E S, Aunan K, Seip H M, et al. Urban and rural exposure to indoor air pollution from domestic biomass and coal burning across China[J]. Science of the Total Environment, 2007, 377(1): 12-26.
    [5] Hodgson A T, Levin H. Volatile organic compounds in indoor air: A review of concentrations measured in North America since 1990[R]. Berkeley: Lawrence Berkeley National Laboratory Report LBNL-51715, 2003.
    [6] Xu Y, Little J C. Predicting Emissions of SVOCs from Polymeric Materials and Their Interaction with Airborne Particles[J]. Environmental Science & Technology, 2006, 40(2): 456-461.
    [7] Weetman D F. Indoor Air Quality and Respiratory Disease[J]. Indoor and Built Environment, 1994, 3(1): 5-12.
    [8] Morawska L. Program and knowledge transfer in teaching indoor air science[EB/OL]. http://eprints.qut.edu.au, 2010-5-15.
    [9] Otson R, Fellin P, Tran Q. VOCs in representative canadian residences[J]. Atmospheric Environment, 1994, 28(22): 3563-3569.
    [10]吕阳,刘京,李静等.室内装修有害气体烘焙排风稀释技术实验研究[J].哈尔滨工业大学学报, 2007, 39(6): 904-907.
    [11]王利英,杨振德.建筑装修材料有毒物质的危害效应及防治对策[J].环境科学与技术, 2007, 30(2): 61-63.
    [12] Weschler C J. Changes in indoor pollutants since the 1950s[J]. Atmospheric Environment, 2009, 43(1): 153-169.
    [13] Bornehag C G, Lundgren B, Weschler C J, et al. Phthalates in Indoor Dust and Their Association with Building Characteristics[J]. Environmental Health Perspectives, 2005, 113(10): 1399-1404.
    [14] Hites R A. Polybrominated diphenyl ethers in the environment and in people: A meta-analysis of concentrations[J]. Environmental Science & Technology, 2004, 38(4): 945-956.
    [15]郝俊红,鄢道华,刘建龙等.住宅室内空气污染调查与防治[J].建筑热能通风空调, 2004, 23(1): 99-103.
    [16]黄维,陆荫,常沁春等.兰州市新装修室内环境空气污染特征[J].环境与健康杂志, 2007, 24(2): 101-103.
    [17]雷映平,廖兰,周光.室内游离甲醛的危害性及其对策[J].重庆建筑, 2002, 1(4): 48-50.
    [18]张莉.室内装修污染物的测定分析[J].福建分析测试, 2009, 18(1): 62-64.
    [19]于立群,徐应军.装饰材料引起的室内空气污染及对人体危害[J].中国煤炭工业医学杂志, 2003, 6(11): 1124-1125.
    [20]李凯夫.绿色人造板关键技术的一点思考[J].国际木业, 2003, 33(3): 10-12.
    [21] Baek S O, Kim Y S, Perry R. Indoor air quality in homes, offices and restaurants in Korean urban areas--indoor/outdoor relationships[J]. Atmospheric Environment, 1997, 31(4): 529-544.
    [22]钱华,戴海夏.室内空气污染与人体健康的关系[J].环境与职业医学, 2007, 24(4): 426-430.
    [23]成通宝,江亿.自然通风条件下室内有机物浓度的计算[J].制冷与空调, 2002, 2(3): 21-24.
    [24] Gilbert N L, Guay M, Gauvin D, et al. Air change rate and concentration of formaldehyde in residential indoor air[J]. Atmospheric Environment, 2008, 42(10): 2424-2428.
    [25]国林业科学研究所林产化学工业研究所第七研究室.国外活性炭[M].北京:中国林业出版社, 1984.
    [26]蔡杰.空气过滤ABC[M].北京:中国建筑工业出版社, 2002.
    [27] Fujishima A, Honda K. Electrochemical Photolysis of Water at a Semiconductor Electrode[J]. Nature, 1972, 238(5358): 37-38.
    [28] Hoffmann M R, Martin S T, Choi W, et al. Environmental Applications of Semiconductor Photocatalysis[J]. Chemical Reviews, 1995, 95(1): 69-96.
    [29]吴延鹏,马重芳.光催化技术在建筑环境与设备中的应用及研究现状[J].暖通空调, 2006, 36(3): 92-100.
    [30]陈金花,卢军.室内空气污染治理的研究进展[J].重庆建筑大学学报, 2007, 29(6): 108-112.
    [31]唐玄乐,史力田,贾莉等.光触媒降除空气污染物效果评价[J].中国公共卫生, 2007, 23(10): 1190-1191.
    [32] Cornejo J J, Mu?oz F G, Ma C Y, et al. Studies on the Decontamination of Air by Plants[J]. Ecotoxicology, 1999, 8(4): 311-320.
    [33] Orwell R, Wood R, Tarran J, et al. Removal of Benzene by the Indoor Plant/Substrate Microcosm and Implications for Air Quality[J]. Water, Air, & Soil Pollution, 2004, 157(1): 193-207.
    [34] Lettinga G, Velsen A F M, Hobma S W, et al. Use of the upflow sludge blanket (USB) reactor concept for biological wastewater treatment, especially for anaerobic treatment[J]. Biotechnology and Bioengineering, 1980, 22(4): 699-734.
    [35] Jones A B, O'Donohue M J, Udy J, et al. Assessing Ecological Impacts of Shrimp and Sewage Effluent: Biological Indicators with Standard Water Quality Analyses[J]. Estuarine, Coastal and Shelf Science, 2001, 52(1): 91-109.
    [36] Devinny J A, Deshusses M A, Webster T S. Biofiltration for Air Pollution Control[M]. U.S.: Lewis Publishers, 1999.
    [37] Prado J, Veiga M C, Kennes C. Effect of key parameters on the removal of formaldehyde and methanol in gas-phase biotrickling filters[J]. Journal of Hazardous Materials, 2006, 138(3): 543-548.
    [38] Lu C, Lin M R, Chu C. Effects of pH, moisture, and flow pattern on trickle-bed air biofilter performance for BTEX removal[J]. Advances in Environmental Research, 2002, 6(2): 99-106.
    [39] Jorio H, Bibeau L, Viel G, et al. Effects of gas flow rate and inlet concentration on xylene vapors biofiltration performance[J]. Chemical Engineering Journal, 2000, 76(3): 209-221.
    [40] Lu C, Lin M R, Chu C. Temperature Effects of Trickle-Bed Biofilter for Treating BTEX Vapors[J]. Journal of Environmental Engineering, 1999, 125(8): 775-779.
    [41] Yoon I K, Park C H. Effects of gas flow rate, inlet concentration and temperature on biofiltration of volatile organic compounds in a peat-packed biofilter[J]. Journal of Bioscience and Bioengineering, 2002, 93(2): 165-169.
    [42] Leson G, Winer A M. Biofiltration: An innovative air pollution control technology for VOC emissions[J]. Journal Name: Journal of the Air and Waste Management Association; (United States); Journal Volume: 41:8, 1991, Medium: X; Size: Pages: 1045-1054.
    [43] Guieysse B, Hort C, Platel V, et al. Biological treatment of indoor air for VOC removal: Potential and challenges[J]. Biotechnology Advances, 2008, 26(5): 398-410.
    [44] Darlington A, Chan M, Malloch D, et al. The Biofiltration of Indoor Air: Implications for Air Quality[J]. Indoor Air, 2000, 10(1): 39-46.
    [45] De Kempeneer L, Sercu B, Vanbrabant W, et al. Bioaugmentation of the phyllosphere for the removal of toluene from indoor air[J]. Applied Microbiology and Biotechnology, 2004, 64(2): 284-288.
    [46] Adroer N, Casas C, Mas C, et al. Mechanism of formaldehyde biodegradation by Pseudomonas putida[J]. Applied Microbiology and Biotechnology, 1990, 33(2): 217-220.
    [47]杨海洋,李轶,胡洪营等.恶臭假单胞菌对硝基苯污染河水的修复研究[J].安全与环境工程, 2008, 15(1): 54-57,61.
    [48]齐瑞颖.微生物降解室内甲醛污染物的理论与实验研究[D].天津:天津大学, 2008.
    [49]东秀珠.常见细菌系统鉴定手册[M].北京:科学出版社, 2001.
    [50]周德庆.微生物学教程[M].北京:高等教育出版社, 2002.
    [51] Ottengraf S P P, Konings J H G. Emission of microorganisms from biofilters[J]. Bioprocess and Biosystems Engineering, 1991, 7(1): 89-96.
    [52]王建龙.生物固定化技术与水污染控制[M].北京:科学出版社, 2002.
    [53]肖志方,伍林,易德莲等.海藻酸钙凝胶固定葡萄糖氧化酶的研究[J].化学与生物工程, 2008, 25(2): 42-44,53.
    [54]戴天有,刘德全等.装修房屋室内空气的污染[J].环境科学研究, 2002, 15(4): 27-27.
    [55] GB/T 18204.26-2000.公共场所空气中甲醛测定方法[S]. 2001-01-01.
    [56] GB/T 15516-1995.空气质量-甲醛的测定-乙酰丙酮分光光度法[S]. 1995-08-01.
    [57]张静.室内空气中甲醛含量检测方法对比[J].辽宁化工, 2009, 38(9): 681-684.
    [58]张进,董四清,金辄.酚试剂和乙酰丙酮法测定空气中甲醛的研究[J].环境科学与技术, 2004, 27(4): 33-35.
    [59]杨素珊.分光光度法测定空气中甲醛的研究[J].广东建材, 2006, 1(7): 103-105.
    [60] Ottengraf S P P, Oever A H C V D. Kinetics of organic compound removal from waste gases with a biological filter[J]. Biotechnology and Bioengineering, 1983, 25(12): 3089-3102.
    [61] Deshusses M A, Hamer G, Dunn I J. Behavior of biofilters for waste air biotreatment. 1. Dynamic model development [J]. Environmental Science & Technology, 1995, 29(4): 1048-1058.
    [62] Hodge D S, Devinny J S. Modeling removal of air contaminants by biofiltration[J]. Journal of Environmental Engineering, 1995, 121(1): 21-32.
    [63] Devinny J S, Ramesh J. A phenomenological review of biofilter models[J]. Chemical Engineering Journal, 2005, 113(2-3): 187-196.
    [64] Beuling E E, Heuvel J C v D, Ottengraf S P P. Diffusion coefficients of metabolites in active biofilms[J]. Biotechnology and Bioengineering, 2000, 67(1): 53-60.
    [65] Kim S, Deshusses M A. Determination of mass transfer coefficients for packing materials used in biofilters and biotrickling filters for air pollution control. 1. Experimental results[J]. Chemical Engineering Science, 2008, 63(4): 841-855.
    [66] Kim S, Deshusses M A. Determination of mass transfer coefficients for packing materials used in biofilters and biotrickling filters for air pollution control--2: Development of mass transfer coefficients correlations[J]. Chemical Engineering Science, 2008, 63(4): 856-861.
    [67] Nikiema J, Bibeau L, Lavoie J, et al. Biofiltration of methane: An experimental study[J]. Chemical Engineering Journal, 2005, 113(2-3): 111-117.
    [68] Hodge D S, Devinny J S. Determination of biofilter model constants using mini-columns[J]. Journal of Environmental Engineering, 1997, 123(6): 577-585.
    [69] Kim S, Deshusses M A. Development and experimental validation of a conceptual model for biotrickling filtration of H2S[J]. Environmental Progress, 2003, 22(2): 119-128.
    [70] Tanaka H, Matsumura M, Veliky I A. Diffusion characteristics of substrates in Ca-alginate gel beads[J]. Biotechnology and Bioengineering, 1984, 26(1): 53-58.
    [71]王建龙,周定.固定化细胞凝胶内扩散行为研究进展[J].生物工程进展, 1993, 14(2): 46-48,52.
    [72]时钧,汪家鼎,余国琮等.化学工程手册(第二册)[M].北京:化学工业出版社, 1996.
    [73]徐绍霞,张永奎,向海等.包埋氧化亚铁硫杆菌的海藻酸钙凝胶扩散特性研究[J].中国生物工程杂志, 2007, 27(5): 60-64.
    [74] Tadashi M, Satoshi N, Yoji K, et al. Electrochemical disinfection of bacteria in drinking water using activated carbon fibers[J]. Biotechnology and Bioengineering, 1994, 43(5): 429-433.
    [75] Fan L S, Leyva-Ramos R, Wisecarver K D, et al. Diffusion of phenol through a biofilm grown on activated carbon particles in a draft-tube three-phase fluidized-bed bioreactor[J]. Biotechnology and Bioengineering, 1990, 35(3): 279-286.
    [76] Metcalf L, Eddy H. Wastewater Engineering: Treatment and reuse (4th Ed.) [M]. New York: McGraw-Hill, 2003.
    [77] Alonso C, Zhu X, Suidan M T, et al. Mathematical Model of Biofiltration of VOCs: Effect of Nitrate Concentration and Backwashing[J]. Journal of Environmental Engineering, 2001, 127(7): 655-664.
    [78]王里奥,崔志强,袁辉等.固定化微生物处理甲醇废水的包埋条件优化选择[J].重庆大学学报:自然科学版, 2005, 28(6): 113-117.
    [79] Chang H N, Moo-Young M. Estimation of oxygen penetration depth in immobilized cells[J]. Applied Microbiology and Biotechnology, 1988, 29(2): 107-112.
    [80]贾绍义,柴诚敬.化工传质与分离过程(第二版)[M].北京:化学工业出版社, 2007.
    [81] Antonio A R, Sandrine B, Anne G-F, et al. Kinetics of microbial growth and biodegradation of methanol and toluene in biofilters and an analysis of the energetic indicators[J]. Journal of Biotechnology, 2008, 138(3-4): 88-95.
    [82] Delhomenie M C, Nikiema J, Bibeau L, et al. A new method to determine the microbial kinetic parameters in biological air filters[J]. Chemical Engineering Science, 2008, 63(16): 4126-4134.
    [83] Alvarez-Hornos F J, Gabalddon C, Martinez-Soria V, et al. Mathematical modeling of the biofiltration of ethyl acetate and toluene and their mixture[J]. Biochemical Engineering Journal, 2009, 43(2): 169-177.
    [84] Lin C W, Cheng Y W. Biodegradation kinetics of benzene, methyl tert-butyl ether, and toluene as a substrate under various substrate concentrations[J]. Journal of Chemical Technology & Biotechnology, 2007, 82(1): 51-57.
    [85] Schwarz B C E, Devinny J S, Tsotsis T T. A biofilter network model -- importance of the pore structure and other large-scale heterogeneities[J]. Chemical Engineering Science, 2001, 56(2): 475-483.
    [86] Morales M, Hernandez S, Cornabea T, et al. Effect of drying on biofilter performance: modeling and experimental approach[J]. Environmental Science & Technology, 2003, 37(5): 985-992.
    [87] Zobell C E, Grant C W. Bacterial Utilization of Low Concentrations of Organic Matter[J]. Journal of Bacteriology, 1943, 45(6): 555-564.
    [88]藤敏康.实验误差与数据处理[M].南京:南京大学出版社, 1989.
    [89]阎凤文.测量数据的处理方法[M].北京:原子能出版社, 1988.
    [90]马树峰.高效空气过滤器及滤纸计数效率测试相关问题研究[D].天津:天津大学, 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700