准晶增强Mg-Zn-Y合金的ECAP变形组织及力学性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁及镁合金作为目前工业应用中最轻的结构材料之一,具有良好的应用前景,然而由于镁合金自身强度较低、抗氧化性能差以及高温抗蠕变性能差等问题,使其作为某些结构件的应用受到限制,为进一步扩大其应用,人们采用了多种方法来提高其综合力学性能。二十面体准晶相(Ⅰ-phase,下同)由于其特殊的结构而具有优异的力学性能,如高强度、高硬度等,将Ⅰ-phase作为一种增强相引入到镁合金中可大大提高镁合金的力学性能,为新型镁合金的开发和实际应用提供了一种新途径。
     本文采用常规铸造法制备了含有粗大网状二十面体准晶晶界相和α-Mg两相组织的Mg-Zn-Y合金。研究了合金含量及Zn/Y比对Mg-Zn-Y合金显微组织和力学性能的影响,探讨了热处理工艺对合金中相析出行为及Ⅰ-phase热稳定性。以时效处理后的Mg-Zn-Y合金为研究对象,研究了两种塑性变形工艺(常规热挤压和等径角挤压变形)对合金显微组织和力学性能的影响,并对合金的细化机制、断裂行为和强化机制进行了研究。
     研究结果表明,在Y含量为0.3at.%~2.0at.%,Zn含量为1.7at.%~6.0at.%的富镁Mg-Zn-Y合金中,合金的铸态组织及相组成取决于Zn/Y比和Zn含量,Zn/Y比为6时,合金的铸态组织由α-Mg基体和晶界上富镁相与二十面体准晶两相共晶组织组成;在所研究的合金成分范围内,合金中Ⅰ-phase的形成及其体积分数与合金的凝固速度有关,采用快速凝固的方法得到的合金中,由于第二相的形核及长大受到抑制,形成的Ⅰ-phase的体积分数相对于常规铸造工艺下制备的合金中Ⅰ-phase的含量有所减少,同时发现,合金的极限抗拉强度和屈服强度随合金中Ⅰ-phase体积分数的增加而增加,但合金的延伸率略有降低:在400℃、24h的热处理工艺下,Mg_(95)Zn_(4.3)Y_(0.7)合金基体上有球形Ⅰ-phase析出,且析出的Ⅰ-phase在随后的时效处理中表现出热稳定性;在190℃不同时效时间下合金基体中的析出相为密排六方结构的MgZn_2相,其析出行为和Mg-Zn二元合金类似。
     Mg-Zn-Y合金的热挤压结果表明,通过挤压变形可以显著细化合金的晶粒组织,合金的晶粒大小可由变形前的40~60μm减小到8~15μm,在挤压过程中位于晶界的Ⅰ-phase被破碎并较均匀地分布在基体合金中,随着挤压比的增大,挤压温度的降低,晶粒进一步细化,Ⅰ-phase的弥散程度增加。挤压变形可以显著地提高Mg-Zn-Y合金的强度、硬度和延伸率;随着挤压比的增大,合金的强度、硬度和延伸率均有所增加;在所研究的三种合金中,Mg_(95)Zn_(4.3)Y_(0.7合金在523K以25:1的挤压比挤压后,具有较高力学性能,其极限抗拉强度为287MPa,屈服强度为203MPa,延伸率为14.1%。
     对于经过预挤压后Mg-Zn-Y合金的ECAP变形结果表明,等径角挤压(ECAP)对于预挤压态Mg-Zn-Y合金组织的细化是一个不断加强的过程,1道次ECAP变形后,在一些粗大晶粒之间分布着许多细小的晶粒,随变形道次的增加,原始粗大晶粒消失,形成均匀细小的等轴晶粒,平均晶粒尺寸为1~3μm,
Magnesium and magnesium alloy are becoming more and more attractive for many engineering structural applications owing to their low density and high specific strength, especially the significant advantage of easy-recycling. However, the application of most magnesium alloys has been greatly restricted due to their poor strength, oxidation and creep resistance. In order to extend the application of magnesium alloys, many methods have been reported to improve mechanical properties.
    Icosahedral quasicrystalline phase (I-phase) that has attractive mechanical and physical properties attributed to their unique atomic structure, such as high strength, high hardness at elevated temperature and low friction coefficient has been reported in many alloy systems. Recently, it has been reported that the Mg-Zn-Y alloys containing I-phase as a secondary solidification phase exhibit good mechanical properties at room temperature and elevated temperature, which provide a good method for the development and application of new magnesium alloys.
    In this paper, several as-cast Mg-Zn-Y bulk alloys, which consist of a coarse eutectic I-phase in the a-Mg matrix, were fabricated by using the conventional casting method of the design of composition. The effect of the alloy content and Zn/Y ratio on the microstructure of Mg-Zn-Y alloys was studied, and the precipitate behavior of the alloy and thermal stability of I-phase was also investigated. Based on the aging-treated sample, the effect of two deformation processing—hot extrusion and equal channel angular pressing(ECAP), on the microstructure and mechanical properties of Mg-Zn-Y alloys were studied. Moreover, the refinement mechanism, fracture behavior and strengthening mechanism were investigated.
    The results showed that, when the content of Y was from 0.3at.% to 2.0at.% and the content of Zn was from 1.7at.% to 6.0at.%, the as-cast microstructure and the phase constitution of Mg-Zn-Y alloys were determined by the atom ratio of Zn/Y and the content of Zn element. When the atom ration of Zn/Y is 6, the as-cast Mg-Zn-Y alloys were composed of two different types of phases: the primary a-Mg phase and I-phase. The formation capability and the volume fraction of I-phase in Mg-Zn-Y alloys were determined by the solidification rate of alloys. Because the growth of I-phase was restricted by the high solidification rate, the volume fraction of I-phase in
引文
1.曾小勤,王渠东,吕宜振,等.镁合金应用新进展.铸造,1998,(11):39-43
    2.孙伯勤.镁合金压铸件在汽车行业中的巨大应用潜力.特种铸造及有色合金,1998,(3):40-44
    3.王渠东,曾小勤,吕宜振,等.高温铸造镁合金研究与应用.材料导报,2000,14(3):21-23
    4.陈振华,严红革,陈吉华,等.镁合金.化学工业出版社,2004:446-477
    5. M. Avedesian, H. Baker. ASM Specialty Handbook: Magnesium and Magnesium Alloys. ASM International, 1999: 3-5
    6.李元东,郝远,阎峰云,等.铸造镁合金及其研究进展.材料导报,2002,16(6):24-27
    7.张津,章宗和.镁合金及应用.化学工业出版社,2004:17-18
    8. C.H. Caceres, D.M. Rovera. Solid solution strengthening in concentrated Mg-Al alloys. Journal of Light Metals, 2001, 1 (3): 151-156
    9. W. W. Du, Y.S. Sun, X.G. Min, et al. Microstructure and mechanical properties of Mg-Al based alloy with calcium and rare earth additions. Mater. Sci. Eng., A, 2003, 356: 1-7
    10. C. R. Hutchinson, J. F. Nie. Modeling the precipitation processes and strengthening mechanisms in a Mg-Al-(Zn)AZ91 alloy. Metall. Mater. Trans. A, 2005,36(8): 2093-2105
    11. L. Lu, M.O. Lai, M.L. Hoe. Formation of nanocrystalline Mg_2Si and Mg_2Si dispersion strengthened Mg-Al alloy by mechanical alloying. Nanostruct. Mater., 1998, 10(4): 551-563
    12. M. Vogel, O. Kraft, E. Arzt. Creep behavior of magnesium die-cast alloy ZA85. Scripta Mater., 2003SPEC, 48 (8): 985-990
    13. M. Vogel, O. Kraft, G. Dehm. Quasi-crystalline grain-boundary phase in the magnesium die-cast alloy ZA85. Scripta Mater, 2001, 45 (5): 517-524
    14. M. Vogel, O. Kraft, E. Arzt. Effect of calcium additions on the creep behavior of magnesium die-cast alloy ZA85. Metall. and Mater Trans. A, 2005, 36 (7): 1713-1719
    15. K. Yu, W. X. Li. Production, properties and microstructures of Mg-RE-Zn-Zr (RE=MM, Nd) alloy. J. Mater. Sci. Technol., 2002: 18 (4): 378-380
    16.赵志远.稀土金属在铸造镁合金中的应用.材料工程.1993(12):31-34
    17. W.H. Wu, C.Q. Xia. Microstructures and mechanical properties of Mg-Ce-Zn-Zr wrought alloy. Journal of Central South University of Technology (English Edition), 2004, 11(4): 367-370
    18. Y. Q. Yan, T. J. Zhang, J. Deng, et al. Microstructural evolution and tensile properties features of wrought Mg-Nd alloy. Rare Metal Mater. Eng.., 2005, 34 (6): 845-849
    19. Z.P. Luo, S.Q. Zhang, L.Q. Lu, et al. Effects of heat treatments on the properties and microstructures of extruded Mg-Nd-Zr alloy. J. Rare Earths, 1994, 12 (4): 296-298
    20. A. Rakowska, M. Podosek, R. Ciach. Some aspects of solidification and homogenisation of Mg-Agalloys. Mater Des., 1997, 18 (4—6): 279-283
    21. Y. Ortega, J. Delrio. Study of Mg-Ca alloys by positron annihilation technique. Scripta Mater, 2005, 52 (3): 181-186
    22. J. F. Nie, B.C. Muddle. Precipitation hardening of Mg-Ca(-Zn) alloys. Scripta Mater, 1997, 37 (10): 1475-1481
    23.高珊,赵浩峰.碳纤维增强镁基复合材料腐蚀行为的研究.铸造设备研究,2004(5):13-15
    24.陈煜,武凤.碳(石墨)纤维增强镁基复合材料的界面研究.稀有金属材料与工程.1997,26(3):20-25
    25.陈煜 吴桢干.石墨纤维增强镁基复合材料界面.中国有色金属学报.1997,7(3):124-126
    26.王浩伟 商宝禄.涂层碳纤维增强镁基复合材料.复合材料学报.1992,9(2):73-76
    27.李荣华,黄继华,殷声.镁基复合材料研究现状与展望.材料导报,2002,16(8):17-19
    28.郗雨林,柴东朗,张文兴,等.粉末冶金法制备SiC晶须增强MB15镁基复合材料.稀有金属材料与工程.2005,34(7):1131-1134
    29.姜传海,郑明毅,王德尊,等.碳化硅晶须镁基复合材料热残余应力及其调整.稀有金属.2001,25(4):286-288
    30.苏莹,张国定.SiC_w+B_4C_p/MB15镁基复合材料力学性能与微观结构.材料工程.1996(9):9-13
    31.胡连喜,丛飞.挤压变形对SiCw/ZK51A镁基复合材料组织和性能的影响.中国有色金属学报.2000,10(5):680-683
    32.胡茂良,吉泽升,宋润宾,等.镁基复合材料国内外研究现状及展望.轻合金加工技术.2004,32(11):10-14
    33.肖利,于立军.晶须增强铝、镁金属基复合材料的研究进展.吉林师范大学学报(自然科学版),2004(2):76-78
    34.李四年,宋守志,余天庆,等.铸造法制备纳米碳管增强镁基复合材料的力学性能研究.铸造,2004,53(3):190-193
    35.李四年,宋守志,余天庆,等.铸造法制备纳米碳管增强镁基复合材料.特种铸造及有色合金,2005,25(5):313-315
    36.洪成淼,审健,陈立佳,等.颗粒增强镁基复合材料的制备及性能.汽车工艺与材料,2005(2):7-9
    37.李新林,王慧远,姜启川.颗粒增强镁基复合材料的研究现状及发展趋势.材料科学与工艺,2001,9(2):219-224
    38.李四年,沈金龙,余天庆,等.不同涂层碳纳米管对增强镁基复合材料力学性能的影响.铸造技术,2001,25(8):590-595
    39.李四年,宋守志,余天庆,等.纳米碳管对镁基材料的强韧化作用.湖北工学院学报,2003,18(6):13-16
    40.李四年,宋守志,郑重,等.纳米碳管增强镁基复合材料的复合工艺及性能研究.铸造技术,2004,25(12):904-907
    41.李圣海,李四年,张友寿,等.镁/碳纳米管(CNTs)复合材料的力学性能初探.铸造设备研究,2003(1):9-11
    42.李四年,宋守志,余天庆,等.复合铸造法制备纳米碳管增强镁基复合材料的研究.中国机械工程,2005,16(3):260-263
    43.纪秀林,王树奇,谢建华.内生颗粒增强镁基复合材料的研究现状.上海有色金属,2004,25(3):136-140
    44.孙志强,张荻,丁剑,等.原位增强镁基复合材料研究进展与原位反应体系热力学.材料科学与工程,2002,20(4):579-584
    45.张世军,黎文献,余琨,等.镁合金的晶粒细化工艺.铸造,2001,50(7):373-375
    46.冯刚,于化顺,张琳,等.镁合金组织细化的途径.材料导报,2004,18(10):41-43
    47.刘峰,冯可芹,杨屹.镁合金晶粒细化的研究现状及发展.铸造技术,2004,25(6):450-452
    48.刘子利,沈以赴,李子全,等.铸造镁合金的品粒细化技术.材料科学与工程学报.2004,22(1):146-149
    49.刘生发,郭洪河,范晓明,等.镁及其合金铸造组织的细化.材料导报.2003,17(10):24-26
    50.杨明波,潘复生,李忠盛,等.镁合金铸态晶粒细化技术的研究进展.铸造.2005,54(4):314-319
    51. D. Shechtman, I. Blech, D. Gratias, et ai. Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett., 1984, 53 (20): 1951-1953
    52.尹妹媛,周旺民,王念鹏.立方准晶材料的裂纹问题,河北建筑科技学院学报,2001,18(2):56-59
    53.齐育红,张占平,黑祖昆,等.Al_(70-x)Cu_8Fe_(10)Cr_(12)Ce_x准晶合金的凝固形貌及组织.中国有色金属学报,1997,7(2):100-103
    54.齐育红,张占平,黑祖昆,等.Al_(65)Cu_(20)Cr_(15)准晶颗粒/铝基复合材料中二十面体准晶的扩散相变.金属学报,1998,34(1):19-23
    55.齐育红,张占平,黑祖昆,等.Al_(65)Cu_(20)Cr_(15)准晶颗粒/Al基复合材料的摩擦学性能.摩擦学学报,1998,18(2):129-135
    56.宋广生,李明军,杨根仓,等.大块深过冷Al-Mn-(Si,B)合金准晶相的初生凝固.材 料研究学报,1999,13(3):261-266
    57.胡承正,杨文革,王仁卉,等.准晶的对称性和物理性质.物理学进展,1997,17(4):345-366
    58.万润根,罗军明,周细应.一种简便评估准晶材料断裂韧性的方法.南昌航空工业学院学报,2002,16(2):75-77
    59. J. L. Wagner, K. M. Wong, S. J. Poon. Electronic properties of stable icosahedral alloys. Phys. Rev. B, 1989, 39(12): 8091-8095
    60. C. Berger, A. Gozlan, G. Fourcaudot, et al. Electronic properties of quasicrystals. Phys. Scr., 1991, T35: 90-94
    61. A. Gozlan, C. Berger, G. Fourcaudot, et al. Anomalous Hall effect related to the magnetization in pure decagonal Al-Mn phases. Phys. Rev. B, 1991, 44 (2): 575-583
    62. M. Quilichini, G. Heger, B. Hennion, et al. Inelastic neutron scattering study of acoustic modes in a monodomain AlCuFe quasicrystal. J de Phys Paris, 1990, 51: 1785-1790
    63. A. I. Goldman, C. Stassis, R. Bellissent, et al. Inelastic-neutron-scattering measurements of phonons in icosahedral Al-Li-Cu. Phys. Rev. B, 1991, 43 (10): 8763-8766
    64. B. Dubost, J. M. Lang, M. Tanaka, et al. Large AlCuLi single quasicrystals with triacontahedral solidification morphology. Nature, 1986, 324: 48-50
    65. A. P. Tsai, A. Inoue, T. Masumoto. A stable quasicrystal in Al-Cu-Fe system. Jpn. J. Appl. Phys., 1987, 26(9): 1505-1507
    66. A. P. Tsai, A. Inoue, Y. Yokoyama, T. Masumoto. Stable lcosahedral Al-Pd-Mn and Al-Pd-Re Alloys. Mater. Trans., JIM, 1990, 31 (2): 98-103
    67. W. Ohashi, F. Spaepen. Stable Ga-Mg-Zn quasi-periodic crystals with pentagonal dodecahedral solidification morphology. Nature, 1987, 330:555-556
    68. Z. P. Luo, S. Q. Zhang, Y. L. Tang, et al. On the stable quasicrystals in slowly colled Mg-Zn-Y alloys. Scripta Metall. Mater., 1995, 32 (9): 1411-1416
    69.董闯.准晶材料.国防工业出版社,1998,167-169
    70. P. Liu, A.H. Stigenberg, J.O. Nilsson. Isothermally formed quasicrystalline precipitates used for strengthening in a new maraging stainless steel. Scripta Metall. Mater., 1994, 31 (3): 249-254
    71. P. Liu, A.H. Stigenberg, J.O. Nilsson.Quasicrystalline and crystalline precipitation during isothermal tempering in a 12Cr-9Ni-4Mo maraging stainless steel. Acta Metall. Materi., 1995:43 (7): 2881-2890
    72. A.P. Tsai, K. Aoki, A. Inoue. Synthesis of quasicrystalline particle-dispersed Al base composite alloys. J. Mater. Res., 1993, 8(1):5-7
    73.齐育红,张占平,黑祖昆,等.Al_(70-x)Cu_8Fe_(10)Cr_(12)Ce_x准晶合金的凝固形貌及组织.中国有 色金属学报,1997,7(2):100-103
    74.齐育红,张占平,黑祖昆,等.Al_(65)Cu_(20)Cr_(15)准晶颗粒/铝基复合材料中二十面体准晶的扩散相变.金属学报,1998,34(1):19-23
    75.齐育红,张占平,黑祖昆,等.Al_(65)Cu_(20)Cr_(15)准晶颗粒/Al基复合材料的摩擦学性能.摩擦学学报,1998,18(2):129-135
    76. E. M. Padezhnova, E. V. Melnik, R. A. Miliyevskiy, et al. Investigation of the Mg-Zn-Y system. Russ. Metall., 1982 (4): 185-188
    77.陶春虎,张少卿,鲁立奇.Mg-Zn-Zr-RE系镁合金中的稀土相分析.中国稀土学报,1990,8(1):52-57
    78.张少卿,罗治平.MB25镁合金中的准晶体与晶体相的研究.分析测试学报,1994,13(6):35-37
    79.罗治平,张少卿,隈国,等.低Zn、高RE含量Mg-Zn-Zr-RE合金的相组成.航空学报,1994.15(7):860-865
    80. Z. P. Luo, S. Q. Zhang, Y. L. Tang, et al. Quasicrystals in as-cast Mg-Zn-RE alloys. Scripta Metall. Mater, 1993, 28: 1513-1518
    81. Y. L. Tang, D. S. Zhao, Z. P. Luo, et al. Morphology and structure ofquasicrystal phase in as-cast and melt-spun Mg-Zn-Y-Zr alloys. Scripta Metall. Mater, 1993, 29 (7): 955-958
    82. Y. L. Tang, D. S. Zhao, Z. P. Luo, et al. On the chemical composition analysis of the icosahedral phase in an Mg-Zn-Y-Zr ingot. J. Alloys Compd., 1994, 204 (1-2): 17-19
    83. D. S. Zhao, Y. L. Tang, Z. P. Luo, et al. The face-centered icosahedral quasicrystalline phase in Mg-Zn-Y-Zr alloys. Mater. Lett., 1995, 23: 277-281
    84. Z. P. Luo, S. Q. Zhang, D. S. Zhao, et al. Stable Mg-Zn-Y quasicrystals. Chin. Phys. Lett., 1995, 12 (8): 465-468
    85. Z. P. Luo, H. X. Sui, S. Q. Zhang. On the stable Mg-Zn-Y quasicrystals. Metall. Mater Trans. A, 1996, 27(7): 1779-1784
    86. Z. P. Luo, D. Y. Song, S. Q. Zhang. Strengthening effects of rare earths on wrought Mg-Zn-Zr-RE alloys. J. Alloys Compd., 1995, 230 (2): 109-114
    87. D. S. Zhao, Y. L. Tang, Z. P. Luo, et al. A Mg-Zn-Y-Zr icosahedrai quasicrystal containing linear phason strain. J. Phys.: Condens. Matter, 1994, 6: 7329-7334
    88. Z. P. Luo, H. Hashimoto. High-resolution electron microscopy observation of a new crystalline approximant W' of Mg-Zn-Y icosahedral quasicrystai. Micron, 2000, 31 (5): 487-492
    89. Z. P. Luo, H. Hashimoto. HREM observation of a new crystal approximant W' of quasicrystalline phase in Mg-Zn-Y. Electron Microcopy 1998, Symposium BB, Ⅲ: 49-50
    90. Z. P. Luo, Y.L. Tang, D. J. Miller, et al. Comment on "Quasicrystal-Crystal Transitions in Zn-Mg-rare-earthAlloys". Phys. Rev. Lett., 2000, 84 (16): 3730
    91. A. Langsdorf, F. Ritter,W. Assmus. Determination of the primary solidification area of the icosahedral phase in the ternary phase diagram of Zn-Mg-Y. Philos. Mag. Lett., 1997, 75(6): 381-387
    92. R. Sterzel, E. Dahlmann, A. Langsdorf, et al. Preparation of Zn-Mg-rare earth quasicrystals and related crystalline phases. Mater. Sci. Eng. A, 2000(294-296): 124-126
    93. S. Yi, E. S. Park, J. B. Ok, et al. (Icosahedral phase+α-Mg) two phase microstructures in the Mg-Zn-Y ternary system. Mater. Sci. Eng. A, 2001, 300 (1-2): 312-315
    94. S. Yi, E. S. Park, J. B. Ok, et al. Quasicrystals and related approximant phases in Mg-Zn-Y. Micron, 2002, 33: 565-570
    95. A. Singh, A. P. Tsai. On the cubic W phase and its relationship to the icosahedral phase in Mg-Zn-Y alloys. Scripta Mater., 2003, 49: 143-148
    96. D. H. Kim, W. T. Kim, D. H. Bae, et al. United States Patent, 6471797, 2002.10
    97. A. Inoue, Y. Kawamura, M. Matsushita, et al. Novel hexagonal structure and ultrahigh strength of magnesium solid solution in the Mg-Zn-Y system. J Mater Res., 2001, 16 (7): 1894-1900
    98. I. J. Kim, D. H. Bae, D. H. Kim. Precipitates in a Mg-Zn-Y alloy reinforced by an icosahedral quasicrystalline phase. Mater. Sci. Eng. A, 2003, 359: 313-318
    99. D. H. Bae, M. H. Lee, K. R. Kim, et al. Application of quasicrystalline particles as a strengthening phase in Mg-Zn-Y alloys. J. Alloys Compd., 2002, 342: 445-450
    100. D. H. Bae, S. H. Kim, D.H. Kim, W. T. Kim. Deformation behavior of Mg-Zn-Y alloys reinforced by icosahedral quasicrystalline particles. Acta Mater., 2002, 50: 2343-2356
    101. A. Singh, M. Nakamura, M. Watanabe, et al. Quasicrystai strengthened Mg-Zn-Y alloys by extrusion. ScriptaMater., 2003, 49: 417-422
    102. V. M. Segal, V. I. Reznikov, A. E. Drotyshevkij. Plastic working of metals by simple shear. Russ. Metall., 1981, 1: 99-105
    103. R. Z. Valiev, R. K.Islamgaliev, I. V. Alexandrov. Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci., 2000, 45 (2): 103-189
    104. K. Neishi, Z. Horita, T. G.langdon. Grain refinement of pure nickel using equal-channel angular pressing. Mater Sci. Eng. A., 2002, 325: 54-58
    105. R. Z. Valiev, E. V. Kozlov, Y. F. Ivanov, et al. Deformation behaviour of ultra-fine-grained copper. Acta Metall. Mater., 1994, 42(7): 2467-2475
    106. Y. lwahashi, Z. Horita, M. Nemoto, et al. An investigation of microstructural evolution during equalchannel angular pressing. Acta Mater., 1997, 45 (11): 4733-4741
    107. V. V. Stolyarov, Y T Zhu, I. V. Alexandrov, et al. Influence of ECAP routes on the microstructure and properties of pure Ti. Mater. Sci. Eng. A, 2001, 299: 59-67
    108. A. Yamashit, Z. Horit, T. G. Langdon. Improving the mechanical properties of magnesium and a magnesium alloy through severe plastic deformation. Mater. Sci. Eng. A, 2001, 300: 142-147
    109. D. H. Shin, B. C. Kim, Y. S. Kim, et al. Microstructural evolution in a commercial low carbon steel by equal channel angular pressing. Acta Mater., 2000, 48 (9): 2247-2255
    110. D. P. Delo, S. L. Semiatin. Finite-element modeling of nanisothermal equal-channel angnlar extrusion. Metall. Mater. Trans. A, 1999, 30 (5): 1391-1402
    111. R. Z. Valiev, D. A. Salimonenko, N. K. Tsenev, et al. Observations of high strain rate superplasticity in commercial aluminum alloys with ultrafine grain sizes. Scripta Mater., 1997, 37 (12): 1945-1950
    112. J. Wang, Z. Horita, M. Furukawa, et al. An investigation of ductility and microstructural evolution in an Al-3% Mg alloy with submicron grain size. Mater Res., 1993, 8(11): 2810-2818
    113. M. Furukawa, Y. Ma, Z. Horita, et al. Fabrication and properties of a submicrometer-grained Zn-22% Al alloy. THERME97[C]. USA: AIME, 1997: 1875-1881
    114.卢庆亮,闵光辉,王常春,等.Zn-5Al合金的等径弯曲通道变形.特种铸造及有色合金,2005,7:394-396
    115. R. Z. Valiev. Structure and mechanical properties of ultrafine-grained metals. Mater Sci. Eng. A, 1997, 234-236: 59-66
    116. M. V. Markushev, C. C. Bampton, M. Y. Murashkin, et al. Structure and properties of ultra-fine grained aluminium alloys produced by severe plastic deformation. Mater Sci. Eng. A, 1997, 234-236: 927-931
    117. T. Mukai, M.Yamanoi, H. Watanabe. Ductility enhancement in AZ31 magnesium alloy by controlling its grain structure. Scr. Mater., 2001, 45: 89-94
    118. T. Liu, W. Zhang, S. D. Wu, et al. Mechanical properties of a two-phase alloy Mg-8% Li-1%Al processed by equal channel angular pressing. Mater. Sci. Eng. A, 2003, 360: 345-349.
    119. W. Hiroyuki, M. Toshiji, I. Koichi, et al. Superplastic behavior of an ECAE processed ZK60 magnesium alloy. Mater Sci. Forum, 2003, 419:557-562
    120. S. L. Semiatin, V.M.Segal, R. L.Goetz, et al. Workability of agama titanium aluminide alloy during equal channel angular extrusion. Scripta. Mater., 1995,33(4): 535-540
    121. Z. H. Li, G. Q. Xiang, X. H. Cheng. Effects of ECAE process on microstructure and transformation behavior of TiNi shape memory alloy. Mater. Des., 2006, 27: 324-328
    122. R. Z. Valiev, R. K. Islamgaliev, N. F. Kuzmina, et al. Strengthening and grain refinement in an Al-6061 metal matrix composite through intense plastic straining. Scripta. Mater., 1999, 40: 117-122
    123. V. M. Segal. Materials processing by simple shear. Mater Sci. Eng. A, 1995, 197: 157-164
    124. Y. Iwahashi, J. Wang, Z. Horita, et al. Principle of equal-channel angular pressing for the processing of ultrafine-grained materials. Scripta Mater., 1996, 35 (2): 143-146
    125. R. E. Goforth, K.T. Hartwig, T. G. Conwell. Investigation and application of severe plastic deformation. Netherlands, 2000, 56 (3): 613-617
    126. M. Furukawa, Z. Horita, M. Nemoto, et al. Review processing of metals by equal-channel angular pressing. J. Mater Sci., 2001, 36: 2835-2843
    127. T. G. Langdon, M. Furukawa, M. Nemoto, et ai. Using equal-channel angular pressing for refining grain size. JOM, 2000, 4: 30-33
    128.张郑,席明哲,王经涛.7475铝合金的ECAP组织细化研究.轻合金加工技术,2000,28(10):37-39
    129.吴世丁,李强,姜传斌,等.铜单晶ECAP过程的剪切特征.金属学报,2000,36(6):602-607
    130. M. Furukawa, Y. Iwahashi, Z. horita, et al. The shearing characteristics associated with equal-channel angular pressing. Mater Sci. Eng. A, 1998, 257: 328-332
    131. Y. Iwahashi, Z. Horita, M. Nemoto, et al. The process of grain refinement in equal-channel angular pressing. Acta Mater., 1998, 46(9): 3317-3331
    132. Y. Iwahashi, Z. Horita, M. Furukawa, et al. Microstructural characteristics of ultrafine-grained aluminum produced using equal-channel angular pressing. Metall. Mater Trans., 1998, A29(9): 2245-2252
    133. Y. Akihiro, H. Zenji, T. G.. Langdon. Improving the mechanical properties of magnesium and a magnesium alloy through severe plastic deformation. Mater Sci. Eng. A, 2001, 300: 142-147
    134. K. Matsubara, Y. Miyahara, Z. Horita, et al. Developing superplasticity in a magnesium alloy through a combination of extrusion and ECAP. Acta Mater., 2003, 51 (11): 3073-3084
    135. A. Yamashita, Z. Horita, T. G. Langdon. Improving the mechanical properties of magnesium and a magnesium alloy through severe plastic deformation. Mater Sci. Eng., A 2001, 300: 142-147
    136.刘英,陈维平,张卫文,等.等通道转角挤压后AZ31镁合金的微观结构与性能.华南理工大学学报(自然科学版),2004,32(9):50-53
    137. Y. Yoshida, L. Cisar, S. Kamado, et al. Effect of microstructural factors on tensile properties of an ECAE-processed AZ31 magnesium alloy. Mater. Trans., 2003, 44 (4): 468-475
    138. L. Cisar, Y. Yoshida, S. Kamado, et al. Microstructures and tensile properties of ECAE-processed and forged AZ31 magnesium alloy. Mater. Trans., 2003, 44 (4): 476-483
    139. H. K. Lin, J. C. Huang, T. G. Langdon. Relationship between texture and low temperature superplasticity in an extruded AZ31 Mg alloy processed by ECAP. Mater. Sci. Eng., A, 2005, 402: 250-257
    140. M. Mabuchi, H. Iwasaki, K. Yanase, et al. Low temperature superplasticity in an AZ91 Magnesium alloy processed by ECAE. Scripta Mater, 1997, 36 (6): 681-686
    141. W. J. Kim, S. I. Hong, Y. S. Kim, et al. Texture development and its effect on mechanical properties of an AZ61 Mg alloy fabricated by equal channel angular pressing. Acta Mater, 2003, 51: 3293-3307
    142. Y. Yoshida, L. Cisar, S. Kamado, et al. Effect of microstructural factors on tensile properties of an ECAE-processed AZ31 magnesium alloy. Mater Trans., 2003, 44(4): 468-475
    143. S. R. Agnew, J. A. Horton, T. M. Lillo. Enhanced ductility in strongly textured magnesium produced by equal channel angular processing. Scripta Mater, 2004, 50: 377-381
    144. K. Matsubara, Y. Miyahara, Z. Horita. Developing superplasticity in a magnesium alloy through a combination of extrusion and ECAP. Acta Mater, 2003, 51: 3073-3084
    145. Y. Yoshida, L. Cisar, S. Kamado, et al. Texture development of AZ31 magnesium alloy during ECAE processing. Mater Sci. Forum, 2003, 419-422: 533-538
    146. V. M. Skripnyuk, E. Rabkin, Y. Estrin, et al. The effect of ball milling and equal channel angular pressing on the hydrogen absorption/desorption properties of Mg-4.95wt% Zn-0.71wt %Zr (ZK60)alioy. ActaMater., 2004, 52: 405-414
    147. A. Galiyev, R. Kaibyshev, G. Gottstein. Correlation of plastic deformation and dynamic decrystallization in magnesium alloy ZK60. Acta Mater., 2001, 49: 1199-1207
    148. Z. W. Huang, Y. Yoshida, L. Cisar, et al. Microstructures and tensile properties of wrought magnesium alloys processed by ECAE. Mater Sci. Forum, 2003, 419-422: 243-248
    149. W. Hiroyuki, M. Toshiji, I. Koichi. Low temperature superplasticity of a fine-grained ZK60 magnesium alloy processed by equal-channel-angular extrusion. Scripta Mater, 2002, 46:: 851-856
    150. V. N. Chuvildeev, T. G. Nieh, M. Yu, et al. Low-temperature superplasticity and internal friction in microcrystalline Mg alloys processed by ECAE Scripta Mater, 2004 (50): 861-865
    151. T. Liu, Y. D. Wang, S. D. Wu, et al. Textures and mechanical behavior of Mg-3.3%Li alloy after ECAP. Scripta Mater, 2004, 51 (11): 1057-1061
    152. F. Mitsuaki, X. Cheng, A. Tetsuo, et al. Improving the superplastic properties of a two-phase Mg-8% Li alloy through processing by ECAE Mater. Sci. Eng. A, 2005, (410-411): 439-442
    153. Y. Yoshida, L. cisar, S. Kamado, et al. Low temperature superplasticity of ECAE processed Mg-10%Li-1%Zn alloy. Mater Trans., 2002, 43 (10): 2419-2423
    154.刘腾,张伟,吴世丁,等.双相合金Mg-8Li-1Al的等通道转角挤压Ⅰ.挤压过程中的变形方式.金属学报.2003,39(8):790-794
    155.刘腾,张伟,吴世丁,等.双相合金Mg-8Li-1Al的等通道转角挤压Ⅱ.挤压后合金的室温拉伸性能.金属学报.2003,39(8):795-798
    156.毕见强.2A12铝块体超细晶材料的制备、模拟及细化机制的研究.山东大学博士论文,2005-11-24
    157. P. B. Berbon, M. Furukawa, Z. Horita, et al. Influence of pressing speed on microstructural development in equal-channel angular pressing. Metall. Mater Trans., 1999, A30(8): 1989-1997
    158. Y. Kim, A. Inoue, T. Masumoto, Ultrahigh tensile strengths of Al_(88)Y_2Ni_9M_1 (M=Mn or Fe) amorphous alloys containing finely dispersed fcc-Al particles. Mater Trans. JIM, 1990, 31: 747-749 (1990)
    159. A. Inoue, H. Kimura, K. Sasamori, et al, High mechanical strength of Al-(V, Cr, Mn)-(Fe, Co, Ni) quasicrystalline alloys prepared by rapid solidification. Mater. Trans. JIM, 1996, 37: 1287-1292
    1. Z. P. Luo, S. Q. Zhang, Y. L. Tang, et al. On the stable quasicrystals in slowly cooled Mg-Zn-Y alloys. Scripta Metall. Mater., 1995, 32 (9): 1411-1416
    2. S. Yi, E. S. Park, J. B. Ok, et al. (Icosahedral phase+α-Mg) two phase microstructures in the Mg-Zn-Y ternary system. Mater Sci. Eng. A, 2001, 300: 312-315
    3. D. H. Kim, W. T. Kim, D. H. Bae, et al. United States Patent, 6471797, 2002. 10
    4. D. H. Bae, S. H. Kim, D. H. Kim, et al. Deformation behavior of Mg-Zn-Y alloys reinforced by icosahedral quasicrystalline particles. Acta Mater., 2002, 50: 2343-2356
    5. D. Y. Maeng, T. S. Kim, J. H. Lee, et al. Microstructure and strength of rapidly solidified and extruded Mg-Zn alloys. Scripta Mater, 2000, 43 (5): 385-389
    6. I. J. Kim, D. H. Bae, D. H. Kim. Precipitates in a Mg-Zn-Y alloy reinforced by an icosahedral quasicrystailine phase. Mater. Sci. Engi., A, 2003, 359: 313-318
    1.李媛媛,计海涛,中健,等.热挤压镁合金AZ91的微观组织及其力学行为.沈阳工业大学学报,2005,27(2):151-154
    2.刘津伟,康永林,赵鸿金,等.挤压压力及热处理对AM60组织性能的影响.汽车工艺与材料,2004,32(9):36-37
    3.于翔,丁培道,彭健,等.挤压变形对MB15镁合金及组织性能的影响.金属成形工艺,2004,22(1):41-45
    4.张星,李保成,张治民,等.MB2镁合金变形组织性能研究.材料科学与工艺,2004,12(3):291-297
    5.翟秋亚,王智民,袁森,等.挤压变形对AZ31镁合金组织和性能的影响.西安理工大学学报,2002,18(3):254-258
    6.张星,张宝红,张治民,等.变形参数对AZ31镁合金组织性能的影响.热加工工艺,2004,4:7-11
    7.周海涛,曾小勤,王渠东,等.AZ31镁合金型材挤压工艺和组织性能分析.轻合金加工技术,2003,31(9):28-30
    8. A. Singh, M. Nakamura, M. Watanabe, et al. Quasicrystal strengthened Mg-Zn-Y alloys by extrusion. Scripta Mater., 2003, 49: 417-422
    9. A. Singh, M. Nakamura, A. Kato, et al. Microstructure and strength ofquasicrystal containing extruded Mg-Zn-Y alloys for elevated temperature application. Mater. Sci. Eng. A, 2004, 385: 382-396
    10.《轻金属材料加工手册》编写组.轻金属材料加工手册,下册,冶金工业出版社,1980:404-405
    11.白星良.有色金属压力加工.冶金工业出版社,2004:31-32
    12.马怀宪.金属塑性加工学—挤压,拉拔与管材冷轧.冶金工业出版社,1991:29-31
    13.杨守山.有色金属塑性加工学.冶金工业出版社,1982:241-242
    14.刘英.Mg-Al-X变形镁合金的制备及组织性能的研究,华南理工大学博士论文,2003
    15. J. C. Tan, M. J. Tan. Dynamic continuous recrystallization characteristics in two stage deformation of Mg-3Al-1Zn alloy sheet. Mater Sci. Eng. A, 2003, 339: 124-132
    16. R. Kaibyshev, A. Galiev, O. Sitdikov. On the possibility of producing a nanocrystalline structure in magnesium and magnesium alloys. Nanostruct. Mater., 1995, 6: 621-624
    17. A. Galiyev, R. Kaibyshev, G. Gottstein. Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60, Acta Mater, 2001, 49: 1199-1207
    1. K. Matsubara, Y. Miyahara, Z. Horita, et al. Developing superplasticity in a magnesium alloy through a combination of extrusion and ECAP. Acta Mater., 2003, 51 (11): 3073-3084
    2. A. Yamashita, Z. Horita, T. G. Langdon. Improving the mechanical properties of magnesium and a magnesium alloy through severe plastic deformation. Mater Sci. Eng. A, 2001, 300: 142-147
    3.刘英,陈维平,张卫文,等.等通道转角挤压后AZ31镁合金的微观结构与性能.华南理工大学学报(自然科学版),2004,32(9):50-53
    4. Y. Yoshida, L. Cisar, S. Kamado, et al. Effect of microstructural factors on tensile properties of an ECAE-processed AZ31 magnesium alloy. Mater. Trans., 2003, 44 (4): 468-475
    5. L. Cisar, Y. Yoshida, S. Kamado, et al. Microstructures and tensile properties of ECAE-processed and forged AZ31 magnesium alloy. Mater. Trans., 2003, 44 (4): 476-483
    6. H. K. Lin, J. C. Huang, T. G. Langdon. Relationship between texture and low temperature superplasticity in an extruded AZ31 Mg alloy processed by ECAP. Mater. Sci. Eng. A, 2005, 402: 250-257
    7. V. M. Skripnyuk, E. Rabkin, Y. Estrin, et al. The effect of ball milling and equal channel angular pressing on the hydrogen absorption/desorption properties of Mg-4.95wt%Zn-0.71wt%Zr (ZK60)alloy. Acta Mater, 2004, 52: 405-414
    8. A. Galiyev, R. Kaibyshev, G. Gottstein. Correlation of plastic deformation and dynamic decrystallization in magnesium alloy ZK60. Acta Mater, 2001, 49: 1199-1207
    9.刘腾,张伟,吴世丁,等.双相合金Mg-8Li-1Al的等通道转角挤压Ⅰ.挤压过程中的变形方式.金属学报.2003,39(8):790-794
    10.刘腾,张伟,吴世丁,等.双相合金Mg-8Li-1Al的等通道转角挤压Ⅱ.挤压后合金的室温拉伸性能.金属学报.2003,39(8):795-798
    11. T. Liu, W. Zhang, S. D. Wu, et al. Mechanical properties of a two-phase alloy Mg-8%Li-1%Al processed by equal channel angular pressing. Mater. Sci. Eng. A, 2003, 360: 345-349
    12. D. H. Bae, S. H. Kim, D. H. Kim, et al. Deformation behavior of Mg-Zn-Y alloys reinforced by icosahedral quasicrystalline particles. Acta Mater, 2002, 50: 2343-2356
    1.李永霞,张永刚,陈昌麒,等.大塑性变形材料晶界研究方法的新探索.塑性工程学报,2002,9(1):6-9
    2.索涛,李玉龙.等径通道挤压过程中晶粒细化影响因素的研究进展.材料科学与工程学报,2004,22(1):132-137
    3.张玉敏,丁桦,孝云祯.等通径弯曲通道变形(ECAP)的研究现状及发展趋势.材料与冶金学报,2002,1(4):258-262
    4.程永奇,陈振华,夏伟军.镁合金等径角挤压的研究与进展.机械工程材料,2005,29(9):1-4
    5.杨德庄.位错与金属强化机制.哈尔滨工业大学出版社,1981:135-136
    6.丁道云,等译,K.H.马图哈主编.非铁合金的结构与性能,科学出版社,1999:111-111
    7. W. J. Kim, S. I. Hong, Y. S. Kim, et al. Texture development and its effect on mechanical properties of an AZ61 Mg alloy fabricated by equal channel angular pressing. Acta Materialia, 2003, 51: 3293-3307
    8. Y. T. Zhu, T. C. Lowe. Observation and issues on mechanisms of grain refinement during ECAP process. Mater. Sci. Engineering. A, 2000, 291: 46-53
    9.郝南海,王全聪.等径侧向挤压变形均匀程度的有限元分析.中国有色金属学报,2001,11(2):230-233
    10.张建,崔宏祥,赵润娴,等.等通道转角挤压过程有限元模拟.重型机械,2002(3):43-46
    11.刘祖岩,刘钢,王尔德.等径侧向挤压等效应变分析的有限元模拟.哈尔滨工业大学学报,1999,31(3):65-67
    12.黄克琴,杨节,杨觉先,等译,波,卢欣,等著.塑性变形的物理基础.冶金工业出版社,1989:231-232
    13.王占学.塑性加工金属学.冶金工业出版社,1991:181-182
    14.石德珂.材料科学基础.机械工业出版社,2003:347-348

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700