聚合物/无机片晶共价组装材料的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机-无机复合材料在光学、电子、生物、催化、膜材料以及机械等很多方面具有很高的应用价值。近年来,由于其巨大的工业应用和理论研究价值,受到越来越多的重视。在有机-无机复合材料的构筑中,层状硅酸盐具有低含量、制备工艺简单、天然的纳米结构、极大的比表面积、强的界面作用等特点,这使得聚合物/层状硅酸盐复合材料成为应用最广且最有工业化前途的有机-无机复合材料。
     目前,世界各国对聚合物/层状硅酸盐复合材料的研究工作异常活跃,相继开发了许多高性能、新功能的复合材料,包括阻燃材料、阻隔材料、光学材料、缓释剂、抗菌剂、生物材料等,均具有极大的发展潜力和实用意义。众多研究表明,实现无机-有机两相体系在纳米尺度上的规律组装,复合材料的性能将得到极大提升。科学工作者不断地展开科技创新,利用新工艺、新方法制备各种复合材料,从而取得了长足的进步,得到了不同形态的组装体。
     但是,科学工作者研究所得组装体多数是通过硅酸盐的物理键合力组装形成,很少是通过硅酸盐-有机聚合物两相形成共价键制备硅酸盐组装体,并且我们也没有检索到具有说服力的文献,以说明这类组装体的宏观性能如何,微观结构与宏观性能存在着何种关系。为了认知这些问题,本文进行了如下实验工作,并取得了一系列研究成果:
     (1)探讨了蛭石片晶有机修饰的可行性
     选择商品化蛭石作为原料,对其进行研磨、插层以及剥分处理,制备剥分蛭石。利用硅烷偶联剂KH-550以及KH-560对剥分蛭石进行有机修饰,并探讨硅烷偶联剂用量与改性蛭石增重量的关系。采用红外光谱仪(FTIR)、光电子能谱(XPS)、热重分析(TGA)探讨蛭石片层改性前后结构的变化。实验结果表明,利用硅烷偶联剂可对蛭石片晶进行有机修饰,得到两种改性蛭石:氨基化蛭石以及环氧化蛭石。硅烷偶联剂体积用量为0.75ml时,改性蛭石的增重量为1.62%。改性蛭石的增重量随硅烷偶联剂用量的增加而增加,当硅烷偶联剂用量为5.00ml时,改性蛭石的增重量最高可以达到6.06%。
     (2)探讨了有机修饰蛭石与有机单体的组装行为以及蛭石片晶的组装机理
     将66盐与氨基化蛭石混合,然后采用原位聚合的方法制备66盐/氨基化蛭石复合材料,对制得的复合材料进行红外(FTIR)、光电子能谱(XPS)以及透射电镜(TEM)以及扫描电子显微镜(SEM)分析,在此基础上认识改性蛭石的组装行为以及其与有机高聚物的相互作用机理。实验结果表明,氨基化蛭石的氨基与66盐的羧基发生反应,形成了共价键,使得有机分子链嫁接在蛭石片层表面形成高分子刷。在高分子刷的作用下,蛭石片晶在有机相内部进行组装,形成了组装体。当复合材料中蛭石的百分含量不同发生变化,蛭石在有机相中呈现出不同的组装结构(线状、网状以及树枝状分布)。高分子刷的密度增大时,无机片晶的组装形态也发生了很大的变化,从线状分布变为层状分布。通过控制蛭石表面官能团数量,可以得到两种高粘土添加量复合体系组装体:长叶状以及棒状组装体。
     利用乳酸以及环氧化蛭石采用原位聚合的方法制备了乳酸基聚合物/环氧化蛭石复合材料,对制得的复合材料进行红外(FTIR)、光电子能谱(XPS)以及透射电镜(TEM)分析,探讨了改性蛭石在乳酸相中的组装行为及组装机理。实验结果表明,乳酸基聚合物同样可以在改性蛭石表面形成高分子刷,促使蛭石片晶进行组装,得到棒状形态的组装体。
     (3)探讨了组装材料的结构与性能
     利用扫描电子显微镜(SEM)以及原子力显微镜(AFM)对66盐/氨基化蛭石复合材料进行弹性模量分析,并对复合材料的结晶行为以及拉伸性能进行了探讨。棒状以及饼状两种组装体的弹性模量测试结果表明,无机片层与有机单体两相体系进行有序组装后,组装体的模量数值远高于其单组份的弹性模量数值。复合材料的结晶行为以及拉伸性能测试表明,相对于纯聚合物体系,含有组装体的复合材料结晶行为以及拉伸性能有了较大改善。
     利用原子力显微镜(AFM)、激光扫描聚焦显微镜测试(CLSM)、偏光显微镜测试(POM)以及热重分析(TGA)对乳酸基聚合物/环氧化蛭石复合材料分别进行了弹性模量、生物相容性、结晶行为以及热稳定性能分析。实验结果表明,乳酸系组装体的弹性模量同样高于其单组份的弹性模量,造骨细胞在材料表面表现出较强的增殖能力,具有应用于生物领域的潜力。与纯聚合物相比,含有组装体的复合材料结晶速度更快,晶粒更小,同时分解温度有了很大提高。
     (4)利用计算模拟技术对蛭石的组装行为以及影响因素进行探讨
     利用模拟软件(Materials Studio)建立了PA66/AMVMTs与HA/AMVMTs两种复合模型,并对其进行了动力学计算。探讨了两种复合模型的界面结构变化,并研究了影响无机片晶自组装进程的因素。实验结果表明,与PA66/AMVMTs模型相比,HA/AMVMTs模型的两相相容性更好,界面结构更加稳定。另外,蛭石表面嫁接的有机链长度与密度是影响其组装进程的两个重要因素。蛭石表面有机链长度与密度增加时,无机片晶模型的组装趋势更加明显。此结论为将来设计与制备新型复合材料提供了一定的理论基础。
Recently, organic-inorganic composites have attracting more interest due to their industrial applications and the exploring of theory, including optics, electrics, organisms, catalysis, membrane materials and mechanics. Among the various kinds of organic-inorganic hybrids, polymer/clay composites have become the most potential for applications because of the very low cost of clay components, relatively simple preparation, their nanometer size that provides unique features and extraordinarily high surface area.
     As far as we are aware, polymer/clay composites become more widely studied in academic, government and industrial laboratories. Based these studies, many composites with high performance and new functional properties were prepared, including the fire-retardant, barrier materials, optical materials, controlled-release materials, antibacterial agent and medical materials, which exhibited the potential or industrial applications.
     The study has demonstrated that the toughening of the composites has the formidable increase when the juxtaposition of inorganic and organic matrix was realized to form the orderly nanostructure. Thus, the new procedure and method were developed to form the novel composites and kinds of assemblies with different morphologies were obtained.
     However, none of the previous techniques reports the possibility for generating polymer-clay assemblies based on chemical bindings by in-situ polymerization, and the structure and properties of the assemblies were confused. Herein, the structure and properties of the composites were explored and the formidable results were showed as follows:
     (1) The possibility of the modification of VMTs
     The exfoliated vermiculites (VMTs) were prepared through the grinding, intercalation and exfoliation of commercial VMTs. Exfoliated VMTs were chemical modified by the silane coupling agent KH-550and KH-560and the relationship between the usage of silane coupling agent and the loading ratios of modified VMTs. The change of the structure of VMTs before and after the chemical modification was studied by Fourier Transform Infrared Spectroscopy (FTIR), X-ray Photoelectron Spectroscopy (XPS) and Thermogravimetric Analysis (TGA). The results indicated that two kinds of modified VMTs, including amino-modification and epoxy-modification VMTs, were prepared after the chemical modification of silane coupling agent. When the usage of silane coupling agent was0.75ml, the loading ratio of modified VMTs was1.62%. The loading ratio of modified VMTs was increased with the increasing of the usage of silane coupling agent. The loading ratio of modified VMTs could increase to6.06%when the usage of silane coupling agent was5.00ml.
     (2) The assembly of modified VMTs and polymer monomers and their assembly mechanism
     The hexamethylene adipamide/amino-modified VMTs (HA/AMVMTs) composites was prepared through the in-situ polymerization of hexamethylene adipamide and modified VMTs. The assembly of the modified VMTs and interaction between the modified VMTs and polymers were explored by FTIR, XPS, Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM). The results showed that the polymer brush was formed onto the VMTs through the covalent bindings of-NH2and-COOH, resulting in the assembly of modified VMTs in the polymer matrix. The loading ratios and modifying ratios of the VMTs played an important role in their self-assembly:with the increasing of the loading ratios, the fiber-, network-and dendritic-like assemblies were observed; with the increasing of polymer brush, the morphology of the assemblies changed from fiber-like to layered-like. For the high ratios of VMTs, leaf-like and rod-like assemblies were prepared by controlling the quantities of the polar groups on the VMTs.
     The lactic acid/expoxy-modified VMTs (LA/GMVMTs) composites were prepared through the in-situ polymerization of lactic acid and modified VMTs. The assembly of the modified VMTs in the poly (lactic acid) and assembly mechanism of VMTs were explored by FTIR, XPS and TEM. The results showed that the poly (lactic acid) was also formed onto the modified VMTs, resulting in the assembly of modified VMTs in the polymer matrix, the rod-like assemblies were obtained.
     (3) The structure and properties of the composites
     The Young's modulus of the HA/AMVMTs assemblies was characterized through SEM and Atomic Force Microscopy (AFM) and the crystallization behavior and tensile properties of the composites were tested. The results showed that the Young's modulus of the assemblies was higher than that of their constituents after the assembly of inorganic and organic materials. The crystallization behavior and tensile properties of the composites with assemblies were greatly improved compared with the pure polymer system.
     The Young's modulus, cytocompatibility, crystallization behavior and thermal stabilities of the LA/GMVMTs composites were characterized through AFM, Confocal laser scanning microscope (CLSM), Polarizing Optical Microscope (POM) and TGA test, respectively. The results showed that the Young's modulus of the assemblies was also higher than that of their constituents and cells proliferated and reached confluence on the surface of the assemblies, which indicated that the assemblies exhibited the potentiality of biomaterials applications. Compared with pure polymer system, the crystallization rate of the composites became faster and crystallization size of the composites became smaller, while the decomposition temperature of the composites was greatly improved.
     (4) The exploring of the assembly of VMTs by Molecular Dynamic simulations
     Both PA66/AMVMTs and HA/AMVMTs corresponding models were simulated and calculated by the use of Materials Studio. The interface structure of two models and influence factors on the assembly process of VMTs were studied. The results showed that the HA/AMVMTs model exhibited a better compatibility and higher stability of organic and inorganic matrix compared with PA66/AMVMTs model. In addition, the height and density of polymer molecules on the VMTs had an important role in the assembly of VMTs. With the brush height and density increasing of polymer molecules, the VMTs models were more easily self-assembled. The theory basis on the design and preparation of novel composites was provided based on these results.
引文
[1]沈家骢.超分子层状结构—组装与功能[M].北京:科学出版社,2004.
    [2]D. Gournis, V. Georgakilas, M. A. Karakassides, T. Bakas, K. Kordatos, M. Prato, M. Fanti and F. Zerbetto. Incorporation of fullerene derivatives into smectite clays:a new family of organic-inorganic nanocomposites [J].J. Am. Chem. Soc. 2004,126 (27):8561-8568.
    [3]S. Pack, T. Kashiwagi, C. Cao, C. S. Korach, M. Lewin and M. H. Rafailovich. Role of surface interactions in the synergizing polymer/clay flame retardant properties [J]. Macromolecules.2010,43 (12):5338-5351.
    [4]R. Simons, G. G. Qiao, C. E. Powell and S. A. Bateman. Effect of surfactant architecture on the properties of polystyrene-montmorillonite nanocomposites [J]. Langmuir.2010,26 (11):9023-9031.
    [5]S. Ghosh, A. Sannigrahi, S. Maity and T. Jana. Role of clays structures on the polybenzimidazole nanocomposites:potential membranes for the use in polymer electrolyte membrane fuel cell [J]. J. Phys. Chem. C.2011,115 (23):11474-11483.
    [6]M. A. Priolo, D. Gamboa, K. M. Holder and J. C. Grunlan. Super gas barrier of transparent polymer-clay multilayer ultrathin films [J]. Nano. Lett.2010,10 (12): 4970-4974.
    [7]E. P. Giannelis. Polymer layered silicate nanocomposites [J]. Adv. Mater.1996,8 (1):29-35.
    [8]S. S. Ray, M. Okamoto. Polymer-layered silicate nanocomposite:a review from preparation to processing [J]. Prog. Polym. Sci.2003,28 (11):1539-1641.
    [9]M. Alexandre, P. Dubois. Polymer-layered silicate nanocomposites:preparation, properties and uses of a new class of materials [J]. Mater. Sci. Eng. R.2000,28 (1/2):1-63.
    [10]X. Kornmann, L. A. Berglund, J. Sterte and E. P. Giannelis. Nanocomposites based on montmorillonite and unsaturated polyester [J]. Polym. Eng. Sci.1998, 38 (8):1351-1358.
    [11]贡长生,张克立.新型功能材料[M].北京:化学工业出版社,2001.
    [12]B. Li, F. X. Dong, X. L. Wang, J. Yang, D. Y. Wang and Y. Z. Wang. Organically modified rectorite toughened poly (lactic acid):nanostructures, crystallization and mechanical properties [J]. Eur. Polym. J.2009,45 (11):2996-3003.
    [13]A. Kovalhuk, W. Fischer and M. Epple. Controlled release of goserelin from microporous polyglycolide and polylactide [J]. Macromol. Biosci. 2005,5 (4): 289-298.
    [14]A. P. Zhu, H. X. Diao and Q. P. Rong. Preparation and properties of polylactide-silica nanocomposites [J]. J. Appl. Polym. Sci. 2010,116 (5): 2866-2873.
    [15]徐国财,张立德.纳米复合材料[M].北京:化学工业出版社,2001.
    [16]K. G. Fournaris, M. A. Karakassides and D. Petridis. Clay-polyvinylpyridine nanocomposites [J]. Chem. Mater.1999,11 (9):2372-2381.
    [17]X. Huang, S. Lewis and W. J. Brittain. Synthesis of polycarbonate-layered silicate nanocomposites via cyclic oligomers [J]. Macromolecules.2000,33 (6): 2000-2004.
    [18]黄振宇,廖立兵.蛭石的结构修饰及有机插层试验[J].矿产保护与利用,2005,2:17-21.
    [19]张青山,朱湛,王琦.烷基季铵盐插层剂的合成和应用[J].化学研究与应用,2003,15(6):849-851.
    [20]L. Liang, J. Liu and X. Gong. Thermosensitive poly (N-isopropylacrylamide)-clay nanocomposites with enhanced temperature response [J]. Langmuir.2000, 16 (25):9895-9899.
    [21]H. Fischer. Polymer nanocomposites:from fundamental research to specific applications [J]. Mater. Sci. Eng. C.2003,23 (6/8):763-772.
    [22]E. Manias, A. Touny, L. Wu, K. Strawhecker, B. Lu and T. C. Chung. Polypropylene/montmorillonite nanocomposites. Review of the synthetic routes and materials properties [J]. Chem. Mater.2001,13 (10):3516-3523.
    [23]M. Zanetti, S. Lomakin, G and Camino. Polymer layered silicate nanocomposites [J]. Macromol. Mater. Eng.2000,279 (1):1-9.
    [24]X. Kornmann, H. Lindberg and L. A. Berglund. Synthesis of epoxy-clay nanocomposites:influence of the nature of the clay on structure [J]. Polymer. 2001,42(4):1303-1310.
    [25]W. Xie, Z. Gao, K. Liu, W. P. Pan, R. Vaia, D. Hunter and A. Singh. Thermal characterization of organically modified montmorillonite [J]. Thermochim. Acta. 2001,367/368:339-350.
    [26]S. H. Wu, F. Y. Wang, C. C. M. Ma, W. C. Chang, C. T. Kuo, H. C. Kuan and W. J. Chen. Mechanical, thermal and morphological properties of glass fiber and carbon fiber reinforced polyamide-6 and polyamide-6/clay nanocomposites [J]. Mater. Lett.2001,49 (6):327-333.
    [27]R. Krishnamoorti, E. P. Giannelis. Rheology of end-tethered polymer layered silicate nanocomposites [J]. Macromolecules.1997,30 (14):4097-4102.
    [28]D. Porter, E. Metcalfe and M. J. K. Thomas. Nanocomposite fire retardants-a review [J]. Fire. Mater.2000,24 (1):45-52.
    [29]Y. N. Chan, S. A. Dai and J. J. Lin. Simultaneous occurrence of self-assembling silicate skeletons to wormlike microarrays and epoxy ring-opening polymerization [J]. Macromolecules.2009,42 (13):4362-4365.
    [30]K. Ha, Y. J. Lee, H. J. Lee and K. B. Yoon. Facile assembly of zeolite monolayers on glass, silica, alumina, and other zeolites using 3-halopropylsilyl reagents as covalent linkers [J]. Adv. Mater.2000,12 (15):1114-1117.
    [31]S. Y. Choi, Y. J. Lee, Y. S. Park, K. Ha and K. B. Yoon. Monolayer assembly of zeolite crystals on glass with fullerene as the covalent linker [J].J. Am. Chem. Soc.2000,122 (21):5201-5209.
    [32]A. Kulak, Y. S. Park, Y. J. Lee, Y. S. Chun, K. Ha and K. B. Yoon. Polyamines as strong molecular linkers for monolayer assembly of zeolite crystals on flat and curved glass [J].J. Am. Chem. Soc.2000,122 (38):9308-9309.
    [33]K. Ha, Y. J. Lee, D. Y. Jung, J. H. Lee and K. B. Yoon. Micropatterning of oriented zeolite monolayers on glass by convalent linkage [J]. Adv. Mater.2000, 12(21):1614-1617.
    [34]G. S. Lee, Y. J. Lee, K. Ha and K. B. Yoon. Preparation of flexible zeolite-tethering vegetable fibers [J]. Adv. Mater.2001,13 (19):1491-1495.
    [35]K. Ha, Y. J. Lee, Y. S. Chun, Y. S. Park, G. S. Lee and K. B. Yoon. Photochemical pattern transfer and patterning of continuous zeolite films on glass by direct dipping in synthesis gel [J]. Adv. Mater.2001,13 (8):594-596.
    [36]柯扬船,皮特·斯壮.聚合物-无机纳米复合材料[M].北京:化学工业出版社,2003.
    [37]A. Usuki, M. Kawasumi, Y. Kojima, A. Okada, T. Kurauchi and O. J. Kamigaito. Swelling behavior of montmorillonite cation-exchanged for ω-amino acids by ε-caprolactam [J]. Mater. Res.1993,8 (5):1174-1178.
    [38]J. Fan, S. Liu, G. Chen and Z. Qi. SEM study of a polystyrene/clay nanocomposite [J]. J.Appl. Polym. ScL 2002,83 (1):66-69.
    [39]P. C. LeBaron, Z. Wang and T. J. Pinnavaia. Polymer-layered silicate nanocom-posites:an overview [J].AppL Clay. ScL 1999,15 (1/2):11-29.
    [40]H. S. Xia, C. H. Zhang and Q. Wang. Study on ultrasonic induced encapsulating emulsion polymerization in the presence of nanoparticles [J]. J. Appl. Polym. Sci. 2001,80(8):1130-1139.
    [41]H. S. Wang, T. Zhao, L. J. Zhi, Y. H. Yan and Y. Z. Yu. Synthesis of novolac/layered silicate nanocomposites by reaction exfoliation using acid-modified montmorillonite [J]. Macromol. Rapid. Commun.2002,23 (1): 44-48.
    [42]R. A. Vaia, H. Ishii and E. P. Giannelis. Synthesis and properties of two-dimensional nanostructures by direct intercalation of polymer melts in layered silicates [J]. Chem. Mater.1993,5 (12):1694-1696.
    [43]M. Zanetti, G. Camino, P. Reichert and R. mulhaupt. Thermal behaviour of poly(propylene) layered silicate nanocomposites [J]. Macro. Rapid. Commun. 2001,22(3):176-180.
    [44]C. H. Jeon, S. H. Ryu and Y. W. Chang. Preparation and characterization of ethylene vinyl acetate copolymer/montmorillonite nanocomposite [J]. Polym. Int.2003,52 (1):153-157.
    [45]R. A. Vaia, S. Vasudevan, W. Krawiec, L. G. Scanlon and E. P. Giannelis. New polymer electrolyte nanocomposites:Melt intercalation of poly(ethylene oxide) in mica-type silicates [J].Adv. Mater.1995,7 (2):154-156.
    [46]S. J. Wang, Q. Li, X. Y. Wang and Z. N. Qi. Polystyrene/montmorillonite intercalation nanocomposites [J]. Acta. Polym. Sin.1998,1 (2):129-133.
    [47]T. D. Fornes, P. J. Yoon, H. Keskkula and D. R. Pual. Nylon 6 nanocomposites: the effect of matrix molecular weight [J]. Polymer.2001,42 (25):9929-9940.
    [48]M. Kawasumi, N. Hasegawa, M. Kato, A. Usuki and A. Okada. Preparation and mechanical properties of polypropylene-clay hybrids [J]. Macromolecules. 1997,30 (20):6333-6338.
    [49]J. M. Hwu, G. J. Jiang, Z. M. Gao, W. Xie and W. P. Pan. The characterization of organic modified clay and clay-filled PMMA nanocomposite [J]. J. Appl. Polym. Sci.2002,83 (8):1702-1710.
    [50]Z. G. Wu, C. X. Zhou, R. G. Qi and H. B. Zhang. Synthesis and characterization of nylon 1012/clay nanocomposite [J]. J. Appl. Polym. Sci.2002,83 (11): 2403-2410.
    [51]S. D. Burnside, E. P. Giannelis. Nanostructure and properties of polysiloxane-layered silicate nanocomposites [J]. J. Polym. Sci. Pol. Phys.2000,38 (12): 1595-1604.
    [52]P. Podsiadlo, M. Michel, J. Lee, E. Verploegen, N. W. S. Kam, V. Ball, J. Lee, Y. Qi, A. J. Hart, P. T. Hammond and N. A. Kotov. Exponential growth of LbL films with incorporated inorganic sheets [J]. Nano. Lett.2008,8 (6): 1762-1770.
    [53]P. Podsiadlo, Z. Tang, B. S. Shim and N. A. Kotov. Counterintuitive effect of molecular strength and role of molecular rigidity on mechanical properties of layer-by-layer assembled nanocomposites [J]. Nano. Lett, 2007,7 (5): 1224-1231.
    [54]A. K. Kaushik, P. Podsiadlo, M. Qin, C. M. Shaw, A. M. Waas, N. A. Kotov and E. M. Arruda. The role of nanoparticle layer separation in the finite deformation response of layered polyurethane-clay nanocomposites [J]. Macromolecules.2009,42 (17):6588-6595.
    [55]P. Podsiadlo, A. K. Kaushik, B. S. Shim, A. Agarwal, Z. Tang, A. M. Waas, E. M. Arruda and N. A. Kotov. Can nature's design be improved upon? High strength, transparent nacre-like nanocomposites with double network of sacrificial cross links [J].J. Phys. Chem. B.2008,112 (46):14359-14363.
    [56]M. A. Priolo, D. Gamboa and J. C. Grunlan. Transparent clay-polymer nanobrick wall assemblies with tailorable oxygen barrier [J]. ACS. Appl. Mater. Inter.2010,2 (1):312-320.
    [57]H. J. Nam, T. Ebina and F. Mizukami. Formability and properties of self-standing clay film by montmorillonite with different interlayer cations [J]. Colloid. Surf. A.2009,346 (1/3):158-163.
    [58]J. H. Choy, S. Y. Kwak, Y. J. Jeong and J. S. Park. Inorganic layered double hydroxides as nonviral vectors [J]. Angew. Chem. Int. Ed.2000,39 (22): 4041-4045.
    [59]K. Haraguchi, T. Takehisa and S. Fan. Effects of clay content on the properties of nanocomposite hydrogels composed of poly (N-isopropylacrylamide) and clay [J]. Macromolecules.2002,35 (27):10162-10171.
    [60]P. Podsiadlo, A. K. Kaushik, E. M. Arruda, A. M. Waas, B. S. Shim, J. Xu, H. Nandivada, B. G. Pumplin, J. Lahann, A. Ramamoorthy and N. A. Kotov. Ultrastrong and stiff layered polymer nanocomposites [J]. Science.2007,318 (5847):80-83.
    [61]A. Walther, I. Bjurhager, J. M. Malho, J. Pere, J. Ruokolainen, L. A. Berglund and O. Ikkala. Large-area, lightweight and thick biomimetic composites with superior material properties via fast, economic, and green pathways [J]. Nano. Lett.2010,10(8):2742-2748.
    [62]K. Shikinaka, K. Aizawa, N. Fujii, Y. Osada, M. Tokita, J. Watanabe and K. Shigehara. Flexible, transparent nanocomposite film with a large clay component and ordered structure obtained by a simple solution-casting method [J]. Langmuir.2010,26 (15):12493-12495.
    [63]T. Ebina, F. Mizukami. Flexible transparent clay films with heat-resistant and high gas-barrier properties [J]. Adv. Mater.2007,19 (18):2450-2453.
    [64]H. Tetsuka, T. Ebina, H. Nanjo and F. Mizukami. Highly transparent flexible clay films modified with organic polymer:structural characterization and intercalation properties [J]. J. Mater. Chem.2007,17 (33):3545-3550.
    [65]H. Tetsuka, T. Ebina, T. Tsunoda, H. Nanjo and F. Mizukami. Flexible organic electroluminescent devices based on transparent clay films [J]. Nanotechnology. 2007,18 (35):355701.
    [66]A. Walther, I. Bjurhager, J. M. Malho, J. Ruokolainen, L. Berglund and O. Ikkala. Supramolecular control of stiffness and strength in lightweight high-performance nacre-mimetic paper with fire-shielding properties [J]. Angew. Chem. Int. Ed.2010,49 (36):6448-6453.
    [67]H. Tetsuka, T. Ebina and F. Mizukami. Highly luminescent flexible quantum dot-clay films [J]. Adv. Mater.2008,20 (16):3039-3043.
    [68]L. J. Bonderer, A. R. Studart and L. J. Gauckler. Bioinspired design and assembly of platelet reinforced polymer films [J]. Science.2008,319 (5866):1069-1073.
    [69]Z. Tang, N. A. Kotov, S. Magonov and B. Ozturk. Nanostructured artificial nacre [J]. Nat. Mater.2003,2 (6):413-418.
    [70]S. S. Ray, K. Yamada, M. Okamoto and K. Ueda. Polylactide-layered silicate nanocomposites:a novel biodegradable material [J]. Nano. Lett.2002,2 (10): 1093-1096.
    [71]B. V. Lotsch, G. A. Ozin. Photonic clays:a new family of functional 1D photonic crystals [J].Acs. Nano.2008,2 (10):2065-2074.
    [72]R. Celis, M. C. Hermosin, M. J. Carrizosa and J. Cornejo. Inorganic and organic clays as carriers for controlled release of the herbicide hexazinone [J]. J. Agric. Food. Chem. 2002,50 (8):2324-2330.
    [73]S. Hsu, H. J. Tseng, H. S. Hung, M. C. Wang, C. H. Hung, P. R. Li and J. J. Lin. Antimicrobial activities and cellular responses to natural silicate clays and derivatives modified by cationic alkylamine salts [J]. ACS Appl. Mater. Inter. 2009,1(11):2556-2564.
    [74]C. A. Vaiana, M. K. Leonard, L. F. Drummy, K. M. Singh, A. Bubulya, R. A. Vaia, R. R. Naik and M. P. Kadakia. Epidermal growth factor:layered silicate nanocomposites for tissue regeneration [J]. Biomacromolecules.2011,12 (9): 3139-3146.
    [75]A. Blumstein. Polymerization of adsorbed monolayers:II. Thermal degradation of the inserted polymers [J]. J. Polym. Sci.A.1965,3 (7):2665-2762.
    [76]M. Biswas, S. S. Ray. Recent progress in synthesis and evaluation of polymer-montmorillonite nanocomposites [J]. Adv. Polym. Sci. 2001,155: 167-221.
    [77]E. P. Giannelis. Polymer-layered silicate nanocomposites:synthesis, properties and applications [J].AppL Organomet. Chem. 1998,12 (10-11):675-680.
    [78]W. G. Jeffrey. Flammability and thermal stability studies of polymer layered-silicate(clay) nanocomposites [J]. Appl. Clay. ScL 1999,15 (1-2): 31-49.
    [79]J. W. Gilman, T. Kashiwagi and J. D. Lichtenhan. Nanocomposites:A revolutionary new flame retardant approach [J]. Sampe. J.1997,33 (4) 40-46.
    [80]S. Bourbigot, E. Devaux and X. Flambard. Flammability of polyamide-6/clay hybrid nanocomposite textiles [J]. Polym. Degrad. Stabil. 2002,75 (2): 397-402.
    [81]J. G. Zhang, A. W. Charles. Preparation and flammability properties of polyethylene-clay nanocomposites [J]. Polym. Degrad. Stabil. 2003,80 (1): 163-169.
    [82]孙佩佩,白卯娟,张军.PP/纳米蒙脱土复合材料炭层结构对阻燃性能的影响[J].合成树脂及塑料,2011,28(4):58-60.
    [83]毛庆辉,毛志平.酚酞型聚芳醚砜/蛭石复合膜的制备与性能[J].东华大学学报(自然科学版),2010,36(5):521-526.
    [84]P. Kiliaris, C. D. Papaspyrides. Polymer/layered silicate (clay) nanocomposites: an overview of flameretardancy [J]. Prog. Polym. Sci. 2010,35 (7):902-958.
    [85]M. Pluta, M. A. Paul, M. Alexandre and P. Dubois. Plasticized polylactide/clay nanocomposites. I. The role of filler content and its surface organo-modification the physico-chemical properties [J].J. Polym. Sci. Part B:Polym. Phys.2006, 44 (2):299-311.
    [86]M. Pluta, A. Galeski, M. Alexandre, M. A. Paul and P. Dubois. Polylactide/montmorillonite nanocomposites and microcomposites prepared by melt blending:structure and some physical properties [J].J. Appl. Polym. ScL 2002,86 (6) 1497-1506.
    [87]M. A. Paul, C. Delcourt, M. Alexandre, P. Degee, F. Monteverde, A. Rulmont and P. Dubois. (Plasticized) Polylactide/(organo-) clay nanocomposites by in situ intercalative polymerization [J]. Macromol. Chem. Phys.2005,206 (4): 484-498.
    [88]T. M. Wu, C. Y. Wu. Biodegradable poly (lactic acid)/chitosan-modified montmorillonite nanocomposites:preparation and characterization [J]. Polym. Degrad. Stabil. 2006,91 (9):2198-2204.
    [89]J. H. Chang, Y. U. An and G. S. Sur. Poly (lactic acid) nanocomposites with various organoclays. I. Thermomechanical properties, morphology, and gas permeability [J]. J. Polym. ScL Part B:Polym. Phys.2003,41 (1):94-103.
    [90]赵珊珊,李媛,曹海雷,王鹏.聚乳酸/蒙脱土纳米复合材料的微波辅助制备与性能研究[J].材料工程,2012,0(2):5-8.
    [91]Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, T. Kurauchi and O. Kamigaito. One-pot synthesis of nylon 6-clay hybrid [J]. J. Polym. ScL Pol Chem. 1993, 31(7):1755-1758
    [92]P. Reichert, H. Nitz, S. Klinke, R. Brandsch, R. Thomann and R. Mulhaupt. Poly(propylene)/organoclay nanocomposite formation:Influence of compatibilizer functionality and organoclay modification [J]. Macromol. Mater. Eng.2000,275(1):8-17.
    [93]Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, T. Kurauchi, O. Kamigaito and K. Kaji. Novel preferred orientation in injection-molded nylon 6-clay hybrid [J]. J. Polym. Sci. Pol. Phys.1995,33 (7):1039-1045.
    [94]Z. Wang, T. Lan and T. J. Pinnavaia. Hybrid organic-inorganic nanocomposites formed from an epoxy polymer and a layered silicic acid (magadiite) [J]. Chem. Mater.1996,8 (9):2200-2204.
    [95]C. Zilg, R. Miilhaupt and J. Finter. Morphology and toughness/stiffness balance of nanocomposites based upon anhydride-cured epoxy resins and layered silicates [J]. Chem. Phys.1999,200 (3):661-670.
    [96]X. Liu, Q. Wu. PP/clay nanocomposites prepared by grafting-melt intercalation [J]. Polymer.2001,42 (25):10013-10019.
    [97]S. Varghese, J. Karger-Kocsis. Natural rubber-based nanocomposites by latex compounding with layered silicates [J]. Polymer.2003,44 (17):4921-4927.
    [98]P. Maiti, M. Okamoto. Crystallization controlled by silicate surfaces in nylon 6-clay nanocomposites [J]. Macromol. Mater. Eng.2003,288 (5):440-445.
    [99]K. Yoshitsugu, U. Arimitsu, K. Masaya, O. Akane, F. Yoshiaki, K. Toshio and K. Osami. Mechanical properties of nylon 6-clay hybrid [J].J. Mater. Res.1993,8 (5):1185-1189.
    [100]李力,章明秋,容敏智,阮文红.层状蒙脱土/聚丙烯纳米复合自增强材料[J].材料研究与应用,2010,4(4):655-658.
    [101]K. Wang, L. Chen, J. Wu, M. L. Toh, C. He and A. F. Yee. Epoxy nanocomposites with highly exfoliated clay:mechanical properties and fracture mechanisms [J]. Macromolecules.2005,38 (3):788-800.
    [102]K. T. Gam, M. Miyamoto, R. Nishimura and H. J. Sue. Fracture behavior of core-shell rubber-modified clay-epoxy nanocomposites [J]. Polym. Eng. Sci. 2003,43(10):1635-1645.
    [103]V. Krikorian, D. J. Pochan. Poly (L-lactic acid)/layered silicate nanocomposite: fabrication, characterization and properties [J]. Chem. Mater.2003,15 (22): 4317-4324.
    [104]S. I. Marras, I. Zuburtikudis and C. Panayiotou. Nanostructure vs. microstructure:morphological and thermomechanical characterization of poly (L-lactic acid)/layered silicate hybrids [J]. European. Polym. J.2007,43 (6): 2191-2206.
    [105]J. Tung, R. K. Gupta, G. P. Simon, G. H. Edwards and S. N. Bhattacharya. Rheological and mechanical comparative study of in situ polymerized and melt-blended nylon 6 nanocomposites [J]. Polymer.2005,46 (23):10405-10418.
    [106]李强,赵竹第,欧玉春.尼龙6/蒙脱土纳米复合材料的结晶行为[J].高分子学报,1997,1(2):188-193.
    [107]T. M. Wu, E. C. Chen. Polymorphic behavior of nylon 6/saponite and nylon 6/montmorillonite nanocomposites [J]. Polym. Eng. Sci.2002,42 (6): 1141-1150.
    [108]T. M. Wu, Y. H. Lien and S. F. Hsu. Isothermal crystallization kinetics and melting behavior of nylon/saponite and nylon/montmorillonite Nanocomposites [J]. J.Appl. Polym. Sci.2004,94 (5):2196-2204.
    [109]何伟,张为民,李亚,谭鑫贵,晏青.PA6/MMT纳米复合材料的制备与表征[J].材料导报B:研究篇2011,25(14):89-92.
    [110]余凤湄,赵秀丽,王建华,刘天利,王宪忠.聚乳酸/有机蒙脱土纳米复合材料的结晶性能研究[J].化工新型材料,2010,38(4):94-96.
    [111]K. Wang, L. Chen, M. Kotaki and C. He. Preparation microstructure and thermal mechanical properties of epoxy/crude clay nanocomposites [J]. Compos. Part. A.2007,38(1):192-197.
    [112]G. Camino, G. Tartaglione, A. Frache, C. Manferti and G. Costa. Thermal and combustion behavior of layered silicate-epoxy nanocomposites [J]. Polym. Degrad. Stab.2005,90 (2) 354-362.
    [113]W. F. Dong, Y. Q. Liu, X. H. Zhang, J. M. Gao, F. Huang, Z. H. Song and J. L. Qiao. Preparation of high barrier and exfoliated-type nylon-6/ultrafine full-vulcanized powdered rubber/clay nanocomposites [J]. Macromolecules. 2005,38 (23):4551-9643.
    [114]S. S. Ray, K. Yamada, M. Okamoto, A. Ogami and K. Ueda. New polylactide/layered silicate nanocomposites.3. high-performance biodegradable materials [J]. Chem. Mater.2003,15 (7):1456-1465.
    [115]H. C. Koh, J. S. Park, M. A. Jeong, H. Y. Hwang, Y. T. Hong, S. Y. Ha and S. Y. Nam. Preparation and gas permeation properties of biodegradable polymer/layered silicate nanocomposite membranes [J]. Desalination.2008, 233 (1-3):201-209.
    [116]J. W. Rhim, S. I. Hong and C. S. Ha. Tensile, water vapor barrier and antimicrobial properties of PLA/nanoclay composite films [J]. LWT-Food. Sci. Technol. 2009,42 (2):612-617.
    [117]周宛棣.PP/PA-6聚合物共混物的介电性能与微观结构(Ⅱ)组成及相容性的影响[J].高分子材料科学与工程,2003,19(2):142-145.
    [118]J. C. Hutchison, R. Bissessur and D. F. Shriver. Conductivity anisotropy of polyphosphazene-montmorillonite composite electrolytes [J]. Chem. Mater. 1996,8 (8):1597-1599.
    [119]R. A. Vaia, E. P. Giannelis. Liquid crystal polymer nanocomposites:direct intercalation of thermotropic liquid crystalline polymers into layered silicates [J]. Polymer.2001,42 (3):1281-1285.
    [120]R. A. Vaia, G. Price, P. N. Ruth, H. T. Nguyen and J. Lichtenhan. Polymer/layered silicate nanocomposites as high performance ablative materials [J].Appl. Clay. Sci. 1999,15 (1-2):67-92.
    [121]W. Jia, E. Segal, D. Kornemandel, Y. Lamhot, M. Narkis and A. Siegmann. Polyaniline DBSA/organophilic clay nanocomposites:synthesis and characterization [J]. Synthetic. Met.2002,128 (1):115-120.
    [122]周海晖,陈娟,付超鹏,陈金华,旷亚非.聚苯胺蒙脱土导电复合材料的制备与性能研究[J].湖南大学学报,(自然科学版),2010,37(5):64-68.
    [123]V. P. Zujo, R. K. Gupta and S. N. Bhattacharya. Effect of vinyl acetate content and silicate loading on EVA nanocomposites under shear and extensional flow [J]. Rheol.Acta.2004,43 (2):99-108.
    [124]R. K. Gupta, V. P. Zujo and S. N. Bhattacharya. Shear and extensional rheology of EVA/layered silicate nanocomposites [J]. J. Non-Newtonian. Fluid. Mech. 2005,128(2-3):116-125.
    [125]L. Botta, R. Scaffaro. Effect of different matrices and nanofillers on the rheological behavior of polymer-clay nanocomposites [J].J. Polym. Sci. Part. B: Polym. Phys.2010,48 (3):344-355.
    [126]刘冬琴,杨其,李强,黄亚江.PP/蒙脱土复合体系流变性能的研究[J].塑料工业,2011,39(7):95-98.
    [127]郑自立.坡缕石的结构[M].北京:中国地质大学出版社,1996.
    [128]J. A. Tetto, D. M. Steeves, E. A. Welsh and B. E. Powell. Biodegradable poly(ε-caprolactone)/clay nanocomposites [J]. ANTEC 99.1999,1628.
    [129]S. R. Lee, H. M. Park, H. Lim, T. Kang, X. Li, W. J. Cho and C. S. Ha. Microstructure, tensile properties, and biodegradability of aliphatic polyester/clay nanocomposites [J]. Polymer.2002,43 (8):2495-2500.
    [130]S. S. Ray, K. Yamada, M. Okamoto and K. Ueda. Control of biodegradability of polylactide via nanocomposite technology [J]. Macromol. Mater. Eng.2003, 288 (3):203-208.
    [131]S. S. Ray, K. Yamad, M. Okamoto and K. Ueda. New polylacide-layered silicate nanocomposites.2. concurrent improvements of material properties, biodegradability and melt rheology [J]. Polymer.2003,44 (3):857-866.
    [132]G. Mayer. Rigid biological systems as models for synthetic composites [J]. Science.2005,310 (5751):1144-1147.
    [133]X. Li, Z. H. Xu and R. Wang. In situ observation of nanograin rotation and deformation in nacre [J]. Nano. Lett. 2006,6 (10):2301-2304.
    [134]C. Ortiz, M. C. Boyce. Bioinspired structural materials [J]. Science.2008,319 (5866):1053-1054.
    [135]E. Munch, M. E. Launey, D. H. Alsem, E. Saiz, A. P. Tomsia and R. O. Ritchie. Tough, bio-inspired hybrid materials [J]. Science.2008,322 (5907): 1516-1520.
    [136]B. J. F. Bruet, J. Song, M. C. Boyce and C. Ortiz. Materials design principles of ancient fish armour [J]. Nat. Mater.2008,7 (9):748-756.
    [137]J. J. Lin, Y. M. Chen, W. C. Tsai and C. W. Chiu. Self-assembly of lamellar clays to hierarchical microarrays [J]. J. Phys. Chem. C.2008,112 (26): 9637-9643.
    [138]C. W. Chiu, C. C. Chu, S. A. Dai and J. J. Lin. Self-piling silicate rods and dendrites from high aspect-ratio clay platelets [J]. J. Phys. Chem. C.2008,112 (46):17940-17944.
    [139]J. J. Lin, C. C. Chu, C. C. Chou and F. S. Shieu. Self-assembled nanofiber arrays form random silicate platelets [J].Adv. Mater.2005,17 (3):301-304.
    [140]X. Du, Z. Jiang, X. Meng, Z. Wang, H. Yu, M. Li and T. Tang. Syntheses of opened hollow clay microspheres through a spray-drying approach and their derivative clay/carbon nanotubes composites [J].J. Phys. Chem. C.2008,112 (17):6638-6642.
    [1]A. C. Balazs, T. Emrick and T. P. Russell. Nanoparticle polymer composites: where two small worlds meet [J]. Science.2006,314 (5802):1107-1110.
    [2]Y. B. Luo, X. L. Wang, D. Y. Xu and Y. Z. Wang. Preparation and characterization of poly (lactic acid)-grafted TiO2 nanoparticles with improved dispersions [J].AppL Surf. Sci. 2009,255 (15):6795-6801.
    [3]X. Xu, B. Li, H. Lu, Z. Zhang and H. Wang. The interface structure of nano-SiO2/PA66 composites and its influence on material's mechanical and thermal properties [J]. Appl. Surf. Sci. 2007,254 (5):1456-1462.
    [4]Y. Youngjae, D. R. Paul. Effect of organoclay structure on morphology and properties of nanocomposites based on an amorphous polyamide [J]. Polymer. 2008,49 (17):3795-3804.
    [5]T. D. Fornes, P. J. Yoon, D. L. Hunter, H. Keskkula and D. R. Paul. Effect of organoclay structure on nylon 6 nanocomposite morphology and properties [J]. Polymer.2002,43 (22):5915-5933.
    [6]M. Valaskova, G. S. Martynkova, V. Matejka, K. Barabaszova, E. Plevova and D. Merinska. Organovermiculite nanofillers in polypropylene [J]. Appl. Clay. Sci. 2009,43(1):108-112.
    [7]J. M. Rosenholm, A. Meinander, E. Peuhu, R. Niemi, J. E. Eriksson, C. Sahlqren and M. Linden. Targeting of porous hybrid silica nanoparticles to cancer cells [J]. ACS. Nano.2009,3 (1):197-206.
    [8]L. D. Carlos, R. A. Ferreira, Vde. Z. Bermudez and S. J. Ribeiro. Lanthanide-containing light-emitting organic-inorganic hybrids:a bet on the future [J].Adv. Mater.2009,21 (5):509-534.
    [9]M. D. McConnell, S. Yang and R. J. Composto. Covalent nanoparticle assembly onto random copolymer films [J]. Macromolecules.2009,42 (2):517-523.
    [10]H. Sun, X. Y. Bao and X. S. Zhao. Immobilization of penicillin g acylase on oxirane-modified mesoporous silicas [J]. Langmuir.2009,25 (3):1807-1812.
    [11]W. K. Mosse, M. L. Koppens, T. R. Genqenbach, D. B. Scanlon, S. L. Gras and W. A. Ducker. Peptides grafted from solids for the control of interfacial properties [J]. Langmuir.2009,25 (3):1488-1494.
    [12]X. Yuan, C. Li, G. Guan, Y. Xiao and D. Zhang. Surface Grafting Modification of Fibrous Silicates with Polyvinylpyrrolidone and Its Application in Nanocomposites [J]. J. Appl. Polym. Sci. 2009,111 (1):566-575.
    [13]Y. Han, Y. Lu. Preparation and characterization of exfoliated organic montmorillonite/poly(3,4-Ethyldioxythiophene) nanocomposites [J].J. Appl. Polym. Sci. 2009,111 (5):2400-2407.
    [14]H. P. Cong, S. H. Yu. Self-assembly of functionalized inorganic-organic hybrids [J]. Curr. Opin. Colloid. In.2009,14 (2):71-78.
    [15]P. Podsiadlo, Z. Liu, D. Paterson, P. B. Messersmith and N. A. Kotov. Fusion of seashell nacre and marine bioadhesive analogs:high-strength nanocomposite by layer-by-layer assembly of clay and 1-3,4-dihydroxyphenylalanine polymer [J]. Adv. Mater.2007,19 (7):949-955.
    [16]K. Ha, Y. J. Lee, H. J. Lee and K. B. Yoon. Facile assembly of zeolite monolayers on glass, silica, alumina, and other zeolites using 3-halopropylsilyl reagents as covalent linkers [J]. Adv. Mater.2000,12 (15):1114-1117.
    [17]S. Y. Choi, Y. J. Lee, Y. S. Park, K. Ha and K. B. Yoon. Monolayer assembly of zeolite crystals on glass with fullerene as the covalent linker [J]. J. Am. Chem. Soc.2000,122 (21):5201-5209.
    [18]A. Kulak, Y. S. Park, Y. J. Lee, Y. S. Chun, K. Ha and K. B. Yoon. Polyamines as strong molecular linkers for monolayer assembly of zeolite crystals on flat and curved glass [J].J. Am. Chem. Soc.2000,122 (38):9308-9309.
    [19]K. Ha, Y. J. Lee, D. Y. Jung, J. H. Lee and K. B. Yoon. Micropatterning of oriented zeolite monolayers on glass by convalent linkage [J]. Adv. Mater.2000, 12(21):1614-1617.
    [20]G. S. Lee, Y. J. Lee, K. Ha and K. B. Yoon. Preparation of flexible zeolite-tethering vegetable fibers [J]. Adv. Mater.2001,13 (19):1491-1495.
    [21]K. Ha, Y. J. Lee, Y. S. Chun, Y. S. Park, G. S. Lee and K. B. Yoon. Photochemical pattern transfer and patterning of continuous zeolite films on glass by direct dipping in synthesis gel [J]. Adv. Mater.2001,13 (8):594-596.
    [22]K. Yano, A. Usuki, A. Okada, T. Kurauchi and O. Kamigaito. Synthesis and properties of polyimide-clay hybrid [J].J. Polym. Sci. Part A. Polym. Chem. 1993,31 (10):2493-2498.
    [23]毛庆辉.新型有机/无机复合材料的制备及其阻燃隔热性能研究[D].2009.11.
    [24]J. Brandrup, E. H. Immergut. Polymer Handbook [M]. John Wiley & Sons, New York. Second Edition,1975.
    [25]M. Inoue. Studies on crystallization of high polymers by differential thermal analysis [J]. J. Polym. Sci. A.1963,1 (8):2697-2709.
    [26]李荣.有机柱撑蛭石的制备及其层间结构分析[D].2009.11.
    [27]Y. Li, X. S. Sun. Preparation and characterization of polymer-inorganic nanocomposites by in situ melt polycondensation of L-Lactic acid and surface-hydroxylated MgO [J]. Biomacromolecules.2010,11 (7):1847-1855.
    [28]Y. M. Chen, H. C. Lin, R. S. Hsu, B. Z. Hsieh, Y. A. Su, Y. J. Sheng and J. J. Lin. Thermoresponsive dual-phase transition and 3D self-assembly of poly (N-isopropylacrylamide) tethered to silicate platelets [J]. Chem. Mater.2009,21 (17):4071-4079.
    [29]D. Dukes, Y. Li, S. Lewis, B. Benicewicz, L. Schadler and S. K. Kumar. Conformational transitions of spherical polymer brushes:synthesis, characterization, and theory [J]. Macromolecules.2010,43 (3):1564-1570.
    [30]J. U. Kim, B. O. Shaughnessy. Morphology selection of nanoparticle dispersions by polymer media [J]. Phys. Rev. Lett.2002,89 (89):238301-238304.
    [31]R. Wang, F. Qiu, H. D. Zhang and Y. L. Yang. Interactions between brush-coated clay sheets in a polymer matrix [J]. J. Chem. Phys.2003,118, (20): 447-457.
    [32]R. Hasegawa, Y. Aoki and M. Doi. Optimum graft density for dispersing particles in polymer melts [J]. Macromolecules.1996,29 (20):6656-6662.
    [33]M. R. Bockstaller, R. A. Mickiewicz and E. L. Thomas. Block copolymer nanocomposites:perspectives for tailored functional materials [J]. Adv. Mater. 2005,17(11):1331-1349.
    [34]M. Prasad, M. Kopycinska, U. Rabe and W. Arnold. Measurement of Young's modulus of clay minerals using atomic force acoustic microscopy [J]. Geophys. Res. Lett.2002,29 (8):1172.
    [35]R. S. Fertig III, M. R. Garnich. Influence of constituent properties and microstructural parameters on the tensile modulus of a polymer/clay nanocomposite [J]. Compos. Sci. Technol.2004,64 (16):2577-2588.
    [36]P. Podsiadlo, A. K. Kaushik, E. M. Arruda, A. M. Waas, B. S. Shim, J. Xu, H. Nandivada, B. G. Pumplin, J. Lahann, R. A. amamoorthy and N. A. Kotov. Ultrastrong and stiff layered polymer nanocomposites [J]. Science.2007,318 (5847):80-83.
    [37]C. W. Chiu, J. J. Lin. Self-assembly behavior of polymer-assisted clays [J]. Prog. Polym. Sci.2012,37 (3):406-444.
    [38]王经武.塑料改性技术[M].北京:化学工业出版社,2004.
    [39]黄锐,王旭,李忠明.纳米塑料[M].北京:中国轻工业出版社,2001.
    [40]J. Jordan, K. I. Jacob, R. Tannenbaum, M. A. Sharaf and I. Jasiuk. Experimental trends in polymer nanocomposites-a review [J]. Mater. Sci. Eng. A.2005,393 (1-2):1-11.
    [41]J. Kratochvil, A. Sikora. Crystallization behavior of poly(N-methyldodecano-12-lactam). IV. Nonisothermal crystallization [J]. J. Appl. Polym. Sci.2005,95 (3):564-572.
    [42]A. Bigi, E. Boanini, M. Gazzano and K. Rubini. Structural and morphological modifications of hydroxyapatite-polyaspartate composite crystals induced by heat treatment [J]. Cryst. Res. TechnoL 2005,40 (10-11):1094-1098.
    [43]X. Liu, Q. Wu and L. A. Berglund. Polymorphism in polyamide 66/clay nanocomposites [J]. Polymer.2002,43 (18):4967-4972.
    [44]A. Marcellan, A. R. Bunsell, L. Laiarinandrasana and R. Piques. A multi-scale analysis of the microstructure and the tensile mechanical behaviour of polyamide 66 fibre [J]. Polymer.2006,47 (1):367-378.
    [45]F. C. Chiu, S. W. Fu, W. T. Chuang and H. S. Sheu. Fabrication and characterization of polyamide 6,6/organo-montmorillonite nanocomposites with and without a maleated polyolefin elastomer as a toughener [J]. Polymer.2008,49 (4):1015-1026.
    [46]D. Homminga, B. Goderis, I. Dolbnya, H. Reynaers and G. Groeninckx. Crystallization behavior of polymer/montmorillonite nanocomposites. Part I. Intercalated poly (ethylene oxide)/montmorillonite nanocomposites [J]. Polymer. 2005,46(25):11359-11365.
    [47]李强.聚合物-黏土纳米复合材料 [R].1996.
    [48]A. Dasari, Z. Z. Yu and Y. W. Mai. Transcrystalline regions in the vicinity of nano-fillers in polyamide 6 [J]. Macromolecules.2007,40 (1):123-130.
    [49]C. L. Wu, M. Q. Zhang, M. Z. Rong and K. Friedrich. Silica nanoparticles filled polypropylene:effects of particle surface treatment, matrix ductility and particle species on mechanical performance of the composites [J]. Compos. Sci. Technol. 2005,65 (3-4):635-645.
    [50]D. N. Bikiaris, A. Vassiliou, E. Pavlidou and G. P. Karayannidis. Compatibilisation effect of PP-g-MA copolymer on iPP/SiO2 nanocomposites prepared by melt mixing [J]. Eur. Polym. J.2005,41 (9):1965-1978.
    [51]C. F. Cheng, H. H. Cheng, P. W. Cheng and Y. J. Lee. Effect of reactive channel functional groups and nanoporosity of nanoscale mesoporous silica on properties of polyimide composite [J]. Macromolecules.2006,39 (22): 7583-7590.
    [52]D. M. Lincoln, R. A. Vaia, Z. G. Wang and B. S. Hsiao. Secondary structure and elevated temperature crystallite morphology of nylon-6/layered silicate nanocomposites [J]. Polymer.2001,42 (4):1621-1631s.
    [53]V. Miri, S. Elkoun, F. Peurton, C. Vanmansart, J. M. Lefebvre, P. Krawczak and R. Seguela. Crystallization Kinetics and Crystal Structure of Nylon6-Clay Nanocomposites:Combined Effects of Thermomechanical History, Clay Content, and Cooling Conditions [J]. Macromolecules.2008,41 (23):9234-9244.
    [54]T.D. Fornes, D.R. Paul. Crystallization behavior of nylon 6 nanocomposites [J]. Polymer.2003,44 (14):3945-3961.
    [55]M. Wu, G. Z. Yang, M. Wang, W. Z. Wang, W. D. Zhang, J. C. Feng and T. X. Liu. Nonisothermal crystallization kinetics of ZnO nanorod filled polyamide 11 composites [J]. Mater. Chem. Phys.2008,109 (2-3),:547-555.
    [56]R. Sengupta, A. Bandyopadhyay, S. Sabharwal, T. K. Chaki and A. K. Bhowmick. Polyamide-6,6/in situ silica hybrid nanocomposites by sol-gel technique:synthesis, characterization and properties [J]. Polymer.2005,46 (10):3343-3354.
    [57]D. S. Homminga, B. Goderis, V. B. F. Mathot and G. Groeninckx. Crystallization behavior of polymer/montmorillonite nanocomposites. Part III. Polyamide-6/ montmorillonite nanocomposites, influence of matrix molecular weight, and of montmorillonite type and concentration [J]. Polymer.2006,47 (5):1630-1639.
    [58]X. Ji, E. Hampsey, Q. Hu, J. He, Z. Yang and Y. Lu. Mesoporous silica-reinforced polymer nanocomposites [J]. Chem. Mater.2003,15 (19):3656-3662.
    [59]D. Ciprari, K. Jacob and R. Tannenbaum. Characterization of polymer nanocomposite interphase and its impact on mechanical properties [J]. Macromolecules.2006,39 (19):6565-6573.
    [1]A. S. Badami, M. R. Kreke, M. S. Thompson, J. S. Riffle and A. S. Goldstein. Effect of fiber diameter on spreading, proliferation, and differentiation of osteoblastic cells on electrospun poly(lactic acid) substrates [J]. Biomaterials. 2006,27 (4):596-606.
    [2]V. J. Chen, P. X. Ma. Nano-fibrous poly(L-lactic acid) scaffolds with interconnected spherical macropores [J]. Biomaterials.2004,25 (11):2065-2073.
    [3]D. M. Yunos, Z. Ahmad and A. R. Boccaccini. Fabrication and characterization of electrospun poly-DL-lactide (PDLLA fibrous coatings on 45S5 Bioglass (R) substrates for bone tissue engineering applications [J]. J. Chem. Technol. Biotechnol.2009,85 (6):768.
    [4]J. Hu, X. Liu and P. X. Ma. Introduction of osteoblast differentiation phenotype on poly(L-lactic acid nanofibrous matrix [J]. Biomaterials.2008,29 (28):3815-3821.
    [5]E. Seyedjafari, M. Soleimani, N. Ghaemi and I. Shabani. Nanohydroxyapatite-coated electrospun poly(L-lactide) nanofibers enhance osteogenic differentiation of stem cells and induce ectopic bone formation [J]. Biomacromolecules.2010,11 (11):3118-3125.
    [6]Y. Shikinami, M. Okuno. Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly L-lactide (PLLA). Part II:practical properties of miniscrews and miniplates [J]. Biomaterials.2001,22 (23): 3197-3211.
    [7]S. S. Ray, K. Yamada, M. Okamoto and K. Ueda. Polylactide-layered silicate nanocomposite:a novel biodegradable material [J]. Nano. Lett.2002,2 (10): 1093-1096.
    [8]N. Ogata, G. Jimenez and H. Kawai. Structure and thermal/mechanical properties of poly(L-lactide)-clay blend [J]. J. Polym. Sci:Part B:Polym. Phys.1997,35 (2):389-396.
    [9]S. S. Ray, P. Maiti and Okamoto M. New polylactide/layered silicate nanocomposites.1. Preparation, characterization, and properties [J]. Macromolecules.2002,35 (8):3104-3110.
    [10]S. Lee, C. H. Kim and Park J K. Improvement of processability of clay/polylactide nanocomposites by a combinational method:In situ polymerization of L-lactide and melt compounding of polylactide [J].J. Appl. Polym. Sci.2006,101 930:1664-1669.
    [11]G. X. Chen, H. S. Kim and J. H. Shim. Role of epoxy groups on clay surface in the improvement of morphology of Poly(L-lactide)/clay composites [J]. Macromolecules.2005,38 (9):3738-3744.
    [12]M. A. Paul, Delcourt C and M. Alexander. (Plasticized) polylactide/(organo-) clay nanocomposites by in situ intercalative polymerization [J]. Macromol. Chem. Phys.2005,206 (4):484-498.
    [13]M. Pluta. Melt compounding of polylactide/organoclay:structure and properties of nanocomposites [J]. J. Polym. Sci:Part B:Polym. Phys.2006,44 (23): 3392-3405.
    [14]M. A. Paul, M. Alexandre, P. Degee. Exfoliated polylactide/clay nanocomposites by in-situ coordination-insertion polymerization [J]. Macromol. Rapid. Commun.2003,24 (9):561-566.
    [15]M. Joubert, C. Delaite and B. L. Elodie. Ring-opening polymerization of ε-caprolactone and L-lactide from silica nanocomposites surface [J]. J. Polym. Sci:Part A:Polym. Chem.2004,42 (8):1976-1984.
    [16]S. Yan, J. Yin and Y. Yang. Surface-grafted silica linked with L-lactic acid oligomer:A novel nanofiller to improve the performance of biodegradable poly(L-lactide) [J]. Polymer.2007,48 (6):1688-1694.
    [17]Z. H. Hong, X. Y. Qiu and J. R. Sun. Grafting polymerization of L-lactide on the surface of hydroxyapatite nano-crystals [J]. Polymer.2004,45 (19): 6699-6706.
    [18]崔阳,刘一,黄威.聚乳酸/羟基磷灰石复合骨修复材料的改性及应用特征 [J].尹国组织工程研究与临床康复,2007,11(31):6244-6247.
    [19]蒋毅,尹光福,周大利,张云,王明华.羟基磷灰石/聚乳酸复合人工骨修复材料的研究进展[J].国外医学生物医学工程分册,2004,27(4):238-241.
    [20]G. X. Chen, H. S. Kim and B. H. Park. Controlled functionalization of multiwalled carbon nanotubes with various molecule-weight poly(L-lactic acid)[J]. J Phys Chem B.2005,109 (47):22237-22243.
    [21]田蓉,王贤保,陈蓉.可降解碳纳米管/聚乳酸复合材料的制备及性能[J].复合材料学报,2011,28(1):26-30.
    [22]宋文会,郑震,汤伟亮.原位聚合制备碳纳米管与聚乳酸复合物[J].2007年全国高分子学术论文报告会论文摘要集(上册).
    [23]G. Poologasundarampillai, B. Yu, J. R. Jones and T. Kasuga. Electrospun silica/PLLA hybrid materials for skeletal regeneration [J]. Soft. Matter.2011,7, 10241-10251.
    [24]徐红.高相对分子质量聚乳酸共聚物的合成及性能研究[D].2006.9.
    [25]H. R. Kricheldorf, S. R. Lee and S. Bush. Macrocyclic polymerization of lactides with cyclic Bu2Sn initiators derived from 1,2-ethanediol, 2-mercaptoethanol, and 1,2-dimercaptoethane [J]. Macromolecules.1996,29 (5):1375-1381.
    [26]W. S. Wang, H. S. Chen, Y. W. Wu, T. Y. Tsai and Y. W. Chen-Yang. Properties of novel epoxy/clay nanocomposites prepared with a reactive phosphorus-containing organoclay [J]. Polymer.2008,49 (22):4826-4836.
    [27]李荣.有机柱撑蛭石的制备及其层间结构分析[D].2009.11.
    [28]Y. Li, X. S. Sun. Preparation and characterization of polymer-inorganic nanocomposites by in situ melt polycondensation of L-Lactic acid and surface-hydroxylated MgO [J]. Biomacromolecules.2010,11 (7):1847-1855.
    [29]徐容华.乳酸基共聚物/蛭石微晶复合材料的制备和性能研究[D].2011.1.
    [30]K. Rezwan, Q. Z. Chen, J. J. Blaker and A. R. Boccaccini. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering [J]. Biomaterials.2006,27 (18):3413-3431.
    [31]M. Pluta, A. Galeski, M. Alexandre, M. A. Paul and P. Dubois. Polylactide/montmorillonite nanocomposites and microcomposites prepared by melt blending:Structure and some physical properties [J]. J. Appl. Polym. Sci. 2002,86(6):1497-1506.
    [32]R. Auras, B. Harte and S. Selke. An overview of polylactides as packaging materials [J]. Macromol. Biosci.2004,4 (9):835-864.
    [33]K. Chrissafis, D. Bikiaris. Can nanoparticles really enhance thermal stability of polymers? Part I:An overview on thermal decomposition of addition polymers [J]. Thermochim. Acta.2011,523 (1-2):1-24.
    [34]Q. Y. Zhou, M. Xanthos. Nanosize and microsize clay effects on the kinetics of the thermal degradation of polylactides [J]. Polym. Degrad. Stab,2009,94 (3): 327-338.
    [1]X. Ma, X. Qu, Q. Zhang and F. Chen. Analysis of interfacial action of rectorite/thermoplastic polyurethane nanocomposites by inverse gas chromatography and molecular simulation [J]. Polymer.2008,49 (16): 3590-3600.
    [2]G. S. Martynkova, M. Valaskova and M. Supova. Organo-vermiculite structure ordering after PVAc introduction [J]. Phys. Stat. Sol.2007,204 (6):1870-1875.
    [3]M. Fermeglia, M. Ferrone and S. Pricl. Computer simulation of nylon-6/organoclay nanocomposites:prediction of the binding energy [J]. Fluid. Phase. Equilibr.2003,212 (1-2):315-329.
    [4]D. Sikdar, D. R. Katti, K. S. Katti and R. Bhowmik. Insight into molecular interactions between constituents in polymer clay nanocomposites [J]. Polymer. 2006,47 (14):5196-5025.
    [5]S. M. Mrayed, Q. H. Zeng and A. B. Yu. Interfacial interactions in clay-based nylon 6 nanocomposites:A density functional theory study [J]. Comp. Mater. Sci. 2009,46 (4):942-949.
    [6]G. S. Martynkova, M. Valaskova, P. Capkova and V. Matejka. Structural ordering of organovermiculite:Experiments and modeling [J]. J. Colloid. Interf. Sci.2007, 313(1):281-287.
    [7]H. Zhang, X. Lu, Y. Leng, L. Fang, S. Qu, B. Feng, J. Weng and J. Wang. Molecular dynamics simulations on the interaction between polymers and hydroxyapatite with and without coupling agents [J]. Acta. Biomater.2009,5 (4): 1169-1181.
    [8]G. Tanaka, L. A. Goettler. Predicting the binding energy for nylon 6,6/clay nanocomposites by molecular modeling [J]. Polymer.2002,43 (2):541-553.
    [9]R. Toth, A. Coslanich, M. Ferrone, M. Fermeglia, S. Pricl, S. Miertus and E. Chiellini. Computer simulation of polypropylene/organoclay nanocomposites: characterization of atomic scale structure and prediction of binding energy [J]. Polymer.2004,45 (23):8075-8083.
    [10]D. Sikdar, S. M. Pradhan, D. R. Katti, K. S. Katti and B. Mohanty. Altered phase model for polymer clay nanocomposites [J]. Langmuir.2008,24 (10): 5599-5607.
    [11]D. Sikdar, D. R. Katti and K. S. Katti. A molecular model for ∈-caprolactam-based intercalated polymer clay nanocomposite:integrating modeling and experiments [J]. Langmuir.2006,22 (18):7738-7747.
    [12]G. Scocchi, P. Posocco, A. Danani, S. Pricl and M. Fermeglia. To the nanoscale, and beyond! Multiscale molecular modeling of polymer-clay nanocomposites [J]. Fluid. Phase. Equilibr.2007,261 (1-2):366-374.
    [13]Q. H. Zeng, A. B. Yu and G. Q. Lu. Multiscale modeling and simulation of polymer nanocomposites [J]. Prog. Polym. Sci.2008,33 (2):191-269.
    [14]S. I. Tsipursky, V. A. Drits. The distribution of octahedral cations in the 2:1 layers of dioctahedral smectites studied by oblique-texture electron diffraction [J]. Clay. Miner.1984,19 (2):177-193.
    [15]J. W. Anthony, R. A. Bideaux, K. W. Bladh, M. C. Nichols. Handbook of Mineralogy [M]. Mineral Data Publishing, America,2001.
    [16]S. M. Auerbach, K. A. Carrado and P. K. Dutta. Handbook of layered materials [M]. Marcel Dekker. Inc, New York,2004.
    [17]H. Shirozu, S. W. Bailey. Crystal structure of a two-layer Mg-vermiculite [J]. AM. Mineral.1966,51,1124-1143.
    [18]A. M. Mathieson. Mg-vermiculite:a refinement and re-examination of the crystal structure of the 14.36 A phase [J].AM. Mineral.1958,43,216-227.
    [19]C. W. Chiu, J. J. Lin. Self-assembly behavior of polymer-assisted clays [J]. Prog. Polym. Sci.2012,37 (3):406-444.
    [20]沈家骢.超分子层状结构—组装与功能[M].北京:科学出版社,2004.
    [21]P. G. de Gennes. Conformations of polymers attached to an interface [J]. Macromolecules.1980,13 (5):1069-1075.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700