并联泵组高效高可靠性运行问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机泵产品每年耗电量占全国总发电量的20%左右,其运行效率的提高对节能减排目标的实现有着重要的意义。工业生产中泵的设计和选型,由于系统在设计时无法预估的损失,以及实际生产中可能出现的特殊状况、产能扩大和工艺需求波动等原因,往往需要考虑设计余量,这使得多数离心泵的最佳工况与管路系统的不匹配现象难以避免。泵在非设计工况下运行不但效率显著下降,零部件的可靠性和使用寿命也显著降低。因此,从长周期运行和高效运行的理念出发,研究泵调节与运行控制的机理和技术,对降低泵组系统能耗、提高泵的运行可靠性有极大地意义。
     本文提出了基于多泵并联运行的智能泵阀系统,通过多泵转速和阀门的联合调节,以及工况分配优化计算,使得泵组的流量和压力在很宽的范围内都能满足系统的实时需求,并保证离心泵始终处于最优工况区域运行,从而大幅提高了泵的效率、可靠性以及适用范围。论文的主要内容包括以下几个方面:
     (1)介绍了离心泵并联运行和变速调节的工作特性,建立了并联泵组工作点的确定方法;通过分析内部流动状态、漩涡分布及演化规律,总结出离心泵在不同工况下的运行特点及其与泵可靠度的关系;将已有的可靠性数据与泵内部流动特点进行对照分析,建立了泵流量与可靠度的函数。
     (2)通过对泵外特性曲线的分析,建立了以低功耗和长寿命运行为目标的并联泵组优化计算数学模型和目标函数;研究了基于罚函数法的约束条件处理方法;设计和改进了基本遗传算法用于求解该优化问题。
     (3)采用拉格朗日乘子法计算了双泵并联系统的最优工况分配方法;同时采用遗传算法计算了双泵并联运行实例,并与实验结果进行了比较分析,理论计算结果、遗传算法计算结果与实验取得了很好的一致;给出了相同多泵同转速并联运行节能的理论依据,并且将遗传算法用于不同型号双泵并联运行优化,并比较分析了支路阀门在并联泵系统中的作用。
     (4)提出了基于泵阀联合控制和多泵最佳工况自动调节的智能泵组系统结构,比较了传统的单泵变频泵组与本文中智能泵组系统的能耗和运行可靠度,结果表明多泵智能变频系统显著提高了泵组效率及寿命;在此基础上,将前文的优化算法进行了扩展,分别计算了多台同型号或不同型号泵组运行的最优工况分析;将泵可靠度函数整合到优化算法中,建立了基于泵组运行效率与可靠度的优化目标函数。考虑泵组运行的实际需求,对目标函数做了一些简化,使计算程序可以更快的响应需求变化。
     (5)为了分析双泵并联系统在工况调节过程中的关键参数的动态变化及其对管路系统产生的冲击,基于flowmaster中建立了与实验台相同性能参数的仿真模型。分析了调节过程中各关键节点压力、流量等参数的变化情况,总结出提高泵阀调节过程中可靠性的途径,为实际工况调节提供指导。
     本文提出了一种基于泵阀联合调节和多泵优化运行的智能泵组结构,构建了实验装置;建立了以提高泵组运行效率和可靠度为目标的运行优化模型,并通过实验验证了智能泵组运行性能和节能效果。研究结果表明本论文提出的智能泵组和优化算法,可以大幅度拓展离心泵机组流量和压力的可调节范围,保证其在各种运行条件下的高效性和可靠性,从而很好地解决工业应用中离心泵系统调节范围小和偏工况低效运行的实际问题。
Power consumption of pumps accounts for about20%of the total consumption in China. Therefore, the improvement of the operation efficiency plays an important roal in energy saving and emission reduction. A certain design margin should be considered due to the loss in the process can not be estimated in system design as well as capacity expansion and process requirement fluctuations. So the best condition of the centrifugal pump and piping system are difficult to match. At off-design conditions, not only the pump efficiency is significantly reduced but also the reliability and the service life of components are declined. Therefore, based on the conception of long-term and efficient operation, it is important to reduce the energy consumption of the system and improve the reliability of the pump by studying the mechanism and technology of pump condition adjustment and control.
     In this paper, a smart pump unit is carried out with parallel pumps.. Based on pump speed and valve adjustment and optimization method, the flowrate and pressure can meet the real-time requirements of the system in a very wide range and ensure that the operating conditions are near the best efficiency point. So the efficiency, reliability and the operating range of the pump system are increased significiently. The main content includes the following aspects:
     (1) The operating characteristics of parallel centrifugal pump and speed adjustment were introduced; the method to calculate the operation point of parallel pump system was built up; the internal flow, swirl distribution and evolution were simulated; the characteristics of centrifugal pump running in different operating conditions and the relationship with pump reliability were summarized; pump reliability function curve was carried out by comparing and analyzing the reliability data and the internal flow characteristics of pump.
     (2) Based on the analysis of pump external characteristics, the mathematical model and objective function for low power consumption and long service life were built up; constraint processing method based on the penalty function was studied and a genetic algorithm was design and improved for solving the optimization problem.
     (3) The optimal operating condition for double pump parallel system was calculated using the method of the Lagrange multiplier; a pump system with two identical pumps in parallel was calculated using genetic algorithms and compared with the experimental results and the theoretical results. Results show that genetic algorithm, theoretical and experimental achieved good agreement; the genetic algorithm is used for different models of dual-pump parallel operation optimization and comparative analysis of the branch valve in parallel pump system.
     (4) The structure of the smart pump unit was proposed, which is based on valve-speed joint control and operating condition automatically adjustment. The energy consumption and operating reliability of the traditional pump unit with single variable frequency pump and smart pump unit in this article were compared, and result shows that the smart pump system improved the efficiency and reliability significantly; Based on the study above, the optimization algorithm was extended to more than one pump, and a muti-pump system was calculated; the reliability function of the pump was integrated into the optimization algorithm, and the objective function was simplified so that the calculation program can respond faster to changes in demand.
     (5) In order to analyze the impact of the piping system during dual-pump parallel system adjustment process, a model with the same performance parameters of the test bench was built up in Flowmaster. The pressure, flowrate and other parameters of the key node were analyzed; the way to improve the reliability during adjustment process was sumrized. The results provide guidances for the actual working conditions.
     In this paper, a smart pump system was proposed based on valve-speed joint adjustment and operating condition optimizing, and the test bench was constructed; The optimizing calculation was carried out to to increase the efficiency and reliability of the pump unit and the results was verified by experiments. The results show that the smart pump unit studied in this paper can increase the flowrate and pressure range significantly under high efficiency and reliability. So the problem in which the operating condition is deviated from the design condition is solved in a certain extent.
引文
[1]Dirk Kollmar, Christian Appel. Optimizing energy efficiency in hydraulic systems [J]. What's New in Process Technology,2010, (9):16-18
    [2]Judy Hodgson, Trey Walters. Optimizing pumping systems to minimize first or life-cycle cost[C]. Proceedings of the 19th international pump users symposium. Houston, Texas,2002.1-8
    [3]丰国斌.油田注水系统节能[J].石油规划设计,1996,7(2):7-9
    [4]Igor J. K. Pump Handbook[M].北京:中国石化出版社,2002:23-45
    [5]张承慧,赵敏,刘红波等.城市水厂变频调速泵群优化控制策略[J].上海交通大学学报,2004,38(4):564-569
    [6]王训俭.略论城市给水系统优化调度与管理的研究和发展方向[J].中国给水排水,1990,6(1):27-33
    [7]秦建林.化工企业泵的节能降耗措施[J].化工机械,2011,38(2):243-245
    [8]王金铭,王洋,张庆波.变频与工频给水泵并联运行试验与应用[J].电站辅机,2010,31(2):29-32
    [9]樊建军,王峰,张朝升等.变频调速给水系统水泵选型与运行的优化[J].工业用水与废水,2005,36(1):58-60
    [10]Mike Pemberton. Variable speed pumping:myths and legends [J]. World Pumps, 2005, (460):22-24
    [11]Nesbitt, B. Variable speed pumps-Are they worth the money [J]. World Pumps,2001, (419):50-54
    [12]王威.排水泵站中水泵的节能措施[J].应用能源技术,2009,(1):39-41
    [13]张奇志.国外智能泵技术的应用与进展[J].水泵技术,2009,(4):43-44
    [14]Wilo, AG. Intelligent pumps for building automation systems [J]. World Pumps,2007, (490):26-32
    [15]Nesbitt, B. Intelligent pump units and life cycle costs[J]. World Pumps,2001, (415): 20-25
    [16]陈允中.全球工业泵的发展与中国工业泵产业的现状与发展趋势[J].水工业市 场,2008,(12):31-33
    [17]朱玉峰,彭宝成.泵的智能化及其应用[J].轻工机械,2004,(3):115-118
    [18]Frenning, L. Pump life cycle costs:a guide to LCC analysis for pumping systemsfM]., New jersey:Hydraulic Institute and Europump,2001
    [19]陈楚成,陈宗华.智能泵综述[J].通用机械,2005,(9):42-44
    [20]ITT. PumpSmart智能泵控制器控制解决方案[Z].2007
    [21]潘爽.浅谈机械产品可靠性设计[J].电子机械工程,2006,22(1):7-10
    [22]刘甲凡.改善低比转数泵可靠性的途径[J].流体机械,1998,20(1):30-33
    [23]刘甲凡,王能秀.低比数离心泵的若干问题探讨[J].化工设备设计,1992(2):30-31
    [24]刘甲凡.王能秀.改善低比数离心泵不稳定特性方法的分析[J].水泵技术,1991(1):1-4
    [25]刘根宜.低比速离心泵叶片数的选择[J].水泵技术,1995(5):29-31
    [26]Yuan Shouqi, Cao Wuling, Li Shiying et al. Theroy and design method of non-overload centrifugal pumps[J]. Chinese journal of Mechanical Engineering (English Edition),1992,5(4):252-260
    [27]任向前,关海波,王永恒,杨志强.浅谈保证泵可靠性的基本措施[J].水泵技术.2005(6):42-45
    [28]吴大转,武鹏,王乐勤等.一种液压驱动式立式离心泵[P].中国:200910095887.6
    [29]武鹏,吴大转,王乐勤等.一种用于液下泵的主轴密封装置[P].中国:200910095886.1
    [30]邹正文,周耀密,邹晓东.化工离心泵的新结构研究[J].机械,2001,28(2):56-58
    [31]李世煌.叶片泵的非设计工况及其优化设计[M].北京:机械工业出版社,2006
    [32]Karassik I J. Centrifugal pump operation at off-design conditions [Z].
    [33]Joseph P V. Centrifugal and axial pump design and off-design performance [J]. US: National Aeronautics and Space Administration,1995:17-21
    [34]Muggli F A, Holbein P, Dupont P. CFD calculation of a mixed flow pump characteristic from shutoff to maximum flow [J]. ASME Journal of Fluids Engineering,2002,124:798-802
    [35]Wang Hong, Tsukamoto Hiroshi. Experimental and numerical study of unsteady flow in a diffuser pump at off-design conditions [J]. Journal of Fluids Engineering,2003, 125(9):767-778
    [36]Cheah K. W., Lee T. S., Winoto S. H. et al. Numerical flow simulation in a centrifugal pump at design and off-design conditions [J]. International Journal of Rotating Machinery,2007:1-8
    [37]Akhras A., Hajem M. E., Morel R.et al, Internal flow investigation of a centrifugal pump at the design point [J]. Journal of Visualization,2001,4(1),91-98
    [38]Zhang M., Pomfret M. J., Wong C. Performance prediction of a backswept centrifugal impeller at off-design point conditions [J]. International Journal for Numerical Methods in Fluids,1996,23(9),883-895
    [39]Byskov R. K., Jacobsen C. B., Pedersen N. Flow in a centrifugal pump impeller at design and off-design conditions-part II:large eddy simulations [J]. ASME Journal of Fluids Engineering,2003,125(1),73-83
    [40]Sun J, Tsukamoto H. Off-design performance prediction for diffuser pumps [J]. Journal of Power and Energy,2001,5(2):191-201
    [41]Wuibaut G, Bois G, Dupont P, et al. PIV measurements in the impeller and the vaneless diffuser of a radial flow pump in design and off-design operating conditions [J]. Journal of Fluids Engineering,2002,124(3):791-797
    [42]Pedersen N, Larsen P S, Jacobsen C B. Flow in a centrifugal pump impeller at design and off-design conditions-Part I:Particle Image Velocimetry and Laser Doppler Velocimetry measurements [J]. Journal of Fluids Engineering,2003,125(1):61-72
    [43]TJ 919.064. Operation of Rotodynamic Pumps Away from Design Conditions [S]. Europ:Assoc. Pump Manufac.,2000
    [44]Shvindin A. I. Enhancing reliability and reparability of oil refinery pumping unit [J].Khim.Tekh.,2005, (12):30-31
    [45]Barringer, H. P. Reliability Engineering Principles [Z]. Training Course, Slide 45, Barringer& Associates,1997
    [46]B. Neumann. The Interaction between Geometry and Performance of a Centrifugal Pump [M]. London:Mechanical Engineering Publications Limited,1991
    [47]Shiels S. Centrifugal Pump Academy:Locating the greatest centrifugal pump energy savings [J]. World Pumps,1998(384):56-59.
    [48]杨志红.离心泵并联运行工况分析[J].安徽科技,2005(11):52-53
    [49]曹忠辉.不同型号离心泵并联运行性能测试探讨[J].水泵技术,2001(2):37-39
    [50]Shiels S. When two pumps are cheaper than one[J]. World Pumps,1997,1997(372): 58-61
    [51]Tianyi Z, Jili Z, Liangdong M. On-line optimization control method based on extreme value analysis for parallel variable-frequency hydraulic pumps in central air-conditioning systems[J]. Building and Environment,2012,47:330-338
    [52]王昭俊.采暖循环水泵并联运行工况数学模型研究[J].煤气与热力,2001,21(6):499-501
    [53]李永民.浅谈计算法求解并联水泵工况点流量及扬程[J].煤炭技术,2003,22(2):83-84
    [54]把多铎,杨建国,王立青等.水泵并联运行工作点确定方法的研究[J].西北农林科技大学学报(自然科学版),2004,32(12):121-123
    [55]胡思科,吕太.考虑支管特性影响后并联水泵实际运行工作点的确定[J].流体机械,2006,34(9):38-42
    [56]叶学民,李春曦,杨阳等.不同调节方式下两泵并联运行工况点的确定方法研究[J].实验室科学,2010,13(3):99-102
    [57]于明,范韦昌.离心泵并联运行工况点的确定[J].水泵技术,1999(2):33-35
    [58]Carlson, Ron. Correct method of calculating energy savings to justify adjustable frequency drives on pumps [J]. IEEE Transactions on Industry Applications,2000, 36(6):1725-1733
    [59]Gibson, Ian H. Variable-speed drives as flow control elements [J]. ISA Transactions, 1994,33(2):165-169
    [60]Hellmann D H, Rosenberger H, Tusel E F. Saving of energy and cost in seawater desalination with speed controlled pumps[J]. Desalination,2001,139(1):7-19
    [61]李红艳.城市给水系统优化调度模型研究[D].太原理工大学,2003
    [62]王金铭,王洋,张庆波.变频与工频给水泵并联运行试验与应用[J].电站辅机,2010(2):29-32
    [63]夏东伟.水工业系统变速泵站优化控制与配置研究[D].山东大学,2000
    [64]梁相钦,宛如意.水泵调速及其控制技术的应用研究[J].给水排水,2004,30(9):107-111
    [65]沈阳水泵研究所.叶片泵设计手册[M].北京:机械工业出版社,1979:55-60
    [66]Coulbeek, B., Orr, C.H., Cunningham. A.E.GINAS 5 reference manual[M]. Research ReP. No.56, Water Software Systems, De Montfort Univ., Leicester, U.K.1991
    [67]Rossman, L.A. EPANET 2 user's manual [M]. U.S. Environmental Protection Agency, Cincinnati,2000
    [68]Walski, T.M., Barnard, T.E. & Harold, E., et al. Waste water collection system modeling and design [M]. Haestad Press, Waterbury, Conn,2004
    [69]何中杰.城市分布式泵站排水系统综合节能与协调优化控制研究[D].浙江大学,2009
    [70]邵旻.基于混合遗传算法的油田注水泵站优化控制[D].华中科技大学,2006
    [71]Cohen G. Optimal control of water supply networks in Optimization and Control of Dynamic Operational Research models [J]. UNESCO Monograph. Uneseo-Reidel Publishing Company co-edition,1984.
    [72]张承慧.变频调速系统效率优化控制理论及应用[D].山东大学,2001
    [73]张承慧,夏东伟,李洪斌等.城市水工业系统泵站优化调度问题建模方法研究[J].控制与决策,2004,19(5):582-585
    [74]Pezeshk S, Heiweg O J, Oliver K E. Optimal operation of ground water supply distribution systems [J]. Journal of Water Resources Planning and Management, ASCE,1994,120(5):573-586
    [75]Little Keith W., McCrodden B. J. Minimization of raw water Pumping costs using MILP [J]. Journal of water Resources planning and Management, ASCE,1989,115 (4):511-522
    [76]Bortoni E, Almeida R A, Viana A N C. Optimization of parallel variable-speed-driven centrifugal pumps operation[J]. Energy Efficiency,2008,1(3):167-173
    [77]Holland J H. Adaption in natural and artificial systems [M]. The university of Michigan Press,1975
    [78]Schwefel H P. Evolution and Optimum Seeking [M]. New York:Wiley,1995
    [79]Kirkpatric S, Gelatt C D, Vecchi M P. Optimization by Simulated [J]. Annealing Science,1983,220:671-680
    [80]Glover F. Tabu search-Part Ⅰ [J].ORSA Jon Computing,1989,1(3):190-260
    [81]Glover F. Tabu search-Part Ⅱ [J]. ORS A J on Computing,1990,2(1):4-32
    [82]王凌.智能优化算法及其应用[M].北京:清华大学出版社,2001:13-14
    [83]周明,孙树栋.遗传算法原理及应用[M].北京:国防工业出版社,1999
    [84]De Jong K A. An Analysis of the Behavior of a Class of Genetic Adaptive Systems [D]. University of Michigan,1975
    [85]Goldberg D E. Genetic Algorithms in Search, Optimization and Machine Learning [M]. Adison-Wesley,1989
    [86]王小平,曹立明.遗传算法-理论、应用与软件实现[M].西安:西安交通大学出版社,2002
    [87]龚志鹏.大型污水输送泵站的智能控制模型和优化运行研究[D].同济大学,2007
    [88]王朋涛.城市给水泵站全变频变压变流量运行控制优化研究[D].重庆大学,2008
    [89]廖莉,林家恒,张承慧等.用遗传算法求解供水泵站的效率优化问题[J].中国工程科学,2002,4(9):5-10
    [90]Pezeshk S, Helweg O J. Adaptive search optimization in reducing pump operating costs[J]. Journal of Water Resources Planning and Management,1996,122(1):57-63
    [91]Nitivattananon V, Sadowski E C, Quimpo R G. Optimization of water supply system operation[J]. Journal of Water Resources Planning and Management,1996,122(5): 374-384
    [92]Lingireddy S, Wood D J. Improved operation of water distribution systems using variable-speed pumps [J]. Journal of energy engineering,1998,124(3):90-103
    [93]Yagi S, Shiba S. Application of genetic algorithms and fuzzy control to a combined sewer pumping station [J]. Water Science & Technology,1999,39(9):217-224
    [94]Wu Z, Boulos P, de Schaetzen W, et al. Using genetic algorithms for water distribution system optimization[C]//Proceedings of the ASCE Environmental and Water Resources Institute's (EWRI's) World Water & Environmental Resource Congress.2001:20-24
    [95]Izquierdo M D Z, Jimenez J J S, del Sol A M. Matlab software to determine the saving in parallel pumps optimal operation systems, by using variable speed[C]//Energy 2030 Conference,2008. ENERGY 2008. IEEE. IEEE,2008:1-8
    [96]Michalewicz Z, Atria N. Evolutionary algorithms for constrained engineering problems [J]. Computers Industrial Engineering,1996,30(4):851-870
    [97]席少霖.非线性最优化方法[M].北京:高等教育出版社,1992
    [98]吴志远,邵惠鹤,吴新余.基于遗传算法的退火精确罚函数非线性约束优化方法[J].控制与决策,2002,13(2):136-140
    [99]赵红芳.不同泵阀开启方式下水泵起动水锤计算分析[J].中国农村水利水电,2005,(6):107-108,118
    [100]刘梅清,邱锦春,周龙才,杨文容.泵管渠池复杂抽水系统的过渡过程计算[J].武汉大学学报(工学版),2003,36(4):6-9
    [101]常近时,白朝平.高水头抽水蓄能电站复杂水力装置过渡过程的新计算方法[J].水力发电,1995,20(2):51-55
    [102]Thanapandi P., Prasad R. Centrifugal Pump Transient Characteristics and Analysis Using the Method of Characteristics [J]. International Journal of Mechanical Sciences, 1995,37(1):77-89
    [103]Thanapandi P., Prasad R. A quasi-steady performance prediction model for dynamic characteristics of a volute pump [J]. Proceedings of the Institution of Mechanical Engineers, Part A:Journal of Power and Energy,1994,208(1):47-58
    [104]罗峰,周涛,贾瑞宣.Flowmaster软件在AP1000启动给水系统瞬态运行中的应用[J].华电技术,2012,34(2):31-78.
    [105]温丙奎.两阶段关阀用于循环水系统水锤防护的计算分析[J].嘉应学院学报(自然科学),2010,28(11):49-53.
    [106]Dudlik A, Schonfeld SBH, Hagemann O, Fahlenkamp H. Water hammer and cavitational hammer in process plant pipe systems[J]. KERNTECHNIK, 2003,68(3):91-96.
    [107]白绵绵,王福军,肖若富.基于Flowmaster的泵站水力过渡过程研究[C].第二届全国水力机械及其系统学术会议论文集.
    [108]王乐勤,吴大转,郑水英.混流泵开机过程瞬态水力性能的数值计算[J].流体机械,2004,32(1):10-13.
    [109]吴大转.特种离心式水泵快速启动过程瞬态特性的研究[D].博士学位论文,浙江大学,2004.
    [110]Zhifeng Li, Peng Wu, Dazhuan Wu, et al. Experimental and numerical study of transient flow in a centrifugal pump during startup [J]. Journal of Mechanical Science and Technology,2011,25(3):749-757
    [111]武鹏,吴大转,李志峰等.离心泵流量突增过程瞬态流动研究[J].工程热物理学报,2010,31(3):419-422
    [112]Dazhuan Wu, Peng Wu, Zhifeng Li, et al. The transient flow in a centrifugal pump during the discharge valve rapid opening process [J]. Nuclear Engineering and Design, 2010,240(12):4061-4067
    [113]张惠艳,李彦军,黄良勇等.大型离心泵并联运行最优控制分析[J].给水排水,2007,33(12):106-110
    [114]Michel A.B., Bernard B. Pumping Energy and Variable Frequency Drivers [J]. ASHRAE Journal,1999,12:37-40
    [115]Srinivas M, Patnaik L M. Adaptive probabilities of crossover and mutation in genetic algorithms [J]. Systems, Man and Cybernetics, IEEE Transactions on,1994,24(4): 656-667
    [116]安连锁,吴民强.电厂给水系统变速泵并联运行时的优化调度[J].华北电力学院学报,1991,4:89-93
    [117]缴锡云.并联泵站的最优调速运行[J].河北工程技术高等专科学校学报[J],1993,2:31-36
    [118]Barringer, H. P. Weibull Reliability Database for Failure Data for Various Components [EB/OL]. http://www.barringerl.com/wdbase.htm,2010-02-22/2013-04-01

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700