飞秒激光多维信息存储关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代科技对数据容量需求的急速增长使超高密度信息存储技术成为当代信息技术领域重要的研究课题。多维信息存储改变了原有光存储技术依靠缩短激光波长和增加物镜数值孔径来提高存储密度的传统思路,在几何三维空间之外,选择其他可以影响数据写入和读取的物理特性参量建立独立的坐标系,可以将多重信息记录到存储介质的同一物理空间上,并实现独立的读取,从而增加信息存储的维度。多维信息存储技术可实现的存储容量大,控制灵活方便,已成为下一代光存储技术发展的重要方向之一。本文结合飞秒激光双光子吸收的三维高分辨优势和偶氮苯材料的光致异构取向重分布特性,发展了偏振多元多阶信息存储技术,并对其中的关键间题进行了理论和实验研究。
     首先,介绍了偶氮苯的双光子光响应性质及机理,包括双光子光致异构、光致取向和光致取向烧孔等;对双光子光致异构速率方程和光致取向速率方程分别进行了描述;对于其中最重要的光致各向异性性质——光致双折射进行了理论分析和实验测量;对研究非线性光学特性的Z扫描方法进行了介绍,并对实验结果进行了分析。
     其次,搭建了飞秒激光双光子偏振存储系统并实现了偏振多元信息存储;分别利用偏振透射光读出,偏光读出和反射式扫描共焦读出三种方式验证了利用飞秒激光实现可擦除的偏振多元存储的可行性:存储密度理论值可以达到250Gb/cm3;还对存储过程中曝光剂量对信息点强度和大小的影响进行了实验研究和理论分析,为写入参数的进一步优化提供依据。
     另外,双偶氮苯poly(M2BAN-co-MMA)聚合物的偏振存储过程中,当曝光量超过特定阈值时,会出现灰阶低于背景的暗点。本文利用这一性质实现了偏振多阶信息存储:同时通过对与入光曝光时间的控制实现了9阶信息存储,并讨论了多阶信息存储中的影响因素;对偏振飞秒激光在双偶氮苯聚合物薄膜中诱导产生表面形貌进行了深入的理论模型研究和实验分析,结果表明电场梯度力模型可以很好的解释偏振激光引起的表面形貌;并且对不同曝光条件下的偏振存储进行了详细的讨论。
     最后,论文进行了基于空间光调制器的三维并行存储技术的初步研究;详细介绍了空间光调制器的结构以及调制机理;设计了三维计算全息算法并在此基础上实现了多层图像的设计和重现,验证了三维动态并行数据存储的可行性;同时考虑了折射率失配引起的离焦和球差对三维动态并行存储的影响并提出在全息算法迭代过程中进行补偿,为下一步实现并行多维信息存储和高效高分辨跨尺度全息并行加工奠定了基础。
The urgently increasing requirement on data storage capacity makes the super-high density storage technology to be one of the most important research topics. Different from the traditional optical storage technologies which depends on shortening the laser wavelength and decreasing the objective numerical aperture to achieve higher storage density, multi-dimensional data storage introduces other parameters besides the geometric space that can influence the recording and reading process, builds individual coordinates, finally records multiplex information inside the identical space of storage medium. Recorded data can be individually read out. This technology has the advantage of super-high storage capacity and easy to control. It has become a promising candidate for next generation optical storage. In this dissertation, both the high resolution of two-photon absorption and photoinduced isomeric reorientation properties of azobenzene chromophores are combined to develop a novel polarization-multiplexed and multilevel data storage method. Some key issues of the multi-dimensional data storage are theoretically and experimentally investigated.
     Firstly, the two-photon optical response property and mechanism of azobenzene polymer is introduced, including photoinduced isomerization, reorientation and orientational hole burning; The two-photon isomerization rate equation and reorientation rate equation are described; Furthermore, as the most important anisotropy character, photoinduced birefringence is theoretically analyzed and experimentally measured; Z scan technique, which is wildly used to characterize the material nonlinear optical properties, is introduced and the experimental result is analyzed.
     Secondly, a femtosecond laser two-photon polarization storage system is built to achieve polarization multiplexed data storage; Transmission polarized light readout configuration, polarizing microscopy, and reflective scanning confocal microscopy setup are respectively used to read out the recorded bits, and the feasibility of erasable and rewritable polarization storage is confirmed; The storage density can reach as high as250Gb/cm3; The influence of exposure dose (e.g. exposure time, power) on the bits intensity and size is also investigated, providing a basis for the optimization of recording parameters.
     Thirdly, when the exposure dose exceeds one threshold during the polarization recording in poly(M2BAN-co-MMA), dark dots will appear when perpendicular readout. This phenomenon is used to perform polarization multilevel storage; At the same time, nine-level storage is realized by modulating the exposure dose; Some influencing factors are discussed for multilevel storage; The surface deformation induced by polarized femtosecond laser is deeply studied; The optical-field gradient force model is applied to explain the surface deformation; Three-stage recording in polarization storage is discussed.
     Finally, basic research on three-dimensional parallel recording based on spatial light modulator (SLM) is carried out; The structure and modulation mechanism of SLM are circumstantiated;3D computer generate hologram (CGH) algorithm is designed and multi-layer images reconstruction is performed based on this; The defocus and spherical aberration caused by refractive mismatch are considered and proposed to be compensated in the3D computer generate hologram algorithm; All the work lay a foundation for next step parallel multi-dimensional data storage and dynamic holographic parallel processing technology.
引文
1. 徐端颐,光盘存储系统设计原理.2000,北京:国防工业出版社.663.
    2. OPTICAL DATA STORAGE Holographic data storage uses volumetric crystal media. Laser Focus World,2012.48(2):p.19-19.
    3. Betzig, E. and J.K. Trautman, NEAR-FIELD OPTICS-MICROSCOPY SPECTROSCOPY. AND SURFACE MODIFICATION BEYOND THE DIFFRACTION LIMIT. Science,1992.257(5067):p.189-195.
    4. Heanue, J.F., M.C. Bashaw, and L. Hesselink, VOLUME HOLOGRAPHIC STORAGE AND RETRIEVAL OF DIGITAL DATA. Science,1994.265(5173):p.749-752.
    5. Lott, J., et al., Two-Photon 3D Optical Data Storage via Aggregate Switching of Excimer-Forming Dyes. Advanced Materials,2011.23(21):p.2425.
    6. Yasui, T. and T. Saiki, Polarization-Sensitive Reading Method for High-Density Optical Data Storage. Japanese Journal of Applied Physics,2011.50(7).
    7. Betzig, E., et al., NEAR-FIELD MAGNETOOPTICS AND HIGH-DENSITY DATA-STORAGE. Applied Physics Letters,1992.61(2):p.142-144.
    8. Terris, B.D., H.J. Mamin, and D. Rugar, Near-field optical data storage. Applied Physics Letters,1996.68(2):p.141-143.
    9. Terris. B.D., et al., NEAR-FIELD OPTICAL-DATA STORAGE USING A SOLID IMMERSION LENS. Applied Physics Letters,1994.65(4):p.388-390.
    10. Berg, R.H., S. Hvilsted, and P.S. Ramanujam, Peptide oligomers for holographic data storage. Nature,1996.383(6600):p.505-508.
    11. Hesselink, L., et al., Photorefractive materials for nonvolatile volume holographic data storage. Science,1998.282(5391):p.1089-1094.
    12. Leith. B.N., et al., HOLOGRAPHIC DATA STORAGE IN 3-DIMENSIONAL MEDIA. Applied Optics,1966.5(8):p.1303.
    13. Rakuljic, G.A., V. Leyva, and A. Yariv, OPTICAL-DATA STORAGE BY USING ORTHOGONAL WAVELENGTH-MULTIPLEXED VOLUME HOLOGRAMS. Optics Letters,1992.17(20):p.1471-1473.
    14. Wallace, J., OPTICAL DATA STORAGE 500 Gbyte volume-holographic disc can be written at Blu-ray speed. Laser Focus World,2011.47(9):p.13-14.
    15. Cumpston, B.H., et al., Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication. Nature,1999.398(6722):p.51-54.
    16. Dallari, W., et al, Three-dimensional optical data storage through multi-photon confocal microscopy and imaging. Microelectronic Engineering,2011.88(12):p. 3466-3469.
    17. Iliopoulos, K., et al., Reversible Two-Photon Optical Data Storage in Coumarin-Based Copolymers. Journal of the American Chemical Society,2010.132(41):p.14343-14345.
    18. Haeiwa, H., et al., Precise formation of fine pits on birefringent film for multilevel optical data storage. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers,2002.41(7B):p.4841-4844.
    19. Lee, D., et al., Multilevel Data Storage Memory Using Deterministic Polarization Control. Advanced Materials,2012.24(3):p.402.
    20. Lee, J.S., et al., Multilevel Data Storage Memoiy Devices Based on the Controlled Capacitive Coupling of Trapped Electrons. Advanced Materials,2011.23(18):p.2064.
    21. Zhou, X.L., et al., Sb-rich Si-Sb-Te phase change material for multilevel data storage: The degree of disorder in the crystalline state. Applied Physics Letters,2011.99(3).
    22. Mamin, H.J., et al., High-density data storage using proximal probe techniques. Ibm Journal of Research and Development,1995.39(6):p.681-699.
    23. Yatsui, T., et al., High-density-speed optical near-field recording-reading with a pyramidal silicon probe on a contact slider. Optics Letters,2000.25(17):p.1279-1281.
    24. Ichimura, I., S. Hayashi, and G.S. Kino, High-density optical recording using a solid immersion lens. Applied Optics,1997.36(19):p.4339-4348.
    25. Kim, J., et al., Random pattern signal characteristics of super-RENS disk in blue laser system, in Optical Data Storage 2004, B. Kumar and H. Kobori, Editors.2004. p. 336-341.
    26. Shima, T., et al., Super-RENS disk for blue laser system retrieving signals from polycarbonate substrate side. Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers,2005.44(5B):p.3631-3633.
    27. Yee, Y., et al., Micro solid immersion lens fabricated by micro-molding for near-field optical data storage.2000 Ieee/Leos International Conference on Optical Mems.2000. 91-92.
    28. Kishima, K., et al., Near-field phase-change recording using a GaN laser diode, in Optical Data Storage 2000, D.G.K.R. Stinson, Editor.2000. p.50-55.
    29. Zijp, F., et al., High-density near-field optical recording with a solid immersion lens, conventional actuator, and a robust air gap servo. Ieee Transactions on Magnetics,2005. 41(2):p.1042-1046.
    30. Kim, J.H., S.H. Lee, and J.K. Seo, High density rewritable media for near-field optical recording. European Physical Journal-Applied Physics,2010.52(3).
    31. Hwang, H., et al., High-Speed Gap Servo Control for Solid-Immersion-Lens-Based Near-Field Recording System with a Flexible Optical Disk. Japanese Journal of Applied Physics,2011.50(9).
    32. Jung-Gon, K., et al., Improved Air Gap Control With Acceleration Feedforward Controller Using Time Delay for Solid Immersion Lens-Based Near-Field Storage System. Ieee Transactions on Magnetics,2011.47(3).
    33. Wilson, W.L., L. Dhar, and K.R. Curtis, Progress toward the commercial realization of high performance holographic data storage:Architecture and function of the InPhase technologies holographic drive-art. no.63350G, in Organic Holographic Materials and Applications Ⅳ:S.M.K. Orlic, Editor.2006. p. G3350-G3350.
    34. Lin, Y.C., et al., Optimising the performance of optical data storage drives based on a novel seesaw-swivel actuator for a holographic module. Micro & Nano Letters,2011. 6(7):p.571-574.
    35. Choi, K., et al., Low-Distortion Holographic Data Storage Media Using Free-Radical Ring-Opening Polymerization. Advanced Functional Materials,2009,19(22):p. 3560-3566.
    36. Fucai, L., et al., Improved sensitivity of nonvolatile holographic storage in triply doped LiNbO 3:Zr,Cu,Ce. Optics Express,2010.18(6).
    37. Seungwoo, L., et al.. Multifunctional photoreactive inorganic cages for three-dimensional holographic data storage. Optics Letters,2009,34(20).
    38. Parthenopoulos, D.A. and P.M. Rentzepis,3-DIMENSIONAL OPTICAL STORAGE MEMORY. Science,1989.245(4920):p.843-845.
    39. Wang, M.M., et al., Experimental characterization of a two-photon memory. Optics Letters.1997.22(8):p.558-560.
    40. Day, D. and M, Gu, Use of two-photon excitation for erasable-rewritable three-dimensional bit optical data storage in a photorefractive polymer. Optics Letters, 1999.24(14):p.948-950.
    41. Egami, C., et al., Two-stage optical data storage in azo polymers. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes& Review Papers,2000.39(3B):p. 1558-1561.
    42. McPhail, D. and M. Gu, Use of polarization sensitivity for three-dimensional optical data storage in polymer dispersed liquid crystals under two-photon illumination. Applied Physics Letters,2002.81(7):p.1160-1162.
    43. Kawata, S., Three-dimensional digital optical data-storage with photorefractive crystals, in Photorefractive Fiber and Crystal Devices:Materials, Optical Properties, and Applications Iv, F.T.S.Y.S. Yu, Editor.1998. p.56-63.
    44. Day, D., G. Min, and A. Smallridge, Two-photon optical storage in photorefractive polymers in the near-infrared spectral range. Infrared holography for optical communications. Techniques, materials, and devices, ed. P.P.D.U.M.C. Boffi.2003.
    45. Kawata, Y., H. Ishitobi, and S. Kawata, Use of two-photon absorption in a photorefractive crystal for three-dimensional optical memory. Optics Letters,1998. 23(10):p.756-758.
    46. Day, D. and M. Gu, Effects of refractive-index mismatch on three-dimensional optical data-storage density in a two-photon bleaching polymer. Applied Optics,1998.37(26): p.6299-6304.
    47. Huohong, T., et al., Three-dimensional optical data storage in a novel dye doped polymer film using two-photon bleaching. Proceedings of the SPIE-The International Society for Optical Engineering,2005.5966.
    48. Gu, M. and D. Day, Use of continuous-wave illumination for two-photon three-dimensional optical bit data storage in a photobleaching polymer. Optics Letters, 1999.24(5):p.288-290.
    49. Pudavar, H.E., et al., High-density three-dimensional optical data storage in a stacked compact disk format with two-photon writing and single photon readout. Applied Physics Letters,1999.74(9):p.1338-1340.
    50. Toriumi, A., S. Kawata, and M. Gu, Reflection confocal microscope readout system for three-dimensional photochromic optical data storage. Optics Letters,1998.23(24):p. 1924-1926.
    51. Yamasaki, K., et al., Recording by micro explosion and two-photon reading of three-dimensional optical memory in polymethylmethacrylate films. Applied Physics Letters,2000.76(8):p.1000-1002.
    52. Hongfang, J., et al., Sm(DBM) 3Phen-doped poly(methyl methacrylate) for three-dimensional multilayered optical memoiy. Optics Letters,2005.30(7).
    53. Glezer, E.N., et al., Three-dimensional optical storage inside transparent materials. Optics Letters,1996.21(24):p.2023-2025.
    54. Zhou, H., et al., Two-photon absorption dyes with thiophene as pi electron bridge: Synthesis, photophysical properties and optical data storage. Dyes and Pigments,2012. 92(1):p.633-641.
    55. Levich, E., B. Chernobrod, and A. Dovgan, Optical reproducing apparatus for multilayer fluorescent optical card, has drive system for enabling auto-focusing of incident light from layer to layer and precise positioning of optical read-out head, C3D INC (CTHR-Non-standard) LEVICH E (LEVI-Individual) CHERNOBROD B (CHER-Individual) DOVGAN A (DOVG-Individual).
    56. Zhang, H.C., et al., Single-beam two-photon-recorded monolithic multi-layer optical disks.2000 Optical Data Storage, Conference Digest.2000.152-154.
    57. McCormick, F.B., et al., Parallel access 3-D multilayer optical storage using 2-photon recording, in Advanced Optical Data Storage:Materials, Systems, and Interfaces to Computers. P.A.II.Z.U.C.H.J.S.G.T. Mitkas, Editor.1999. p.173-182.
    58. Escner, S. and I. Ieee, Parallel readout of multi-layer optical disks recorded with a blue laser, in Leos 2001:14th Annual Meeting of the Ieee Lasers & Electro-Optics Society, Vols 1 and 2, Proceedings.2001. p.612-613.
    59. Esener, S., et al., Present performance & future directions in two-photon addressed write once read many volumetric optical disk storage systems, in Advanced Optical Data Storage.. H.J.C.A.E.H.Z.U. Coufal, Editor.2003. p.93-103.
    60. Alpert, O.. et al., Optical data carrier has spaced-apart recording regions arranged in composite data pattern segments comprising main data and tone data of different spatial frequencies, MEMPILE INC (MEMP-Non-standard).
    61. Alpert, O., Y. Salomon, and A.N. Shipway, Non-linear recording medium used in optical information carrier for recording data as a result of photon interaction, comprises optically active material distributed in polymer matrix such that the medium has specific transmission for light, MEMPILE INC (MEMP-Non-standard).
    62. Eitan, O., et al., Optical system for use in data reading and recording in optical daia carrier, has detection units to track trajectory of recording and reading light beams, by detecting light components coming from respective sides of data carrier, MEMPILE INC (MEMP-Non-standard).
    63. Hamer, R., et al., Using three-dimensional optical data carrier in reading data involves focusing recording/reading beam and reference beam onto optical carrier through common optical element, and controlling movement of optical element, MEMPILE INC (MEMP-Non-standard).
    64. Salomon, Y., Determination method for degree of quality of multi layer optical data carrier involves processing generated data to determine the relation with predetermined data, MEMPILE INC (MEMP-Non-standard).
    65. Shipway, A., Curable epoxy resin formulation for bonding two surfaces, comprises epoxy resin; ether selected from resourcinol diglycidyl ether (m-bis(2,3-epoxypropoxy)benzene), phenyl glycidyl ether, divinylbenzene dioxide and/or styrene oxide, MEMPILE INC (MEMP-Non-standard).
    66. Goppert-Mayer, M., Uber Elementarakte mit zwei Quantenspriingen. Annalen der Physik,1931.401(3):p.273-296.
    67. W. Kaiser, C.G.B.G., Two-photon excitation In CaF2:Eu2+. Phys. Rev.Lett.,1961.7(6): p.229-232.
    68. Miller, M.J., et al., Two-photon imaging of lymphocyte motility and antigen response in intact lymph node. Science,2002.296(5574):p.1869-1873.
    69. Kawata, S., et al., Finer features for functional microdevices-Micromachines can be created with higher resolution using two-photon absorption. Nature,2001.412(6848):p. 697-698.
    70. Stephens, D.J. and V.J. Allan, Light microscopy techniques for live cell Imaging. Science, 2003.300(5616):p.82-86.
    71. Walker, E. and P.M. Rentzepis, Two-photon technology:A new dimension. Nature Photonics,2008.2(7):p.406-408.
    72. Zijlstra, P., J.W.M. Chon, and M. Gu, Five-dimensional optical recording mediated by surface plasmons in gold nanorods. Nature,2009.459(7245):p.410-413.
    73.徐端颐,超高密度超快速光信息存储.2009,沈阳:辽宁科学技术出版社.682.
    74. Maeda, M., et al., Polarization storage by nonlinear orientational hole burning in azo dye-containing polymer films. Applied Physics Letters,2004.85(3):p.351-353.
    75. Mendonca, C.R., et al., Two-photon induced anisotropy in PMMA film doped with Disperse Red 13. Optics Communications,2007.273(2):p.435-440.
    76. Xiangping, L., et al., Rewritable polarization-encoded multilayer data storage in 2,5-dimethyl-4-(p-nitrophenylazo)anisole doped polymer. Optics Letters,2007.32(3).
    77. Rentzepis, P.M., Multidimensional optical memory element for optical card, disk, includes photochromic chemicals having mutually different non-overlapping absorption spectrum peaks, Univ California.
    78. Chen, Y., T. Chung, and W. Su, Wavelength-multiplex/space-multiplex holographic storage device for three dimensional storage of data, stores patterns produced by-interfering coherent reference light bream with coherent signal light beam on depth storage layers, Su W; Chen Y; Chung T. 79. Contreras, K., et al., Wavelength-multiplexed memory based on a Lippmann architecture. 2009 Conference on Lasers & Electro-Optics Europe & 11th European Quantum Electronics Conference (CLEO/EQEC),2009.
    80. Wu, P., et al., Wavelength-multiplexed submicron holograms for disk-compatible data storage. Optics Express,2007.15(26):p.17798-17804.
    81. Zijlstra, P., J.W.M. Chon, and G. Min, Wavelength multiplexed optical storage in plasmonic gold nanorods. CLEO/Europe-IQEC 2007. European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference,2007.
    82.齐国生,麦雪松,徐端颐,赵辉,张富实,彩色三波长光存储实验研究.光电子激光,2002.13(11):p,1183-1189.
    83.雷志军,光致变色材料多波长多阶光存储读写策略洋酒,清华大学精密仪器与机械关系.2004.清华大学:北京.
    84. Spielman, S., et al., Using pit-depth modulation to increase capacity and data transfer rate in optical discs. Optical Data Storage'97, ed. H.K.J.Z. Birecki. Vol.3109.1997. 98-104.
    85. Earman, A.M., Optical data storage with electron trapping materials using M-ary data channel coding. Proceedings of the SPIE-The International Society for Optical Engineering,1992.1663.
    86. Hou, Y., et al., Design and Synthesis of Hierarchical MnO(2) Nanospheres/Carbon Nanotubes/Conducting Polymer Ternary Composite for High Performance Electrochemical Electrodes. Nano Letters,2010.10(7):p.2727-2733.
    87. Krebs, F.C., T. Tromholt, and M. Jorgensen, Upscaling of polymer solar cell fabrication using full roll-to-roll processing. Nanoscale,2010.2(6):p.873-886.
    88. McKeown, N.B. and P.M. Budd, Exploitation of Intrinsic Microporosily in Polymer-Based Materials. Macromolecules,2010.43(12):p.5163-5176.
    89. Xie, Z., et al., Porous Phosphorescent Coordination Polymers for Oxygen Sensing. Journal of the American Chemical Society,2010.132(3):p.922.
    90. Facchetti, A., pi-Conjugated Polymers for Organic Electronics and Photovoltaic Cell Applications. Chemistry of Materials,2011.23(3):p.733-758.
    91. Kim, B.K., et al., Effect of graphene doping of holographic polymer-dispersed liquid crystals. Journal of Polymer Science Part a-Polymer Chemistry,2012.50(7):p. 1418-1423.
    92. Klein, J., Polymers in living systems:from biological lubrication to tissue engineering and biomedical devices. Polymers for Advanced Technologies,2012.23(4):p.729-735.
    93. Li, Z.a., et al., Syntheses and second-order nonlinear optical properties of a series of new "H"-shape polymers. Dyes and Pigments,2012.94(1):p.16-22.
    94. Natansohn, A., et al, AZO POLYMERS FOR REVERSIBLE OPTICAL STORAGE.1. POLY 4'-2-(ACRYLOYLOXY)ETHYL ETHYLAMINO-4-NITROAZOBENZENE. Macromolecules,1992.25(8):p.2268-2273.
    95. Blanche, P.A., et al., Polarization holography reveals the nature of the grating in polymers containing azo-dye. Optics Communications,2000.185(1-3):p.1-12.
    96. Nishihara, H., Multi-mode molecular switching properties and functions of azo-conjugated metal complexes. Bulletin of the Chemical Society of Japan,2004.77(3): p.407-428.
    97. Arora, P., et al., Polarization holographic grating recording in a liquid crystalline azo dye copolymer with hidden helical superstructure. Physica Scripta,2012.85(3).
    98. Kolli, B, et al., Click chemistry-based synthesis of azo polymers for second-order nonlinear optics. Journal of Polymer Science Part a-Polymer Chemistry,2012.50(8):p. 1572-1578.
    99. Lin, J.H., et al., Optical modulation of guided mode resonance in the waveguide grating structure incorporated with azo-doped-poly(methylmethacrylate) cladding layer Oplics Express,2012.20(1):p.377-384.
    100. Sun, T., et al., A Photo-Switched Supramolecular System Based on Cydodextrins and Azo Compounds. Progress in Chemistry,2012.24(1):p.70-79.
    101. Yager, K.G.B., C. J, Polymeric Nanostructures and Their Applications, in Polymeric Nanostructures and Their Applications, H.S. Nalwa, Editor.2006, American Scientific Publishers:Calif.
    102. J. F. Rabek, G.W.S., Photochemistry and Photophysics.1990:CRC Press.
    103. Sekkat, Z., H. Ishitobi, and S. Kawata, Two-photon isomerization and orientation of photoisomers in thin films of polymer. Optics Communications,2003.222(1-6):p. 269-276.
    104. Sekkat, Z., Isomeric orientation by two-photon excitation:a theoretical study. Optics Communications,2004.229(1-6):p.291-303.
    105. Palto, S.P., et al., On a model of photoinduced optical anisotropy in Langmuir-Blodgett films:low temperature studies. Molecular Materials,1992.2(1).
    106. Palto, S.P., et al., Photoinduced optical anisotropy in Langmuir-Blodgett films. Molecular Materials,1992.1(1).
    107. Pedersen, T.G. and P.M. Johansen, Mean-field theory of photoinduced molecular reorientation in azobenzene liquid crystalline side-chain polymers. Physical Review Letters,1997.79(13):p.2470-2473.
    108. Yager, K.G. and C.J. Barrett, Temperature modeling of laser-irradiated azo-polymer thin films. Journal of Chemical Physics,2004.120(2):p.1089-1096.
    109. Kim, D.Y., et al., LASER-INDUCED HOLOGRAPHIC SURFACE-RELIEF GRATINGS ON NONLINEAR-OPTICAL POLYMER-FILMS. Applied Physics Letters,1995.66(10): p.1166-1168.
    110. Todorov, T., N. Tomova, and L. Nikolova, HIGH-SENSITIVITY MATERIAL WITH REVERSIBLE PHOTOINDUCED ANISOTROPY. Optics Communications,1983.47(2): p.123-126.
    111. Rochon, P., et al., OPTICALLY INDUCED AND ERASED BIREFRINGENCE AND DICHROISM IN AZOAROMATIC POLYMERS. Applied Physics Letters,1992.60(1):p. 4-5.
    112.黄金堂,基于激光干陟技术的微纳结构制造研究,精密仪器及机械.2011,中国料学技术大学:合肥.
    113. Ono, H., N. Kowatari, and N. Kawatsuki, Study on dynamics of laser-induced birefringence in azo dye doped polymer films. Optical Materials.2000.15(1):p.33-39.
    114. Sheikbahae, M, et al., SENSITIVE MEASUREMENT OF OPTICAL NONLINEARITIES USING A SINGLE BEAM. Ieee Journal of Quantum Electronics,1990.26(4):p. 760-769.
    115. Nadjari, H. and Z.A. Azad, Determining the nonlinear coefficient of gold and silver nano-colloids using SPMand CWZ-scan. Optics and Laser Technology.2012.44(5):p. 1629-1632.
    116. Raneesh, B., et al., Nonlinear optical absorption studies of sol-gel derived Yttrium Iron Garnet (Y3Fe5O12) nanoparticles by Z-scan technique. Ceramics International,2012. 38(3):p.1823-1826.
    117. Rudresha, B.J., et al., Nonlinear optical study of palladium Schiff base complex using femtosecond differential optical Kerr gate and Z-scan techniques. Optics and Laser Technology,2012.44(4):p.1180-1183.
    118. Vivas, M.G., et al.. Study of singlet excited state absorption spectrum of lutetium bisphthalocyanine using the femtosecond Z-scan technique. Chemical Physics Letters, 2012.531:p.173-176.
    119. Husinsky, W., et al., Z-scan study of nonlinear absorption of gold nano-particles prepared by ion implantation in various types of silicate glasses. Optics Communications,2012.285(10-11).
    120. 张小强,偶氮聚合物材料的非线性光学机制和光致各向异性研究,物理系.2010,上海交通大学:上海.
    121. Liang, J.C., et al., Z-scan measurements on photoisomerization of azobenzene polymer and their theoretical interpretation. Acta Physica Sinica,2004.53(10):p.3596-3600.
    122. Alasfar, S., et al., Polarization-multiplexed optical memory with urethane-urea copolymers. Applied Optics,1999.38(29):p.6201-6204.
    123. Aoshima, Y., et al., Two-way optical memory for azobenzene-containing urethane-urea copolymer films. Optics Communications,1999.165(4-6):p.177-182.
    124. Li, X.P., et al., Quantum-rod dispersed photopolymers for multi-dimensional photonic applications. Optics Express,2009.17(4):p.2954-2961.
    125. Albota, M., et al., Design of organic molecules with large two-photon absorption cross sections. Science,1998.281(5383):p.1653-1656.
    126. Macak, P., et al., Electronic and vibronic contributions to two-phoion absorption of molecules with multi-branched structures. Journal of Chemical Physics,2000.113(17): p.7055-7061.
    127.章周舜,双偶氮苯聚合物双光子偏振存储与多维存储研究,高分子材料与工程系.2010,中国科学技术大学:合肥.
    128. Fukuda, T., et al., Molecular design and synthesis of copolymers with large photoinduced birefringence. Journal of Photochemistry and Photobiology a-Chemistry, 2006.182(3):p.262-268.
    129. Meng, X., A. Natansohn, and P. Rochon, Azo polymers for reversible optical storage.13. Photoorientation of rigid side groups containing two azo bonds. Polymer,1997.38(11): p.2677-2682.
    130. Lachut, B.L., et al., Large spectral birefringence in photoaddressable polymer films. Advanced Materials,2004.16(19):p.1746.
    131. Ishikawa, M., et al., Reflection-type confocal readout for multilayered optical memory. Optics Letters,1998.23(22):p.1781-1783.
    132. Nakano, M., et al., Three-dimensional patterned media for ultrahigh-density optical memory. Applied Physics Letters,2004.85(2):p.176-178.
    133. Wu, Y.L., T. Ikeda, and Q.J. Zhang, Three-dimensional manipulation of an azo polymer liquid crystal with unpolarized light. Advanced Materials,1999.11(4):p.300-302.
    134. Kadokawa, Y., et al., Multi-level optical recording using a blue laser, in Optical Data Storage 2003, M.M.N. Oneill, Editor.2003. p.369-374.
    135. Kobayashi, S., et al., Single carrier independent pit edge recording. Proceedings of the SPIE-The International Society for Optical Engineering,1995.2514.
    136. Kobayashi, S., et al.. GBR (Groove Baseband Recording) for an optical disc ROM, in Optical Data Storage 2000, D.G.K.R. Stinson, Editor.2000. p.12-15.
    137. Feng-Hsiang, L., et al., Recording of multi-level run-length-limited modulation signals on compact disc/digital versatile disc rewritable discs. Japanese Journal of Applied Physics, Part 1 (Regular Papers, Short Notes & Review Papers),2004.43(7B).
    138.胡华,齐国生,徐端颐,基于光致变色原理的多阶存储实验研究.中国激光,2004.31(8):p.951-954.
    139. Tang, Y, et al., Multi-level read-only recording using signal waveform modulation. Optics Express,2008,16(9):p.6156-6162.
    140.章江英,光致双折射及双光子光存储机理研究,光学2002,中国科学技术大学:合肥.
    141. Barrett, C.J., A.L. Natansohn, and P.L. Rochon, Mechanism of optically inscribed high-efficiency diffraction gratings in azo polymer films. Journal of Physical Chemistry. 1996.100(21):p.8836-8842.
    142. Ishitobi, H., et al., Two-photon induced polymer nanomovement. Optics Express,2008. 16(18):p.14106-14114.
    143. Viswanathan, N.K., et al., Surface relief structures on azo polymer films. Journal of Materials Chemistry,1999.9(9):p.1941-1955.
    144. Ishitobi, H., et al., The anisotropic nanomovement of azo-polymers. Optics Express, 2007.15(2):p.652-659.
    145. Sekkat. Z., et al., Single, two-, and multi-photon driven molecular motion and nanopatterning in azo-polymer films, in Linear and Nonlinear Optics of Organic Materials Xi, J.M.J.R.G.T.GE.M Nunzi, Editor.2011.
    146. Barrett, C.J., P.L. Rochon. and A.L. Natansohn, Model of laser-driven mass transport in thin films of dye-functionalized polymers. Journal of Chemical Physics,1998.109(4):p. 1505-1516.
    147. Sumaru, K., et al., Photoinduced surface relief formation on azopolymer films:A driving force and formed reliefprofile. Journal of Applied Physics,2002.91(5):p.3421-3430.
    148. Bian, S., et al., Single laser beam-induced surface deformation on azobenzene polymer films. Applied Physics Letters,1998.73(13):p.1817-1819.
    149. Bian, S.P., et al., Photoinduced surface deformations on azobenzene polymer films. Journal of Applied Physics,1999.86(8):p.4498-4508.
    150. Li, Y.B., et al., Photoinduced deformation of amphiphilic azo polymer colloidal spheres. Journal of the American Chemical Society,2005.127(8):p.2402-2403.
    151. Ramanujam, P.S., M. Pedersen, and S. Hvilsted, Instant holography. Applied Physics Letters,1999.74(21):p.3227-3229.
    152. Tripathy, S.K., et al., Polarization dependent holographic write, read and erasure of surface relief gratings on azopolymer films. Multiphoton and Light Driven Multielectron Processes in Organics:New Phenomena, Materials and Applications, ed. F. Kajzar and M.V. Agranovich. Vol.79.2000.421-436.
    153. Jiang, X.L., et al., Unusual polarization dependent optical erasure of surface relief gratings on azobenzene polymer films. Applied Physics Letters,1998.72(20):p. 2502-2504.
    154. Kato, J., et al., Multiple-spot parallel processing for laser micronanofabrication. Applied Physics Letters,2005.86(4).
    155. Dong, X.-Z., Z.-S. Zhao, and X.-M. Duan, Micronanofabrication of assembled three-dimensional micros tructures by designable multiple beams multiphoton processing. Applied Physics Letters,2007.91(12).
    156. Nedev, S., et al., Optical Force Stamping Lithography. Nano Letters,2011.11(11):p. 5066-5070.
    157. Hacker, M., et al., Micromirror SLM for femtosecond pulse shaping in the ultraviolet. Applied Physics B-Lasers and Optics,2003.76(6):p.711-714.
    158. Poon, T.C., et al., REAL-TIME 2-DIMENSIONAL HOLOGRAPHIC IMAGING BY USING AN ELECTRON-BEAM-ADDRESSED SPATIAL LIGHT-MODULATOR. Optics Letters,1993.18(1):p.63-65.
    159. Curtis, J.E., B.A. Koss, and D.G. Grier, Dynamic holographic optical tweezers. Optics Communications,2002.207(1-6):p.169-175.
    160. Seltmann, R., et al., New system for fast submicron optical direct writing. Microelectronic Engineering,1996.30(1-4):p.123-127.
    161. Hayasaki, Y., et al., Variable holographic femtosecond laser processing by use of a spatial light modulator. Applied Physics Letters,2005.87(3).
    162. Obata, K., J. Koch, and B.N. Chichkov, Individually controlled multi-focus laser processing for two-photon polymerization, in Laser Applications in Microelectronic and Optoelectronic Manufacturing Xv, H.M.M.G.B.H.G.D.J.J. Niino, Editor.2010.
    163. Gittard, S.D., et al., Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator. Biomedical Optics Express,2011.2(11):p.3167-3178.
    164. Takahashi, H., et al., Sparse-exposure technique in holographic two-photon polymerization. Optics Express,2008.16(21):p.16592-16599.
    165. Obata, K., et al., Multi-focus two-photon polymerization technique based on individually controlled phase modulation. Optics Express,2010.18(16):p.17193-17200.
    166. Kupiec, S.A. and V.B. Markov, DMD-based time-multiplexed autostereoscopic display. Imaging Science Journal,2011.59(2):p.75-82.
    167. Brissonneau, V., et al.. Application of DMD:laser speckle control for rough surface photofabrication. Proceedings of the SPIE-The International Society for Optical Engineering,2012.8254.
    168. Jinyang, L., et al., Bandwidth-limited laser image projection using a DMD-based beam shaper:Proceedings of the SPIE-The International Society for Optical Engineering, 2012.8254.
    169. Dai, H.T., et al., Characteristics of LCoS Phase-only spatial light modulator and its applications. Optics Communications,2004.238(4-6):p.269-276.
    170. Gerchber.Rw and W.O. Saxton, PRACTICAL ALGORITHM FOR DETERMINATION OF PHASE FROM IMAGE AND DIFFRACTION PLANE PICTURES. Optik,1972. 35(2):p.237.
    171. Bengtsson, J., KINOFORM DESIGN WITH AN OPTIMAL-ROTATION-ANGLE METHOD. Applied Optics,1994.33(29):p.6879-6884.
    172. Yang. G.Z., et al., GERCHBERG-SAXTON AND YANG-GU ALGORITHMS FOR PHASE RETRIEVAL IN A NONUNITARY TRANSFORM SYSTEM-A COMPARISON Applied Optics,1994.33(2):p.209-218.
    173. Mahlab, U., J. Shamir, and H.J. Caulfield, GENETIC ALGORITHM FOR OPTICAL-PATTERN RECOGNITION. Optics Letters,1991.16(9):p.648-650.
    174. Kirkpatrick, S., C.D. Gelatt, and M.P. Vecchi, OPTIMIZATION BY SIMULATED ANNEALING. Science,1983.220(4598):p.671-680.
    175. Chaen, K., et al., Display method with compensation of the spatial frequency response of a liquid crystal spatial light modulator for holographic femtosecond laser processing. Optics Communications,2007.280(1):p.165-172.
    176. Hasegawa, S. and Y. Hayasaki, Holographic femtosecond laser processing with multiplexed phase fresnel lenses displayed on a liquid crystal spatial light modulator. Optical Review,2007.14(4):p.208-213.
    177.梁艳明,基于空间光调制器的3D图像构建与可视化研究光学工程.2010,中山大 学:广州.
    178. Marcinkevicius, A., et al., Effect of refractive index-mismatch on laser micro fabrication in silica glass. Applied Physics a-Materials Science & Processing,2003.76(2):p. 257-260.
    179. Zhou, Y.-j., et al., Influence of refractive index mismatch on data bit in two-photon three-dimensional data storage. Optics and Precision Engineering,2004.12(4).
    180. Jesacher, A. and M.J. Booth, Parallel direct laser writing in three dimensions with spatially dependent aberration correction. Optics Express,2010.18(20):p. 21090-21099.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700