彩色数字全息系统及其材料检测应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科技进步及国民经济的快速发展,各行业对材料的需求量增多,使用范围扩大,性能要求逐步提高。综合考虑经济等多种因素,如何在品种繁多的材料中,针对具体的要求选择合适的材料,使其能较稳定地服役于失效极限范围之内,是材料科学与材料工程的重要内容之一。材料在受力或受热时会发生变形,该信息部分反映了材料构件的强度、延性等力学性能。对于形状或材质较复杂的材料构件,很难通过理论计算获得反映力学性能的相关参数。此时,可以对模型或者试件进行实验测量从而获取所需参量。
     采用无损检测技术可以在非损伤情况下对材料微形变等物理量进行检测。全息检测是激光无损检测技术的一个重要方法,随着计算机及电荷耦合器件(CCD)技术的进步,用CCD代替传统全息感光板的数字全息检测正成为一个研究热点由于CCD靶面尺寸及分辨率显著小于传统全息干板,当CCD靶面尺寸与物体的投影尺寸有较大差异时,在物体和CCD间设计不同形式的光学变换系统,对物光场的横向放大率进行变换,让CCD充分接收物光信息,是目前应用研究中通常采用的措施。在这种情况下,涉及物光通过光学系统后到达CCD的波前重建问题。当测量物体的形变一类复杂物理量时,通常需要测量物体表面沿空间不共面的三个方向的位移,这时涉及同时使用三种不同波长的光波照明下的彩色数字全息检测。由于光学变换系统通常由不同形式的透镜组成,当进行多波长照明的彩色数字全息研究时,透镜的色差作用显著增加了用同一物理尺寸统一重建物光场的困难。因而,当物体投影尺寸与CCD靶面尺寸有较大差异时,如何设计光学系统对物光场进行变换,在同一物理尺寸下统一不同色光重建物光场,实现对大尺寸物体表面微形变的检测,是一个值得研究的课题。本文的研究工作围绕这一课题展开,具体内容如下:
     1.由于光波通过轴对称傍轴光学系统的衍射可以用柯林斯公式描述,并且,任意结构的透镜变换系统可以用空间某特定位置放置一个特定焦距的透镜来模拟。基于衍射的角谱理论及柯林斯公式,本文以大尺寸物体数字全息记录系统的优化设计为例,对彩色数字全息光学系统及物光波前重建进行了研究。研究结果表明,当使用单一透镜对物光场进行变换时,使用负透镜可以使数字全息记录系统更加紧凑。
     2.在测量物体表面微形变这一类物理量时,需要对观测点实时检测不共面的三个位移矢量,通常使用三种不同波长的激光进行彩色数字全息检测。我们对物体与CCD间光学系统内透镜色差的影响进行了研究,基于1-FFT离焦重建法,不但建立了利用柯林斯公式重建同一物理尺寸不同色光物光场的方法,而且,基于相干光成像焦深的研究,导出较为简易适用的彩色图像重建方法。
     3.当采用柯林斯公式重建物光场时,光学系统的光学矩阵元素是须知的参数,确定系统的光学矩阵时必须准确知道每一元件的光学参数及几何位置。光学系统可能由多个元件组成,实际上准确确定每一元件的光学参数比较困难。为便于实际应用,将光学系统视为不必知道内部结构的“黑箱”,提出了利用点源全息图对光学矩阵元素进行检测的方法。
     4.当物体与CCD间置入光学系统时,虽然可以通过柯林斯公式进行物光场的波面重建,然而理论研究表明,物体的像光场通常能够充分包含物光场信息,可以将物体的像在像空间中视为一个新的物体,这时只要知道像到CCD的距离,则能利用数字全息图对物体的像进行重建。这就可能进一步简化物光通过光学系统的波前重建工作。虽然,给定照明光波长后,可以基于光学系统的结构及透镜元件的折射率,从理论上确定系统的像平面。然而,这种方法繁琐且误差较大。我们提出不必详细知道组成光学系统结构,利用点源全息图确定光学系统像平面位置的方法,测定了三种波长光对应的像平面,并用理论计算与实验测量的比较验证了测量方法的可行性。研究结果表明,在像空间中不同色光的物体像平面位置不同,严格的像空间波前重建比较繁杂。但是,基于相干光成像焦深的研究发现,在焦深所规定的范围内,可以用像平面位置的平均值作为三种色光像平面位置,利用已经比较成熟的物体与CCD间无光学变换系统的多种重建方法进行像光场重建。
     5.基于上述研究结果,利用1-FFT离焦重建法及可变放大重建法,对投影尺寸大于CCD靶面尺寸的材料进行微形变的检测研究。对投影尺寸大于CCD靶面尺寸的两种非透明材料,设计合适的彩色数字全息检测系统,对其微形变进行实验研究。实验之一,为了研究受力情况下的微形变,通过载荷传感器对一片加工成哑铃形的航用铝合金片施加拉力,采用彩色数字全息检测系统对该铝合金片在受力的情况下的三维微形变进行检测研究;实验之二,为了研究材料加热情况下微膨胀(也可视为微形变),设计一电路系统对一45号钢直棒进行加热,采用彩色数字全息检测系统对样品在受热情况F的三维微膨胀进行检测研究。在实验中,实时获得了受力及受热情况下的三维微形变信息,并进行了定量计算。基于实验研究,对下一步的工作进行了预期及展望。
With the development of domestic economy as well as the advance of science and technology, more and more materials are needed in every trade and widening areas. Not only is the demand of material enlarging, but also the requirement toward performance of materials is improving. Starting from the economic interest of materials usage, how to select a correct material that performs excellent operation until its limited invalidation is one of important subject in material science and engineering. When heated or pressed, material will deform which reflect the mechanical intension and extension of structure. For the structure composed of complex stuff or shape, it is hard to evaluate its mechanical parameters via theoretical calculation. In this case, experiment test toward the structure or its model is a good solution.
     Non-invasion inspection technology can be used to detect the mechanical parameters of material such as micro-deformation; meanwhile the material will not be damaged. Holographic measurement is an important technique in laser non-invasion inspection. With the promotion of computer technology and charge coupled device (CCD), digital holographic measurement is becoming a focus due to the CCD substitution for traditional photosensitive plate. However, the sensitive size and resolution of CCD are less than traditional plate, for a large object image CCD can not totally record the information contained by object wave. Thus, an imaging optical system is usually inserted between object and CCD to convert the object image so as to be recorded completely by CCD. If a hologram is recorded in this condition, the object wavefront reconstruction will concern with the transformation of wavefront through the optical system. Once some complex mechanical parameters are measured, such as deformation or strain, three dimensional shifts in space should be detected along different direction. Color digital holographic measurement could satisfy this kind of detection, because three wavelengths are used in the operation. An imaging optical system is usually made of several sorts of lenses, chromatic aberration always exist in the recording and reconstruction of a color digital hologram, which will affect the measurement. Therefore, how to design an optical system used to record a color digital hologram of large size object is a challenge subject. Especially, the elimination of chromatic aberration in color reconstruction of a hologram will make the measurement be more accurate. In this work, these two problems are studied deeply based on color digital holographic measurement, and detail contains are as follows:
     1. Optical wave conversion executed by an axial symmetry optical system in paraxial approximation is expressed through Collins formula. A wave conversion optical system with complex structure is identical to a single lens with certain focal length that is placed at a special position. Starting from the Collins formula and angular spectrum theory about wave diffraction, an optical system used to record the color digital hologram of large size object is designed and optimized. The color digital holographic optical system and reconstruction of the color hologram is researched. It is concluded that, utilizing an identical concave lens to record the hologram of large size object will make the wave conversion system be more compact in operating range.
     2. During the measurement of surface micro-deformation toward an object, three shift vectors with respect to observation point should be determined on three different planes, because three wavelengths of laser are used in color digital holographic detection. The influence of chromatic aberration caused by lens between object and CCD is studied. Based on single-FFT off-focus reconstruction method, not only mono-chromatic reconstruction is given in terms of Collins formula toward same object, but also more practicable and simpler color reconstruction is presented by using focus length depth in coherent imaging.
     3. When Collins formula is used to reconstruct an object wavefront, each element in the conversion matrix should be known, which is decided by the parameters of optics in imaging system. A wave conversion system is usually composed of several optical units. It is difficult to accurately confirm their optical parameters. For conventional application, optical system could be regarded as a black box whose internal structure would not need to know. Thus, the elements of optical conversion matrix can be measured and carried out by means of point source hologram.
     4. When an optical system is configured between object and CCD to record a hologram, its reconstruction can be achieved by Collins formula. Theoretical study demonstrates that, even though the imaged wave is transformed from object wave by optical system, it still contains the sufficient information of object. In this way, the image of object could be referred as another new object with respect to holographic recording system. From this view, the digital reconstruction will be performed in traditional method according to the distance between the image and CCD. So the reconstruction procedure will be simplified toward the object wavefront converted by an optical system. Although the imaging plane can be determined through the structure and parameters of the optical system, in practice the position error exist in some extent really. A new ideal is proposed that, it is not necessary to know the detail structure and parameters of optical system, the imaging plane poison could be determined through point source hologram. From this ideal, three different imaging plane positions under three operating wavelength is tested, comparing theoretical calculation to experimental result prove this method feasible. Further study shows that, rigors wavefront reconstruction in image space is miscellaneous much, because the imaging plane position varies with the operating wavelength. After studied the focus length depth of coherent imaging system, it is found that the average position of three imaging planes can be used as the reconstructing plane position. Using well-rounded several methods of reconstruction that does not exist a conversion system between object and CCD, the image wavefront can be reconstructed.
     5. Based on these conclusions mentioned above, the detection study about micro-deformation of materials is conducted under the single-FFT off-focus reconstruction as well as scaling reconstruction, which the size of CCD photosensitive plane is less than the recorded object size. A color digital holographic measuring system is designed to detect the micro-deformation toward two kinds of opaque materials whose size is lager than the size of CCD photosensitive plane. The first experimental study is carried out to test the micro-deformation of a dumbbell-shaped aluminum alloy plate employed in aerospace, which is pulled through moire fringe meter. The detection of three dimensional micro deformations toward this plate is completed in the proposed color digital holographic system. The second experimental study is made to measure the micro expansion (also another micro deformation) of compound materials that is heated through an electrical heating system. A straight bar of45steel is used as a testing object, whose three dimensional micro expansion is measured in the proposed color digital holographic system. In these two experiments, a real-time micro deformation under heating or pulling is obtained by proposed detecting system. so as to make quantitative calculation toward mechanical parameters of material. Finally, the future prospect about this research is depicted in the end of paper.
引文
[1]P. Hariharan. Optical Holography:Principles, Techniques, and Applications. Cambrid- ge University Press,1996
    [2]J.W. Goodman. Introduction to Fourier Optics [M].,Third ed., Qin ke-cheng Transl. Beijing:Publishing House of Electronics Industry,2006
    [3]于美文,光全息及其应用.北京:北京理工大学出版社,1996
    [4]S.Takao,S.Yoneyama,M. Takashi. Minute displacement and strain analysis using lensless Fourier transformed holographic interferometry. Opt.Las.Eng. 2002,38:233-244
    [5]YAMAGUCHI I,KATO J,OHTA S.Surface shape measurement by phase-shifting digtal holography.Optical Renew.2001,8(2):85-89.
    [6]王云新,王大勇,赵洁等.基于数字全息显微成像的微光学元件三维面形检测.光学学报,2011,31(4):109-114
    [7]J.L.Valin,E.Goncalves,F.Palacios.Methodology for analysis of displacement using digital holography. Opt.Las.Eng.2005,43:99-111
    [8]P.Ferraro,G. Coppola, S. D. Nicola,etal. Digital holographic microscope with automatic focus tracking by detection sample displacement in real time. Opt. Lett.2003,28(14):1257-1259
    [9]Y.Fu,G.Pedrini, W.Osten.Vibration measurement by temporal Fourier analy-ses of a digital hologram sequence.Appl.Opt.2007,46(23):5719-5727
    [10]A.Asundi,V.R.Singh.Amplitude and phase analysis in digital dynamic holography, opt. Lett.2006,31 (16):2420-2422
    [11]N. Demoli, I. Demoli. Dynamic modal characterization of musical instruments using digital holography,Opt.Express,2005,13:4812-4817
    [12]P.Picart, J. Leval, F. Piquet, J.-P. Boileau, Th. Guimezanes,and J.-P. Dalmont, Tracking high amplitude autooscillations with digital Fresnel holograms, Opt.Express.2007,15:8263-8274
    [13]M. D. Angel is, S.D.N icola, A.Finiz io. Digital holography refractive-index-profile Measurement of phase gratings. Appl.Phy. Lett.2006,88: 111114-(1-3).
    [14]F.Charriere, A. Marian,F. Montfort, et al. Cell refractive index tomography by digital holographic microscopy.opt.Lett.2006,31(2):178-180
    [15]赵建林,谭海蕴.电子学全息干涉术用于温度场测量.光学学报,2002,22(12):1447-145 1
    [16]T.D.Dudderar. Applications of holography to fracture mechanics. Experim-ental Mechanics.1969,9(6):281-285
    [17]J.A. Leendertz. Interferometric displacement measurement on scattering surfaces utilizing speckle effect. Journal of Physics E:Scientific Instruments.2002,3 (3):214-220.
    [18]S.S.Gorthi,G.Rajshekhar,and P.Rastogi. Strain estimation in digital holographic interferometry using piecewise polynomial phase approximation based method. Opt Express.2010,18 (2):560-565.
    [19]S.S.Gorthi and P. Rastogi. Simultaneous measurement of displacement, strain and curvature in digital holographic interferometry using high-order instantaneous moments. Opt Express.2009,17(20):17784-17791
    [20]D.Gabor.A new microscopic principle.Nature.1948,161:777-778
    [21]苏显渝,李继陶.信息光学.成都:四川大学出版社,1995.117-150
    [22]Georges M P, Lenmaire Ph C. Phase shifting real-time holographic interferometry that uses bismuth silicon oxide crystals.Appl. Opt,1995, 34(32):7497-7506
    [23]Huang T.Digital holography. Proc Of IEEE.1971,(159):1335-1346
    [24]Y.Takaki and H.Ohzu.Fast numerical reconstruction technique for high resolution hybrid holographic microscopy.Appl.opt.1999,38(11):2204-2211
    [25]E.Cuche,P.Marquet and C.Depeursinge.Spatial filtering for zeroorder and twin-image elimination in digital off-axis holography.Appl.opt.2000, 39(23):4070-4075
    [26]P. Picart, J. Leval, D. Mounier, and S. Gougeon. Some opportunities for vibration analysis with time-averaging in digital Fresnel holography. Appl. Opt.2005,44:337-343
    [27]E.Cuche,P.Marquet,C.Depeursinge. Simultaneous amplitude-contrast and quan tita- tive phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holo- grams. Appl. Opt.1999,38(34):6994-7001
    [28]M.Jacquot,P.Sandoz,and G. Tribillon. High resolution digital holography. Opt. Commun.2001,190:87-94
    [29]R.Binet,J.Colineau,and J.C.Lehureau. Short-range synthetic aperture ima-ging at 633 nm by digital holography. Appl. Opt.2002,41:4775-4782
    [30]J.H.Massig. Digital off-axis holography with a synthetic aperture. Opt.Lett. 2002,27:2179-2181
    [31]T.F. Knight Jr, D.M. Freeman, and M.S. Mermelstein:(Ph. D. Massachuset-ts Thesis). Institute of Technology,1999
    [32]L.Martinez-Leon and B.Javidi. Synthetic aperture single-exposure on-axis digital holography. Opt Express.2008,16(1):161-169
    [33]J.H.Massig.Digital off-axis holography with a synthetic aperture.Opt Lett.2002,27 (24):2179-2181
    [34]F.Le Clerc,L.Collot,and M.Gross. Numerical heterodyne holography with two-dim-ensional photo detector arrays.Opt. Lett.2000,25:716-718
    [35]I. Yamaguchi. T.Zhang. Phase-shifiting digital holography.Opt.Lett.1997, 22(16):1261-1270
    [36]E.Marquardt and J.Richter. Digital image holography.Opt Eng.1998,37(5): 1514-1519.
    [37]D.Dirksen, H. Droste, B. Kemper etal.Lensless Fourier holography for digital holographic interferometry on biological samples. Opt Laser Eng. 2001,36(3):241-249
    [38]L.Chen,X.Ma,and Q. Wang. Color holographic image by using digital lensless Fourier transform holography with optical fiber. Opt Eng.2012, 51 (4)
    [39]姜宏振,赵建林,邸江磊等.数字无透镜傅里叶变换全息术中非傍轴及离焦像差的校正.光学学报,2008,28(08):1457-1462
    [40]王华英,张志会,廖薇等.无透镜傅里叶变换显微数字全息成像系统的焦深.物理学报,2012,61(04):244-250.
    [41]吴友朋,王红霞,周战荣.无透镜傅里叶变换数字全息图再现像质的影响因素分析.红外与激光工程,2006,35(10):538-542
    [42]谢建军,王大勇,王华英等.离轴无透镜傅里叶变换数字全息三维物场重 建.激光杂志,2007,28(06):44-45
    [43]U.Schars, T.M.Kreis, W.Jilpmer. Digital recording and numerical reconstruction of holograms:reduction of the spatial frequency spectrum. Opt.Eng.1996,35:977-982
    [44]贾防,冯忠耀,周利斌等.预成像数字全息测量大物体三维形貌.光子学报,2008,37(11):2239-2243
    [45]Y.Emery,E.Cuchea,F.Marquet. Distal Holography Microscopy(DHM):Fast and robust systems for Industrial Inspection with interferometer Resolution. Proc.of SPIE.2005,5856:930-937
    [46]S. De Nicola,A. Finizio. and G. Pierattini. Angular spectrum method with correction of anamorphism for numerical reconstruction of digital hologram on tilted planes.Opt.Exp.2005,13(24):9935-9940
    [47]袁操今,钟丽云,朱越.预放大相移无透镜傅里叶变换显微数字全息术的研究.激光杂志,2004,25(6):51-53
    [48]王华英.数字全息显微成像的理论和实验研究:[博士学位论文].北京:北京工业大学,2008
    [49]M.K.Rim. Microscopic Tomography by Digital Interference Holography. Proc.of SPIE 2004,5324:102-111
    [50]M.Pawlowski,Y.Sakano,Y.Miyamoto. Spatio-spectral digital holography for full-field tomographic imaging with adaptive focusing. Proc.of SPIE.2004,5531:121-126
    [51]P.Ferraro and D.Alfefi. Quantitative phase-contrast microscopy by a lateral shear approach to digihal holographic image reconstruction.Opt.Lett.2006, 31(10):1405-1407
    [52]刘城,李良钰,李银拄等.无直透光和共轭像的数字全息.光学学报,2002,22(4):427-431
    [53]徐莹,赵建林,向强等.无透镜傅里叶变换全息图数值再现中的图像处理.光学学报,2004,24(11):1503-1506
    [54]T.M. Kreis and W.P.O.Juptner. Suppression of the dc term in digital holography. Optical Engineering.1997,36(8):2357-2360
    [55]J.Garcia-Sucerquia,J.A.H.Ramireza and D.V.Prieto. DC term filtering techniques in digital holography. Proe.of SPIE.2004,5622:1353-1358
    [56]刘雯雯,戴宜全,康新等.基于有限脉冲响应滤波器的数字全息零级像消除.光学学报,2008,28(05):856-859
    [57]周灿林,亢一澜.数字全息干涉法用于变形测量.光子学报,2004,33(002): 171-173
    [58]Y.Takaki,H.Kawai,and H.Ohzu. Hybrid holographic microscopy free of conjugate and zero-order images. Appl Optics.1999,38(23):4990-4996
    [59]Y.M.Zhang,Q.N.Lu,and B.Z.Ge. Elimination of zero-order diffraction in digital off-axis holography. Opt Commun.2004,240(4-6):261-267
    [60]T.Baumbach, E.Kolenovic,V.Kebbel, and W.Juptner. Improvement of accuaccuracy in digital holography by use of multiple holograms. Appl. Opt. 45:6077-6085
    [61]X.Cai,H.Wand. The influence of hologram aperture on speckle noise in the reconstru cted image of digital holography and its reduction, Opt.Commun. 2008,281:232-237
    [62]T.M.Kreis, M.Adams, W.P.O.Jilptner, Methods of Digihal Holography:A Comparison. Proc.of SPIE.1997,3098:224-233
    [63]D.Mas,J.Garcia,C.Ferreira etal. Fast algorithms for free-space diffraction patterns calculation. Opt Commun.1999,164(4-6):233-245
    [64]F.C.Zhang, I.Yamaguchi, L.P.Yaroslavsky. Algorithm for reconstruction of digital holograms with adjustable magnification. Opt. Lett.2004, 29(14):1668-1670
    [65]Dayong Wang,Jie Zhao,Fucai Zhang,etal. High-fidelity numerical reali-zation of multiple-step Fresnel propagation for the reconstruction of digital holograms. Appl.Opt.2008,47(19):D12-D20
    [66]邸江磊,赵建林,范琦等.数字全息显微术中重建物场波前的相位校正.光学学报,2008,28(01):56-61
    [67]葛宝臻,罗文国,吕且妮等.数字再现三维物体菲涅耳计算全息的研究.光电子·激光.2002,13(12):1289-1292
    [68]吕且妮,葛宝臻,张以谟.一种消除数字离轴全息零级像的实验方法.光子学报2004,33(08):1014-1017
    [69]刘长庚,王大勇,张亦卓等.数字全息成像中基于导数的自动对焦算法.中国激光,2009,36(11):2989-2996
    [70]王华英,宋修法,赵洁等.数字全息成像系统的景深和焦深分析.光子学报,2008,37(07):1406-1411.
    [71]刘诚,朱健强.数字全息形貌测量的基本特性分析.强激光与粒子束,2002,14(003):328-330
    [72]于瀛洁,郭路,周文静.数字全息位相拼接实验研究.光学仪器,2011,33(04):55-59
    [73]周文静,胡文涛,郭路等.少量投影数字全息层析重建实验研究.物理学报,2010,59(12):8499-8511
    [74]邓丽军,王辉,马利红.基于滤波成像的大视角数字全息技术.光子学报,2010,39(12):2168-2173
    [75]马利红,王辉,金洪震等.数字全息显微定量相位成像的实验研究.中国激光,2012,39(03):215-221
    [76]程欣,薛冬梅,国承山.数字全息中参考光波面畸变对再现像的影响及消除.山东师范大学学报(自然科学版),2006,21(01):62-64
    [77]陈立功,朱建华,魏涛等.修正离轴参考光计算全息图的数值再现及像质评价研究. 四川大学学报(自然科学版),2007,44(2):346-350
    [78]魏涛,朱建华,陈立功等.基于DMD的数字全息显示及其再现像质增强.光子学报,2008,37(5):952-956
    [79]刘晓珂,苏显渝.基于图像部分加入的数字全息水印技术.光子学报,2008,37(4):740-744
    [80]Junchang Li, Chongguang Li. Algorithm study of Collins formula and inverse Collins formula. Appl Optics.2008,47(4):A97-A102
    [81]吕晓旭,张以谟,钟丽云等.相移同轴无透镜傅里叶数字全息的分析与实验.光学学报,2004,24(11):1511-1515
    [82]钱晓凡,王占亮,胡特等.用单幅数字全息和剪切干涉原理重构光场相位.中国激光,2010,37(07):1821-1826
    [83]钟丽云,张以谟,吕晓旭等.数字全息中的一些基本问题分析.光学学报,2004,24(4):465-471
    [84]T. Zhang and I. Yamaguchi, Three-dimensional microscopy with phase shifting digital holography, Opt. Lett.1998,3:221-1223
    [85]E.Cuche,F.Bevilacqua,C.Depeursinge. Digital holography for quantitative phase contrast imaging. Opt. Lett.1999,24:291-293
    [86]B.Javidi and E.Tajahuerce. Three-dimensional object recognition by use of digital holography. Opt. Lett.2000,25:610-612
    [87]Y.Frauel and B. Javidi. Neural network for threedimensional object recognition based on digital holography. Opt.Lett.2001,26:1478-1480
    [88]T.Nomura and B.Javidi. Object recognition by use of polarimetric phase-shifting digital holography. Opt.Lett.2007,32:2146-2148
    [89]T.Nomura,B.Javidi,S.Murata etal. Polarization imaging of a 3D object by use of on-axis phase-shifting digital holography. Opt.Lett.2007,32,481-483
    [90]I.Yamaguchi,T.Ida,M.Yokota,and K.Yamashita. Surface shape measurement by phase shifting digital holography with a wavelength shift. Appl. Opt.2006,45,7610-7616
    [91]M.Mosarraf, G.Sheoran, D.Singh etal. Contouring of diffused objects by using digital holography. Opt. Lasers Eng.2007,45:684-689
    [92]T.Saucedo, F. M. Santoyo, M.De la Torre Ibarra etal. Simultaneous two-dimensional endoscopic pulsed digital holography for evaluation of dynamic displacements. Appl. Opt.2006,45:4534-4539
    [93]P.Picart, J.Leval, M.Grill etal.2D full field vibration analysis with multiplexed digital holograms. Opt. Express,2005,13:8882-8892
    [94]徐大雄,全息术的新进展:数字激光全息三维图像信息处理和传输,现代光学与光子学的进展,2006,2:285-291
    [95]孙宇臣,葛宝臻,张以谟.物体三维信息测量技术综述.光电子·激光,2004,15(2):248-254
    [96]I.Yamaguchi. Image formation and measurement of surface shape and deformation by phase-shifting digital holography. Proc.of SPIE. 2005,5642:66-77
    [97]T.M. Kreis, W.P.O. Juptner, J.Geldmacher. Digital holography:Methods and applications, In:International Conference on Applied Optical Metrology,Balatonfured, Hungary, SPIE,1998
    [98]M.Adams,T.Kreis,W.Juptner. Particle analysis with digital holography, In: Laser Interferometry X:Techniques and Analysis and Applications,San diego,SPIE,2000
    [99]D.Lebrun,A.M.Benkouider,S.Coetmellec etal.Particle field digital holo- graphic reconstruction in arbitrary tilted planes. Opt Express. 2003,11(3):224-229
    [100]吕且妮,高岩,葛宝臻等.基于霍夫变换的数字全息粒子尺寸测量.中国激光,2009,36(04):940-944
    [101]魏润杰,申功炘,丁汉泉.数字全息粒子图像测速技术研究.北京航空航天大学学报,2004,30(05):456-460
    [102]张延曹,赵建林,范琦等.Tukey窗切趾全息图用于粒子场在焦位置测量的实验研究.中国激光,2008,35(10):1542-1547
    [103]陈积懋,无损检测新技术20年回顾,无损检测,1998,20(7):181-185
    [104]戴福隆,方萃长,刘先龙等,现代光测力学.北京:科学出版社,1990
    [105]M. De la Torre-Ibarra, F. Mendoza-Santoyo, C. Perez-L6pez, et al. Surface strain distribution on thin metallic plates using 3-D digital holographic interferometry. Opt. Eng.,2006,45(10):(105603)1-11
    [106]G.Pedrini, F.M.Santoyo, S.Schedin etal., Whole 3D-digital holographic measurements of vibrating objects, In:Laser Metrology and Inspection,Munich, Germany, SPIE,1999
    [107]L.Xu, X.Peng, J.Miao etal.Studies of digital microscopic holography with applica-tions to microstructure testing. Appl Optics.2001,40 (28):5046-5051
    [108]周文静,彭娇,于瀛洁.基于数字全息技术的变形测量.光学精密工程,2005,13(S1): 46-51
    [109]P.Ferraro, G Coppola, S.D.Nicola. Digital holography for characterizatin and testing of MEMS structures. IEEE.2002,0-7803-7595-5:125-126
    [110]F.Charriere, J.Kuhn, T.Colomb etal. Characterization of microlenses by digital holographic microscopy. Appl. Opt.2006,45(5):829-835
    [111]I.Yamaguchi, T.Matsumura, J.Kato. Phase-shifting color digital holography. Opt Lett.2002,27(13):1108-1110
    [112]D.Alfieri, G.Coppola, S. De Nicola etal.Method for superposing rec-onstructed images from digital holograms of the same object recorded at different distance and wavelength. Opt Commun.2006,260(1):113-116
    [113]P.Tankam and P. Picart. Use of digital color holography for crack invest-igation in electronic components. Opt Laser Eng.2011,49(11):1335-1342
    [114]李俊昌.彩色数字全息波前重建算法概论.中国激光,2011,38(05):0501001-1-8
    [115]J.M.Desse, F.Albe,J.L.Tribillon. Real-time color holographic interferome-try. Appl Optics.2002,41(25):5326-5333
    [116]N.Demoli, D.Vukicevic, M.Torzynski. Dynamic digital holographic inter-ferometry with three wavelengths. Opt Express.2003,11 (7):767-774
    [117]J.M.Desse, P.Picart,P.Tankam. Digital color holography applied to fluid and structural mechanics. Opt Laser Eng.2012,50(1):18-28
    [118]李俊昌,宋庆和,桂进斌等,数字全息波前重建中的像平面滤波技术研究,光学学报,2011,31(9):0900135
    [119]玻恩,沃耳夫.光学原理:光的传播、干涉和衍射的电磁理论(上册).杨葭荪等译.北京:电子工业出版社,2005
    [120]李俊昌,激光的衍射及热作用计算(修订版).北京:科学出版社,2008
    [121]王仕璠.信息光学理论与应用(第一版).北京:北京邮电大学出版社,2004
    [122]李俊昌,熊秉衡.信息光学教程.北京:科学出版社,2011
    [123]陈家璧,苏显渝,朱伟利等.光学信息技术原理及应用应用(第一版).北京:高等教育出版社,2004
    [124]Cooley J W, Tukey J W. An alogrithm for the machine calculation of complex Fourier series. Mathematics of Comptation,1965,19(90):297-301
    [125]李俊昌.角谱衍射公式的FFT计算及在数字全息波面重建中的应用.光学学报,2009,29(5):1163-1167
    [126]C. Kopp, P.Meyrueis. Near-field Fresnel diffraction:improvement of a numerical propagator. Optics Communications,1998,158:7-10
    [127]王绍民,赵道木.矩阵光学原理.杭州:杭州大学出版社,1994
    [128]吕百达.激光光学——光束描述、传输变换与光腔技术物理(第3版).北京:高等教育出版社,2003
    [129]Collins S. A., Laser-system diffraction integral written in terms of matrioptics. Optics, Soc Am,1970,60:p1168
    [130]李俊昌,陈仲裕,赵帅等.柯林斯公式的逆运算及其在波面重构中的应用.中国激光,2005,32(11):1489-1494
    [131]U.Schnars, W.Jueptner. Digital Holography:Digital Hologram Recording, Numerical Reconstruction, and Related Techniques. Springer Berlin Hei- delberg,2005.85-86
    [132]李俊昌,熊秉衡.信息光学理论与计算.北京:科学出版社,2009
    [133]Ichirou Yamaguchi, Sohgo Ohta, Jun-ichi Kato. Surface contouring by phase-shifting digital holography. Optics and Lasers in Engineering 2001, 36:417-428
    [134]Wang Yunxin,Wang Dayong,Zhao Jie etal. Measurement3D Profile Micro-Optical for Component by Using Digital Holographic Microscopy. Acta Optica Sinica,2011,31(4):0412003(1-6)
    [135]Kreis T. Frequency analysis of digital holography convolution. Opt Eng, 2002,41(8):771,1829-1839
    [136]F.Le Clerc, M.Gross, and L. Collot. Synthetic-aperture experiment in the visible with on-axis digital heterodyne holography. Opt. Lett.,2001, 26(20):1550-1552
    [137]应朝福,马利红,王辉等.大视角数字全息的研究.中国激光,2005,32(1):87-90
    [138]J. Ktllan, F. Charri6rea,T. Colomba. Digital holographic microscopy for nanometric quality control of micro. optical components. Proe. of SPIE. 2007,6475:64750V1-12
    [139]李俊昌,樊则宾,彭祖杰.数字全息变焦系统的研究及应用.光子学报,2008,37(7):1420-1424
    [140]李俊昌,张亚萍,许蔚.高质量数字全息波前面重建系统研究.物理学报,2009,58(8):5385-5391
    [141]LI J.c.,PENG Z.j.,TANKAM P. etal. Research on the Optical System of Scattered Light Digital Color Holography and Its Wave Front Reconstruction Algorithm. Phy-sics transaction,2010,59(7):4646-4610
    [142]P. Ferraro, S. De Nicola, G. Coppola etal. Controlling image size as a function of distance and wavelength in Fresnel-transform reconstruction of digital holograms. Opt.Lett.,2004,29(8):854-856
    [143]Pascal Picart, Julien Leval. General theoretical formulation of image formation in digital Fresnel holography. J.Opt.Soc.Am. A,2008,25(7): 1744_1761
    [144]LI Jun-Chang,PENG Zu-Jie,FU Yun-Chang.Research of Digital Holo- graphic Object Wave Field Reconstruction in Image and Object Space. CHIN. PHYS. LETT.2011,28(6):064201(1-4)
    [145]姚启钧.光学教程.北京:高等教育出版社,1990
    [146]崔宏滨,李永平,段开敏.光学.北京:科学出版社,2008
    [147]T. Patrice. Methodes d'holographie numerique couleur pour la metrologie sanscontact en acoustique et mecanique. These soutenue publiquement le 12 octobre 2010 a 1'IVERSITE DU MAINE de France
    [148]王华英,赵宝群,宋修法.菲涅耳数字全息成像系统的焦深.光学学报,2009,29(2):374-377
    [149]李俊昌.数字全息重建图像的焦深研究.物理学报,2012,65(13):134203
    [150]陈兴梧,赵慧影,葛宝臻等.彩色全息图的计算机产生和数字再现.光学技术,2003,29(2):239-241
    [151]A. Domenico, C. Giuseppe, D. N. Sergio etal. Method for superposition reconstruct-ted images from digital holograms of the same obiect recorded at different distance and wavelength. Opt. Commun.,2006,260(1):113-116
    [152]J. L. Zhao, H. H. Jiang, J. L. Di. Recording and reconstruction of a color holograp- hic image by using digital lensless Fourier transform holography. Opt. Express,2008,16(7):2514-2519
    [153]李俊昌,管一弘,蔡光程.像素随机映射的快速算法及在LSB隐藏技术中的应用,光子学报,2010,39(8):1345-1350
    [154]郁道银,谈恒英.工程光学.北京:机械工业出版社,1999,4:39-40
    [155]石顺祥,王学恩,刘劲松.物理光学与应用光学.西安:电子科技大学出版社,2008
    [156]Li J C, Peng Z J,Fu Y C. Diffraction transfer function and its calculation of classic diffraction formula. Optics Communication,2007,280:243-248
    [157]J.Li, P.Tankam, Z.Peng etal. Digital holographic reconstruction of large objects using a convolution approach and adjustable magnification. Opt Lett.2009,34(5):572-574
    [158]郭荣鑫.多夹杂物干涉机制及其对复合材料细观损伤的影响研究:[博士学位论文].昆明,昆明理工大学,2008
    [159]宋庆和.数字全息检测及其控制系统研究:[博士学位论文].昆明,昆明理工大学,2008
    [160]刘兵,彭超群,王日初.大飞机用铝合金的研究现状及展望.中国有色金属学报,2010,20(9):1705-1715
    [161]杨守杰,戴圣龙.航空铝合金的发展回顾与展望.材料导报,2005,19(2):76-80
    [162]王祝堂,田荣璋.铝合金及其加工手册(第二版).长沙:中南大学出版社,2000
    [163]张丝雨,马维田,马雁冰等.最新金属材料牌号、性能、用途及中外牌号对照速用速查实用手册.广州:中国科技文化出版社,2005
    [164]马庆芳,方荣生,项立成等.实用热物理性质手册(第一版).北京:中国农业机械出版社,1986
    [165]刘恩科,朱秉升,罗晋生等.半导体物理学(第六版).北京:电子工业出版社,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700