海上风力机系统流体动力性能数值模拟与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在全球的范围内,开发与利用风能正在以迅猛的速度增长。相对于陆地风能资源,海上风具有更加稳定强劲等优势,因此风电产业正在逐步向海上迈进。但是,海上风力机系统处于复杂海洋环境中,致使其流体动力性能不同于常规的陆地风力机和海洋采油平台。对于海上风力机系统在随机风浪载荷作用下的叶轮气动力性能、基础结构的水动力性能以及运动响应规律等流体动力学问题,至今仍然没有一套系统有效的分析方法。
     因此,本文以海上风力机为背景,基于叶轮空气动力学、海洋工程水动力学和系统耦合理论,应用数值模拟与试验研究相结合的方法,分析海上风力机系统的流体动力性能特点,形成海上风力机系统在流体动力作用下的载荷及响应预报方法。这对于全面深入掌握海上风力机的流体动力学性能和规律,开发可靠高效的海上风力机提了供理论方法和分析技术,具有重要的理论和实际意义。
     在空气动力性能研究方面,基于正常湍流模型(NTM)描述了正常风况下的风湍流特性,再结合叶元体动量理论(BEMT)和叶片攻角修正方法,开发了水平轴风力机叶轮空气动力性能的数值计算程序,该程序可用于模拟叶片升阻力系数、叶轮轴向风载荷和转矩等气动性能参数。利用此程序,以一个1.5MW水平轴海上风力机为算例,获得了实际风场中正常风况的湍流风速及其作用下的叶轮空气动力性能的变化规律。
     在水动力性能研究方面,提出了针对于不同基础形式的水动力分析方法,并将这两种方法分别应用到单桩式和半潜式两种海上风力机的水动力性能数值模拟中。针对于单桩基式海上风力机,基于Stokes非线性波浪理论与Morison方程相结合的方法,建立数值模拟程序,研究了某1.5MW海上风力机算例的单桩基础波浪载荷时历,分析得出了单桩基础在非线性波浪作用下的受力特点;针对半潜式海上风力机,基于大型浮体在波浪中运动的三维势流理论,在频域中建立某5MW半潜式海上风力机的水动力数值模型,分析得到了半潜式海上风力机的水动力性能参数,整体运动响应、机舱加速度响应及其短期预报的变化规律,使用统计分析方法预报了三种典型短期海况中的运动响应水平和超越概率。
     在系统耦合研究方面,基于时域中浮体和系泊系统之间耦合运动的分析理论,探索了半潜式海上风力机——平台——锚泊系统耦合运动的求解方法,并将此方法应用到一5MW半潜式海上风力机系泊系统算例中。分别从时域统计和频谱分析两个角度,研究了风浪联合作用的四种典型工况下半潜式海上风力机系统的运动和锚链线张力的响应变化特点。分析了耦合作用对半潜式海上风力机系统运动性能以及系泊系统受力的影响。结合前文得出的水平轴风力机叶轮轴向风载荷变化规律,特别探讨了低频风载荷与低频系泊力之间的关系。基本掌握了半潜式海上风力机系泊系统不同于陆地风力机和常规海洋采油平台的特殊的运动和受力规律。
     在水动力学试验研究方面,设计了5MW半潜式海上风力机系泊系统的试验模型,建立了海上风力机系统水动力学试验系统,给出了海上风力机系泊系统水动力性能的试验方案,掌握了海上风力机水动力性能试验方法。试验中,分析了垂荡板对于海上风力机系统运动性能的改善作用,研究了定常风对于海上风力机系统运动的显著影响,探索了风浪联作用的随机海况下海上风力机系统运动响应规律。此外,使用试验测得的垂荡阻尼对于半潜式海上风力机系泊系统耦合运动的数值模型进行了修正,提高了数值模拟方法的可靠性和有效性。
     本文的研究成果,对于我国研发具有自主知识产权的单桩式和半潜式海上风力机概念,全面掌握和深入探究海上风力机系统的流体动力性能特点,形成海上风力机流体动力载荷及响应的预报方法和试验技术手段,促进我国海上风能开发与利用均具有十分重要的意义。
The use of wind power worldwide is in a period of rapid growth. As wind is steadier andstronger over sea than on land, the wind industry has recently stepped to offshore areas.However, the hydrodynamic performance of OWT (offshore wind turbines) is different fromonshore WT (wind turbine) and offshore O&G (oil and gas) platform because of thecomplicated environment. There is no effective method and tool for OWT aerodynamicperformance, hydrodynamic characteristics and motion response etc.
     So, based on the background of OWT, the theories of aerodynamics, hydrodynamics andcoupled motion were used, numerical simulation and model test were integrated and appliedto the analysis of aerodynamic and hydrodynamic performance of OWT system, theprediction methods of aerodynamic and hydrodynamic loads and responses for OWT werebuilt. This work has theoretical and practical significance to deeply grasp the characteristicsand laws of the aerodynamic and hydrodynamic of OWT, and to provide theoretical methodsand design techniques for developing reliable and efficient offshore wind power devices.
     In the research of aerodynamics for OWT, the wind turbulence characteristics undernormal wind condition were described by the NTM (normal turbulence model). And theprogram for aerodynamic of rotor with horizontal axis based on BEMT (blade elements andmomentum theory) with blade attack correction was developed. Aerodynamic characteristics,including lift and drag coefficients of blade, axial wind force and torsion of rotor, wereachieved using this program. The characteristics of turbulent wind speed and aerodynamicperformances of a1.5MW OWT under normal wind condition were analyzed by the program.
     In the research of hydrodynamics for OWT, the methods for different foundation typeswere proposed and applied to simulate hydrodynamic performances of OWTs with monopileand floating foundation. The characteristics and time histories of wave load on the monopileof a1.5MW OWT were studied based on the method combined with the Stokes nonlinearwave theory and Morison equation. Based on3D potential theory for large volume structuresin frequency domain, the hydrodynamic model was established for a5MW semi-submersibleFOWT(floating offshore wind turbine), hydrodynamic characteristics was analyzed, globalmotion response and nacelle acceleration were predicted, motion response level andprobability of FOWT in three typical short sea states were investigated by statistics method.
     In the research of system coupled characteristics, based on the coupled motion theory offloating structure and mooring system in time domain, a method to solve rotor-floater-linescoupled motion of FOWT was developed and applied to a5MW semi-submersible FOWTsystem. The responses of motions and mooring line tensions under four representative loadcases were investigated. The coupling effect on motion performance and mooring linetensions were studied. Interaction of mooring force and wind load in low frequency wasespecially considered. Comparing to onshore WT and offshore O&G platform, characteristicsof global response and tensions for FOWT mooring system were understood finally.
     A model test system of a5MW semi-submersible FOWT mooring system has beendesigned and manufactured as well as a test platform of hydrodynamic characteristics. Thetest scheme and test methods for the hydrodynamic performance were presented and thenmodel experiments were carried out. In the model test, the beneficial effect of heave plates onmotion of FOWT was analyzed, the evident influence of constant wind on motion was studied,the characteristics of motion and tensions for FOWT mooring system under load casescombined wind and wave were achieved. Furthermore, the coupled numerical model ofFOWT mooring system was modified by heave damping measured in the test, so reliabilityand validity of numerical simulation method were enhanced.
     Conclusions of this thesis could lead to a more comprehensive understanding ofaerodynamic and hydrodynamic characteristics for OWT, obtaining of prediction methodsand test means for aerodynamic and hydrodynamic loads and responses for OWT, greatcontribution to the development and utilization of offshore wind energy in China.
引文
[1]李晓燕,余志,海上风力发电进展[J].太阳能学报,2004,25(1):78-84
    [2] John Twidell,Gaetano Gaudiosi,Offshore wind power[M]. United Kingdom,Multi-Science Publishing Co. Ltd,2009:2-14
    [3] Yi,Wang, Menglan, Duan, and Jinghong, Shang. Application of an AbandonedJacket for an Offshore Structure Base of Wind Turbine in Bohai Heavy IceConditions[C].Proceedings of the Nineteenth (2009) International Offshore and PolarEngineering Conference, Japan,2009:384389
    [4]林毅丰,东海大桥海上风电场风机地基基础特性及设计[J].上海电力,2007(2):153-157
    [5] Roddier D, Cermelli C, Weinstein A, Windfloat:A floating foundation for offshorewind turbines part I: design basis and qualification process[C]. Proceedings of the28thInternational Conference on Ocean Offshore and Arctic Engineering.Honolulu, Hawaii,USA,2009:1-9
    [6] Nielsen F G, Hanson T D, Skaare B. Integrated dynamic analysis of floating offshorewind turbines[C].25th International Conference on Offshore Mechanics and ArcticEngineering. Hamburg, Germany,2006OMAE2006-92291:1-9
    [7] DNV-OS-J101,Design of Offshore Wind Turbine Structures[S].Det Norske Veritas:2004,15-16
    [8] Guideline for the Certification of Offshore Wind Turbines[S].Germanischer LloydWindEnergie GmbH,2005, chapter6:47-54
    [9] B. W. Byrne a nd G. T. Houlsby, Foundations for offshore wind turbines[J].The RoyalSociety,2003(361):2909-2930
    [10] H.C. Soerensen, J.H. Larsen,Middelgrunden40MW Offshore Wind Farm——APrestudy for the Danish Offshore750MW Wind Program[C].Proceedings of the TeenthInternational Offshore and Polar Engineering Conference, USA,2000:484-491
    [11] Hans Christian S rensen, Lars Kjeld Hansen, Jens H. M lgaard Larsen. Middelgrunden40MW Offshore Wind Farm Denmark—lessons learned[R].After Johannesburg, LocalEnergy and Climate Policy: From Experience Gained Towards New Steps Wind Energyand Involvement of Local Partners, Munich,2002:1-7
    [12] Fabian R. Vorpahl, Arno Van Wingerde, Michael Blunk and etc. Validation of a FiniteElement Based Simulation Approach for OffshoreWind Turbines within IEA WindAnnex XXIII-Simulation Challenges and Results for a5-MW Turbine on a TripodSubstructure[C].Proceedings of the Nineteenth International Offshore and PolarEngineering Conference, Japan,2009:362-369
    [13] Kimon Argyriadis, Marcus Klose. Analysis of Offshore Wind Turbines with JacketStructures[C].Proceedings of the Sixteenth International Offshore and Polar EngineeringConference, Lisbon, Portugal,2007:328-334
    [14]李大勇,刘小丽,孙宗军,海上风电塔架基础的新型吸力锚研发[M]海洋技术,2011,30(3):83-87
    [15] Bye C. Erbrich, B. Rognlienog, T. I. Tjelta. Geotechnical design of BucketFoundations[R].OTC7793.1995:1-15
    [16] Rasmussen, J. Lorin, Feld, T., S rensen, P. Hald. Bucket Foundation forOffshoreWind Farms-Comparison of Simplified Model and FE-Calculations[C].Proceedings o fOWEMES2000, ENEA, Italy,2000:1-12
    [17] Feld T.. Design Procedures for Bucket Foundations——a New InnovativeFoundationConcept Applied to Offshore Wind Turbines[C].Proceedings of Offshore Wind EnergyConference,Belgium,2001:1-7
    [18]张亮,吴海涛,荆丰梅,崔琳,海上漂浮式风力机研究进展及发展趋势[J].海洋技术,2010,29(4):122-126
    [19] Tong K.C. Technical and economic aspects of a floating offshore wind farm[J].Journalof Wind Engineering and Industrial Aerodynamics,1998(74-76):399-410
    [20] J. Jonkman, S. Butterfield, W. Musial, G. Scott. Definition of a5-MW Reference WindTurbine for Offshore System Development[R].Technical Report NREL/TP-500-38060,2009:2-16
    [21] J. Jonkman,Definition of the Floating System for Phase IV of OC3[R].Technical ReportNREL/TP-500-47535,2010:1-5
    [22] Tomoaki Utsunomiya, Tomoki Sato, Hidekazu Matsukuma, Kiyokazu Yago.Experimental validation for motion of a spar–type floating offshore wind turbine using1/22.5scale model[C].Proceedings of the ASME200928th International Conference onOcean, Offshore and Arctic Engineering,2009:1-9
    [23] Weinzettel J, Reenaas M, Solli C, Hertwich E G. Life cycle assessment of a floatingoffshore wind turbine[J].Renewable Energy,2009,34(3):742–747
    [24] W. Musial, S. Butterfield,A. Boone. Feasibility of Floating Platform Systems for WindTurbines[R].NREL/CP-500-34874,2003:1-14
    [25] Jon E. Withee. Fully Coupled Dynamic Analysis of a Floating Wind TurbineSystem[D].Massachusetts Institute of Technology,2004:17-25
    [26] Henderson A R, Bulder B, Huijsman R, et al. Feasibility study of floating wind farmsin shallow offshore sites[J].Wind Engineering,2003,27(5):405–418
    [27] Zambrano T, Cready T M, Kiceniuk T, et al. Dynamic modeling of deepwater offshorewind turbine structures in Gulf of Mexico storm conditions[C].Proceedings of25thInternational Conference on Offshore Mechanics and Arctic Engineering, Hamburg,Germany,2006:1-6
    [28] Roddier D, Cermelli C, Weinstein A. WindFloat: A Floating Foundation for OffshoreWind Turbines---Part I: Design Basis and Qualification Process[C].Proceedings of the28th International Conference on Offshore Mechanics and Arctic Engineering, USA,2009:1-9
    [29] Roddier D., Cermelli C., Weinstein A.. WindFloat: A Floating Foundation forOffshore Wind Turbines-Part II: Hydrodynamic Analysis[C] Proceedings of the28thInternational Conference on Offshore Mechanics and Arctic Engineering, USA,2009:1-9
    [30] Aubault A., Cermelli C., Roddier D., Weinstein A. WindFloat: A Floating Foundation forOffshore Wind Turbines-Part III: Structural Analysis[C].Proceedings of the InternationalConference on Offshore Mechanics and Arctic EngineeringProceedings of the ASME200928th International Conference on Ocean, Offshore and Arctic Engineering, USA,2009:1-9
    [31] Dominique Roddier, Christian Cermelli and etc. WindFloat: A floating foundation foroffshore wind turbines[J].Journal of renewable and sustainable energy,2010(2):1-34
    [32] Christian Cermelli, Alexia Aubault and etc. Qualification of a Semi-SubmersibleFloating Foundation for Multi-Megawatt Wind Turbines[C].The2010OffshoreTechnology Conference, USA,2010:1-15
    [33] Alexia Aubault, Marco Alves and etc. Modeling of an oscillating water column on thefloating foundation windfloat[C].Proceedings of the ASME201130th InternationalConference on Ocean, Offshore and Arctic Engineering, The Netherlands,2011:1-12
    [34] Antoine Peiffer, Dominique Roddier and etc.Design of a point absorber inside thewindfloat structure[C].Proceedings of the ASME201130th International Conference onOcean, Offshore and Arctic Engineering, The Netherlands,2011:1-9
    [35] Dominique Roddier, Antoine Peiffer and etc. A generic5MW windfloat for numericaltool validation&comparison against a generic spar[C].Proceedings of the ASME201130th International Conference on Ocean, Offshore and Arctic Engineering, TheNetherlands,2011:1-9
    [36] K R Drake, T W P Smith. An investigaion into the use of an articulatied columnsupported wind turbine in water depth of60-120meters[R].Marine Renewable andOffshore Wind Energy, The Royal Institution of Naval Architects,2010:54-62
    [37] Wu Haitao, Zhang Liang, Zhao Jing, Ye Xiaorong. Primary Design and DynamicAnalysis of an Articulated Floating Offshore Wind Turbine[C].2011InternationalConference on Energy, Enviroment and Sustainable Development, ShangHai,2011:2191-2195
    [38] Andrew R.Henderson, Michiel B.Zaaiier, Tim R.Camp. Hydrodynamic Loading onOffshore Wind Turbines[C].OWEMES Conference, Naples,2003:1-15
    [39] Andrew R.Henderson,Tim R.Camp.Hydrodynamic Loading on Slender Offshore WindTurbines[C].Gloabal Windpower Conference, Naples,2002:1-5
    [40] Andrew R.Henderson, Po Wen Cheng. Wave Loads on Sleder Offshore StructuresComparison of Theory&Measuremen[J].Germany,2002:1-4
    [41] Po Wen Cheng. A Reliabilitu Based Design Methodology for Extreme Responses ofOffshore Wind Turbines[D].Delft:Technische University Delft,2002:19-25
    [42] J. Jonkman,S. Butterfield and etc. Offshore Code Comparison Collaboration within IEAWind Annex XXIII: Phase II Results Regarding Monopile FoundationModeling[R].Conference Paper NREL/CP-500-42471,2008:8-10
    [43] J. Nichols,T. Camp and etc. Offshore Code Comparison Collaboration within IEA WindAnnex XXIII: Phase III Results Regarding Tripod Surpport StructurteModeling[R].Conference Paper NREL/CP-500-44810,2009:6-12
    [44] Jenny M. V. Trumars,Niels Jacob Tarp-Johansen and etc. Fatigue loads on offshorewind turbines due to weakly nonlinear waves[C].Proceedings of24th InternationalConference on Offshore Mechanics and Arctic Engineering, Greece,2005:1-10
    [45] Puneet Agarwal, Lance Manuel. Design Loads for an Offshore Wind Turbine usingStatistical Extrapolation from Limited Field Data[C].Proceedings of SixteenthInternational Offshore and Polar Engineering Conference, USA,2006:363-368
    [46] Puneet Agarwal, Lance Manuel. Empirical wind turbine load distributions using fielddata[C].Proceedings of the26th International Conference on Offshore Mechanics andArctic Engineering, USA,2007:1-6
    [47] Puneet Agarwal, Lance Manuel. Simulation of offhshore wind turbine response forextreme limit states[C].Proceedings of26th International Conference on OffshoreMechanics and Arctic Engineering, San Diego, California, USA,2007:1-10
    [48] Puneet Agarwal, Lance Manuel,On the modeling of nonlinear waves for prediction oflong-term offshore wind turbine loads[C].Proceedings of27th International Conferenceon Offshore Mechanics and Arctic Engineering, Portugal,2008:1-9
    [49] Puneet Agarwal, Lance Manuel,Incorporating irregular nonlinear waves in coupledsimulation and reliability studies of offshore wind turbines[M].Applied OceanResearch33,2011:215-227
    [50]陈小波,李静,陈健云,海上风电机组随机风浪荷载时程数值计算[J].中国电机工程学报,2011,32(3):288-295
    [51]陈小波,陈健云,李静.海上风力发电塔脉动风速时程数值模拟[J].中国电机工程学报,2008,28(32):111-116
    [52]陈小波,近海风机结构体系环境荷载及动力响应研究[J].大连:大连理工大学博士学位论文,2011:39-46
    [53] Nianxin Ren, Jinping Ou, Changjiang He,Aeroelastic Behavior of Offshore WindTurbine Airfoil during Typhoon[C].Proceedings of the Twentieth (2010) InternationalOffshore and Polar Engineering Conference, China,2010:699-703
    [54]陈严,蔡安民,叶枝全,刘雄,近海风力机在极限波浪作用下的初步计算分析[J].太阳能学报,2008(2):180-187
    [55]林勇刚,李伟,崔宝玲,刘宏伟,王传.近海风力机组塔架塔基载荷研究[J].太阳能学报,2009,30(7):961-965
    [56] Zhao Jing, Zhang Liang, Zhang Jian Hua, Sheng Qi Hu, Hao Jun. Analysis ofEnvironmental Loads on Pile Foundation for Offshore Wind Turbines[C]. The Asialink-EAMARNET International Conference on marine science and technology for greenshipping. Glasgow, Scotland.2009:69-77
    [57] Zhang Liang,Zhao Jing,Zhang Xue Wei,Ma Qing Wei,Integrated Fatigue LoadAnalysis of Wave and Wind for Offshore Wind Turbine Foundation[C].Proceedings ofthe20th (2010) International Offshore and Polar Engineering Conference,2010:680-686
    [58] Zhang Liang,Wu Haitao,Ye Xiaorong and Jing Fengmei,Coupled Dynamic Analysisof a Spar Type Floating Wind Turbine[C].2010International Conference onComputer-aided Manufacturing and Design,Hong Kong,China,2010:567-570
    [59] Chen Z Z,Tarp-Johansen N J,Jensen J J. Mechanical characteristics of some deepwaterfloater designs for offshore wind turbines[J].Wind Engineering.2006,30(5):417-430.
    [60] Shim, S. and M.H. Kim. Rotor-floater-tether coupled dynamic analysis of offshorefloating wind turbines[C].Proceedings of the International Offshore and PolarEngineering Conference.Canada,2008:455-460.
    [61] Nianxin Ren, Yugang Li, Jinping Ou,The Motion Performance of Two Offshore WindTurbine Floating Platforms with Combined Tension Leg-Mooring Line System[C].Proceedings of the Ninth (2010) ISOPE Pacific/Asia Offshore Mechanics Symposium,Korea,2010:80-86
    [62] TANG Yougang, HU Jun, LIU Liqin. Study on the Dynamic Response for FloatingFoundation of Offshore Wind Turbine[C].Proceedings of the ASME201130thInternational Conference on Ocean, Offshore and Arctic Engineering, The Netherlands,2011:1-5
    [63]赵静,张亮,叶小嵘,吴海涛.模型试验技术在海上风电开发中的应用[J].中国电力,2011.44(9):55-60
    [64] Shimada K, Miyakawa M, Ishihara T et al. A Study on A Semi-Submersible FloatingOffshore Wind Energy Conversion System[C].Proceedings of the Sixteenth InternationalOffshore and Polar Engineering Conference,Lisbon,Portugal,2007:348-355
    [65] Utsunomiya T, Matsukuma H,Minoura S et al.On sea experiment of a hybrid spar forfloating offshore wind turbine using1/10scale model [C].Proceedings of the ASME201029th International Conference on Ocean, Offshore and Arctic Engineering,China,2010:1-8
    [66] Toshiki Chujo, Shigesuke Ishida, Yoshimasa Minami,Tadashi Nimura,Shunji Inoue.Model experiments on the motion of a spar type floating wind turbine in wind andwaves[C].The Netherlands:Proceedings of the ASME201130th InternationalConference on Ocean, Offshore and Arctic Engineering,2010:1-8
    [67]王承煦,张源.风力发电[M].北京:中国电力出版社,2003:48-56
    [68]张希良.风能开发利用[M].北京:化学工业出版社,2005:12-26
    [69] D勒古里雷斯.风力机的理论与设计[M].北京:机械工业出版社,1987:122-150
    [70] JB/T10300-2001,风力发电机组设计要求[S].北京:中国机械工业联合会.2001:4-11
    [71]风力发电机组规范[S].北京:中国船级社,2008:3-10
    [72]刘雄,陈严,叶枝全.水平轴风力机气动生能计算模型[J].太阳能学报,2005,26(6):792-800
    [73]张仲柱,王会社,赵晓路,徐建中.水平轴风力机叶片气动性能研究[J].工程热物理学报,2007,28(5):781-783
    [74] Wheeler J D. Method for Calculating Forces Produced by Irregular Waves[M].J.Petr.Techn.,1970:359-367
    [75]李远林.波浪理论及波浪载荷[M].广州:华南理工大学出版社,1994:137
    [76]李润培,王志农.海洋平台强度分析[M].上海:上海交通大学出版社,1992:16-31
    [77]邱大洪.波浪理论及其在工程上的应用[M].北京:高等教育出版社,1985:347-361
    [78]董胜,石湘.海洋工程数值计算方法[M].青岛:中国海洋大学出版社,2007:236-240
    [79]黄祥鹿,陆鑫森.海洋工程流体力学及结构动力响应[M].上海:上海交通大学出版社,1992:24-26
    [80]王超,海洋工程环境[M].天津:天津大学出版社,1993:77-84,98-128
    [81]孙意卿,海洋工程环境及其荷载[M].上海:上海交通大学出版社,1989:18-52,59-114
    [82]盛振邦,杨尚荣,陈雪深,船舶静力学[M].北京:国防工业出版社,1984:156-166
    [83]陈新全,深海半潜式平台初步设计中的若干关键问题研究[D].上海:上海交通大学博士学位论文,2007:61-86
    [84]胡志强,多学科设计优化技术在深水半潜式钻井平台概念设计中的应用研究[D].上海:上海交通大学博士学位论文,2008:50-71
    [85]张帆,深海立柱式平台概念设计及水动力性能研究[D].上海:上海交通大学博士学位论文,2008:50-68
    [86] C.A. Cermelli, D.G. Roddier.MINIFLOAT: A Novel Concept of Minimal FloatingPlatform for Marginal Field Development[C].Proceedings of The Fourteenth (2004)International Offshore and Polar Engineering conference,Toulon,France,2004:538-545
    [87] Christian A., Cermelli, Dominique G. Roddier.Experimental and numerical investigaitonof the stabilizing effects of a water-entrapment plate on a deepwater minimal floatingplatform[C].Proceedings of the24th International Conference on Offshore Mechanicsand Arctic Engineering, Halkidiki,Greece,2005:1-9
    [88] Alexia Aubault Christian A. Cermelli, Structural Design of a Semi-SubmersiblePlatform with Water-Entrapment Plates Based on a Time-Domain HydrodynamicAlgorithm Coupled with Finite-Elements[C].Proceedings of The Sixteenth (2006)International Offshore and Polar Engineering conference, San Francisco, California,USA,2006:187-194
    [89] Alexia Aubault,Christian Cermelli,Dominique Roddier,Paramereic optimization of asemi-submerible platform with heave plates[C]. Proceedings of the26th InternationalConference on Offshore Mechanics and Arctic Engineering,San Diego,2007:1-8
    [90]段艳丽,张金平,刘学虎,窦宏江,半潜式平台的波浪载荷计算[J]石油矿场机械,2006年第35卷第2期,41-44
    [91]张海彬,沈志平,李小平,深水半潜式钻井平台波浪载荷预报与结构强度评估[J].船舶,2007年4月第2期,33-38
    [92]王世圣,谢彬等.3000米深水半潜式钻井平台运动性能研究[J].中国海上油气,2007,19(4):277-284
    [93]戴遗山,段文洋.船舶在波浪中运动的势流理论[M].北京,国防工业出版社,2008:36-43,71-84
    [94]纽曼.船舶水动力学[M].北京:人民交通出版社,1986:283-317
    [95]刘应中,缪国平.船舶在波浪中的运动理论[M].上海:上海交通大学出版社,1986:27-55
    [96]刘岳元,冯铁成,刘应中.水动力学基础[M].上海:上海交通大学出版社,1990:208-230
    [97]刘应中,张乐文.摄动理论在船舶流体力学中的应用[M].上海:上海交通大学出版社,1991:2-11
    [98]李积德.船舶耐波性[M].哈尔滨:哈尔工程大学出版社,1992:3-11,17-28
    [99] Faltinsen.船舶与海洋工程环境载荷[M].上海:上海交通大学出版社,2008:84-105
    [100]D.E.纽兰.随机振动与谱分析理论[M],北京:机械工业出版社,1980:42-55
    [101]潘斌.移动式平台设计[M].上海:上海交通大学出版社,1996:50-77
    [102]MOSES reference manual, Ultramarine, Inc,2009:307-313
    [103]中国船级社海上移动平台入级与建造规范[S].北京:人民交通出版社,2005,第3章,3-5
    [104]Sesam User Manual——Wave analysis by diffraction and Morison theory,2008,chapter2:45-49
    [105]Sesam User Manual——Wave load&stability analysis of fixed and floating structures,2008. chapter4:3-5
    [106]P. Sclavounos,C. tracy,S. Lee. Floating offshore wind turbines:responses in a seastatepareto optimal designs and economic assessment[R].2007,1-20
    [107]Karl E.Kaasen, Halvor Lie, Knut Mo. MIMOSA6.2User’s Documentation[R].Marintek Report, Norwegian Marime Technology Research Institute,2007:41-45
    [108]SIMO project team. SIMO—Theory Manual Version3.6[R].Marintek Report,Norwegian Marine Technology Research Institute,2004:6-7,32-38,113-117
    [109]RIFLEX Theory Manual, Version3.6,2008:2-8
    [110]Sesam User Manual——Deep water coupled floater motion analysis,2008:11-12
    [111]海上单点系泊装置入级与建造规范[S].北京:人民交通出版社,1996,第5章,1-13
    [112]王宏伟,深海系泊系统模型截断技术研究[D].哈尔滨:哈尔滨工程大学博士学位论文,2011:103—125
    [113]季春群,黄祥鹿,海洋工程模型试验的要求及试验技术[J].中国海洋平台,1996,11(5):234-237
    [114]李培昌,张相木,试谈海洋工程试验研究、设计研究[J].海洋工程,1991,6(1):33-38.
    [115]杨建民,肖龙飞,盛振邦,海洋工程水动力学试验研究[M].上海:上海交通大学出版社,2008:32-33,54-59
    [116]严似松,戚心源,海洋工程设计基础[M].北京,海洋出版社,1988:223-258
    [117]郝亚平,船舶性能试验技术[M].北京:国防工业出版社,1988:2-8,132-133

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700