矿区开采沉陷观测数据处理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤炭资源开采在我国能源生产中占有重要地位。研究地下开采引起的地表沉陷规律,对于安全开采及减少因开采造成的损害具有实际意义。在矿区建立地表移动观测站进行实地观测,是获取开采沉陷规律的有效方法。利用计算机技术对实地观测数据进行有效管理和自动处理分析,已成为开采沉陷学研究的重要方向。
     本文以开采沉陷观测数据处理与分析为对象,采用数据库管理开采沉陷观测数据,利用可视化的开发工具Visual Studio2008,基于C#语言实现了地表移动变形数据计算功能和可视化功能。同时,以实测数据为依据,分析了概率积分法预计模型参数的求取途径,为矿山开采沉陷规律研究提供了有力的信息支持。论文研究的主要结果如下:
     (1)系统阐述了开采沉陷观测数据处理的内容与方法,包括实测数据计算处理、预计参数求取、移动变形分布规律研究、多观测站实测参数的综合分析等;分析了开采沉陷观测数据处理的基本流程,包括数据预处理、数据输入与管理、移动变形计算、图形绘制与可视化、参数计算与结果输出等步骤。
     (2)利用可视化的程序开发工具Visual Studio2008,基于C#语言完成了地表移动变形计算程序编制,实现了地表下沉、倾斜、曲率、水平移动、水平变形值的自动计算。
     (3)利用C#语言并结合开源控件实现了地表移动变形曲线的绘制;利用ArcGIS Engine相关接口,基于反距离权重插值法实现了移动变形等值线的自动绘制。
     (4)根据非线性模型参数估计理论,分析了地表移动概率积分法预计参数的计算模型与方法,并利用曲线拟合法实现了参数求解。
Coal resource mining occupies an important position in energy production in China. Studying the mining subsidence rules which caused by underground mining has practical significance to safe mining and to reduce the damage caused by mining. Field observation which is implemented through establishing observation stations is one of the most important and effective methods to get surface movement and deformation rules. Using computer technology to manage observation data effectively and to process data automaticly has become an important research direction of mining subsidence science.
     Observation data processing and analysis of mining subsidence is selected as research object in this paper. Database is used to manage the observation data of mining subsidence. Based on C# programming language, surface movement and deformation values calculation and data visualization is implemented by use of Visual Studio 2008 which is a visual development tool. Based on the measured data, parameters calculation method for prediction model of probability integration method will be analized, providing powerful information support for the research of mining subsidence rules. The main achievements of this paper are shown as follows:
     (1) The main content of data processing for surface movement and deformation is systematicly elaborated. The content includes calculation of observation data, calculation of prediction parameters, research of distribution law for movement and deformation, and comprehensive analysis of the measured parameters for multiple observation stations. Basic flow of observation data processing for surface deformation is anzlyzed. The flow includes data pre-processing, data input and management, surface movement and deformation calculations, graphics rendering and visualization, parameters calculation and results output.
     (2) Based on C# language, surface movement and deformation calculation program is completed by uisng Visual Studio2008 which is a visual development tool. Subsidence values, inclination values, curvature values, horizontal movement values and horizontal deformation values can be calculated automaticly by use of this program.
     (3) Combining with component, curves drawing function for surface movement and deformation is completed by using C# language. Meanwhile, based on inverse distance weighing interpolation method, contours drawing function is completed by using some related interfaces of ArcGIS Engine.
     (4) According to the theory of nonlinear model parameters estimation, prediction parameters calculation models and method of surface movement and deformation for probability integral method is analyzed. Meanwhile, parameters calculation is implemented by use of curve fitting method.
引文
[1]何国清,杨伦,凌赓娣等.矿山开采沉陷学[M].徐州:中国矿业大学出版社, 1994.
    [2]李树春,许江,李克钢.矿区地质灾害信息系统的设计[J].中国矿业, 2004, 13(1): 41-42.
    [3]谢和平主编.可持续发展与煤炭工业报告文集[M].北京:煤炭工业出版社, 1998.
    [4]国巧真,李富平,赵红蕊.采煤塌陷区监测技术研究现状及发展趋势[J].有色金属(矿山部分), 2005, 57(1): 25-28.
    [5]杨伦.矿山开采沉陷对环境损害比地震严重[J].科技导报, 2001, (9): 23-26.
    [6]李永树,韩丽萍.自动绘制地表点移动变形曲线图[J].测绘通报, 1990, (6): 30-33.
    [7] Gray R. E.. Mining Subsidence-past present, future [J]. Mining and Geological Engineering, 1990, 8(4): 400-408.
    [8] Whittaker B.N., Reddish D.J. and Fitzpatrick D.. Calculation by computer program of mining subsidence ground strain patterns due to multiple longwall extractions [J]. Mining Science and Technology, 1985, 3(1): 21-33.
    [9] Falcón S., Gavete L., Ruiz A.. A model to simulate the mining subsidence problem: Coding and implementation of the algorithm [J]. Computers & Geosciences, 1996, 22(8): 897-906.
    [10] Spreckels V.. Monitoring of coal - mining subsidence by HRSC-A data [A]. Proc. XIXth ISPRS Congress [C]. Amsterdam, 2000, 1452 - 1458.
    [11] Strozzi T., Wegmüller U., Werner C., Wiesmann A.. ESA-DUP: Differential interferometric Applications in Urban Areas [Z]. Final Report to ESA, 2001.
    [12]蔡少华.计算机辅助沉陷数据图形处理研究[D].江苏徐州:中国矿业大学, 1996.
    [13]蔡少华,王金庄.地理信息系统(GIS)在开采沉陷中的应用[J].测绘工程, 1996, 5(2): 49-53.
    [14]陈宜金,黄绍东.开采沉陷信息处理软件系统模块划分方法的探讨[J].焦作工学院学报, 1996, 15(1): 23-27.
    [15]姜仕义,王金庄等.利用面向对象技术开发矿山开采沉陷处理软件[J].测绘工程, 1998, 7(3): 44-49.
    [16]靳建明,吴侃,王卷乐等. GIS在开采沉陷中的应用探讨[J].地矿测绘, 2000(4): 3-5.
    [17]王卷乐,吴侃,戴仔强.空间数据可视化仔开采沉陷防治中的应用[J].江苏测绘, 2001, 24(1): 8-10.
    [18]刘增良,刘作才,毛善君.地理信息系统在矿区开采沉陷中的应用[J].地矿测绘,2002, 18(2): 10-11.
    [19]刘增良,刘作才等.基于VB的矿山沉陷数据处理系统的研究[J].煤炭科技, 2002, (2): 9-10.
    [20]杜培军,郭达志等. GIS在开采沉陷领域应用及与专业模型的结合[J].武汉大学学报(信息科学版), 2003, 28(4): 463-467.
    [21]贾新果,郭广礼等. MATLAB在开采沉陷数据处理中的应用[J].矿业快报, 2002, (11): 14-16.
    [22]栾元重,吕法奎,班训海.动态变形观测与预报[M].北京:中国农业科学技术出版社, 2007.
    [23]吕伟才,秦永洋等.基于GIS的矿山开采沉陷数据处理软件包的设计[J].矿山测量, 2008, (4), 24-28.
    [24]贾小敏,余学祥等.基于VB与CAD的矿区地表移动变形求解及图形绘制[J].测绘信息与工程, 2009, 34 (1): 38-39.
    [25]姚炜,张伟等.开采沉陷数据的可视化研究[J].安徽理工大学学报(自然科学版), 2009, 29 (3):11-15.
    [26]赵晓冬,陈鹏.基于GIS的开采沉陷空间建模及计算研究[J].测绘科学, 2009, 34(5): 152-153, 185.
    [27]王志杰,孙明前.矿区开采沉陷3维可视化研究[J].测绘与空间地理信息, 2008, 31(3): 65-69.
    [28]余学义,张恩强.开采损害学[M].北京:煤炭工业出版社, 2004.
    [29]原东方.山区地表移动观测站数据处理方法[J].焦作工学院学报, 1996 ,15 (2):14-19.
    [30]吴侃,周鸣.矿区沉陷预测预报系统[M].徐州:中国矿业大学出版社, 1999.
    [31]张华兴.地表移动计算程序的可视化[J].煤炭科学技术, 1998, 26(11): 29-30.
    [32] Turner A. K.. Three-dimensional Modeling with Geoscientific Information Systems [M]. NATO ASI 354: Kluwer Academic Publishers, Dordrecht, 1992.
    [33] Pflug R., Klein H., Ramshorn C. H., Genter M. and Stark A.. 3D Visualization of Geological Structures and Processes[A].In: Lecture Notes in Earth Sciences [C]. Berlin,Springer,1992, 29-39.
    [34]韩丽娜.数据可视化技术及其应用展望[J].煤矿现代化, 2005,(6): 39-40.
    [35]韩卫国,王劲峰,王海起等.基于数据可视化的交通流量分析[J].武汉理工大学学报, 2004, 28(5): 668-670.
    [36]韩李涛.矿区地表变形预计与可视化研究[D].山东泰安:山东科技大学, 2003.
    [37]孙吉,方明,顾燕伟.多维数据图形显示中ZedGraph控件的应用[J].电脑开发与应用, 2008, 21(3) : 55-56.
    [38]陈述鹏,鲁学军,周成虎.地理信息系统导论[M].北京:科学出版社, 2000.117- 123.
    [39]李逢春,郭广礼,韩奎峰.地表变形等值线图的自动绘制[J].测绘通报, 2002, (增): 36-38, 46.
    [40]陈勇,郭文兵,文运平.基于MATLAB求取地表移动预计参数的方法研究[J].河南理工大学学报(自然科学版), 2009, 28(6):14-16.
    [41]煤炭科学研究总院北京开采研究所.煤矿地表移动与覆岩破坏规律及其应用[M].北京:煤炭工业出版社, 1981.
    [42] Sydsp. Surface subsidence engineering [M]. [S.I]: Society for Miming, Metallurgy and Exploration, Inc, 1992.
    [43]国家煤炭工业部.建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规程[M].北京:煤炭工业出版社, 2000.
    [44]殷作如,邹友峰,邓智毅等.开滦矿区岩层与地表移动规律及参数[M].北京:科学出版社, 2010.
    [45]武汉测绘学院大地测量系《测量平差基础》编写组.测量平差基础[M].北京:测绘出版社, 1978.
    [46]吴戈,袁继勇,阎振斌.曲线拟合法求参及韦布尔分布的任意点计算公式[J].山东矿业学院学报, 1983, (2): 94-105.
    [47]唐家德.基于MATLAB的非线性曲线拟合[J].计算机与现代化, 2008, (6):15-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700