无线传感器网络节点自定位系统及其算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无线传感器网络是由大量随机分布的,集成有传感器、数据处理单元和通信模块的微小节点通过自组织的方式构成的网络。近年来,无线传感器网络技术取得了飞速发展,在工农业、军事国防、环境监测等许多领域都有着广阔的应用前景。无线传感器网络作为一个全新的研究领域,向科技工作者提出了大量具有挑战性的课题,节点自定位问题就是其中之一。实现节点的自身定位是无线传感器网络进行目标识别、监控、跟踪等众多应用的前提,节点自定位问题的研究已经成为无线传感器网络研究领域非常重要的一个研究方向。
     无线传感器网络中的传感器节点往往布设规模大且随机布放,又因其能量有限,可靠性差,无线模块的通信距离有限等诸多限制条件,对用于实现其自定位的相关技术和算法提出了很高的要求,使用常规的GPS方法定位或现场工程测量方法定位都是不恰当的。应用于无线传感器网络节点的自定位系统须要适合其自身的特点,通常要求具备自组织性、健壮性、能量高效性以及分布式计算等特性。
     本文的研究工作围绕无线传感器网络节点的自定位这一课题展开,在对近年来该领域所取得的研究成果进行深入学习与理解的基础上,将研究目标确定为探索在现有的节点硬件条件下,从算法研究的角度来解决节点的自定位问题。本文的主要贡献包括以下内容:
     1.在许多无线传感器网络的应用中,为了便于计算及描述,往往将节点的布设区域抽象简化为二维空间,也因此将节点自定位问题简化在二维空间层面进行解决。本文提出一个分布式的节点自定位系统,适用于可将定位环境近似为二维平面的应用场景,该系统包含通常的三个定位步骤:①未知节点与信标节点之间的距离估计,②未知节点初步自定位计算,③未知节点位置求精计算。与以往的分布式节点自定位系统相比,该系统在节点初步自定位计算阶段及位置求精计算阶段所使用的算法上面进行了创新性的研究工作:
     (1)在节点初步自定位计算阶段提出使用算法组合Min-max+LI来确定节点的位置。Min-max算法是既有的用于无线传感器网络节点自定位计算的经典算法,LI算法(平面距离交会算法)是原应用于工程测量领域的平面控制点加密算法,两种算法的组合使用可互补其在定位计算中的优缺点。
     (2)在节点位置求精计算阶段提出使用SD算法(最速下降算法),将节点位置求精过程转化为求非线性方程组最优解的过程来实现优化。
     以理论分析结合仿真实验的方式论证所提出的系统的可行性与有效性。实验结果表明,综合考量定位精度、定位覆盖率、计算量、通信负荷等方面,本文提出的系统优于一些前人研究中提出的典型的分布式节点自定位系统。
     2.针对无线传感器网络节点的自定位问题,尽管已经提出了多种解决方案,但这些方案多数是将传感器节点的布设区域假设或简化为二维平面来进行设计和评估的。本文分析了在无线传感器网络的一些实际应用中实现节点在三维空间自定位的必要性,并就定位系统的模型设计及算法使用方面进行创新性研究:
     (1)文中论述了使用移动信标节点布设机制的优越性,提出一个采用空载的移动信标节点实现全网信号覆盖的节点三维自定位系统。该定位系统的运作模式为:布设于应用区域内的未知节点被动地接收由空载的移动信标节点发射的UWB信号来获取定位所需信息,并藉此采用TOA测距技术测量其与信标节点之间的空间距离,而后使用基于距离测量的三维位置计算算法实现分布式的自定位。
     (2)提出采用原应用于工程测量领域的空间控制点加密算法――SDI算法(空间距离交会算法)作为系统中使用的三维位置计算算法,来实现分布式的节点三维自定位计算。
     论述了所提出的定位系统模型的一些特点及优点,并以理论分析结合仿真实验的方式论证使用SDI算法实现无线传感器网络节点三维自定位的可行性与有效性。依据仿真实验结果,主要可得出两方面的结论:一方面是SDI算法对测距误差敏感,在测距精确的情况下是一种表现良好的三维位置计算算法,因为UWB TOA测距技术可提供精确的空间测距,故本文提出的定位系统整体可获得良好的定位表现;另一方面是当测距误差较大时,SDI算法在高程定位精度方面优于其他两种典型的位置计算算法Lateration与Min-max的表现,但Min-max算法在平面定位精度方面具有最稳定的表现,因此,当在应用环境或其他制约条件的限制下,只能采用较粗略的测距技术(如RSSI)时,SDI算法与Min-max算法可组合使用,分别用于获得节点三维位置的高程坐标分量与平面坐标分量。
Wireless sensor networks (WSNs) are self-organized networks composed of a great deal of small nodes randomly distributed in the sensing area. A certain kind of sensor, a data processing unit and a communication module are the common components of a node in the WSNs. In the recent few years, WSNs have accessed rapid development and reveal vast application prospects in many fields, such as military affairs, industry, agriculture, environment, medical treatment, etc. As a brand-new research field, WSNs pose many challenging topics to the research workers. The problem of node localization, that is, determining where a given node is physically or relatively located in a network, is one of the challenging tasks and yet extremely crucial for many applications. The self-localization of nodes in WSNs has been the basis for most of the applications, such as taget recognization, monitoring, and tracking. The node localization has been an important and critical research direction in the study of WSNs.
     Because of the large and random deployment of the sensor nodes in WSNs and some restrictive conditions of the sonsor nodes themselves, such as short battery life, low reliability, and limited wireless communication distance, WSNs pose high demands on the techniques and algorithms which are used for the node localization. Some routine localization methods, such as GPS and surveying method, are not suited for the node localization in WSNs. The node localization systems for WSNs are commonly requied self-orgornized, robust, energy-efficient, and computation-distributed.
     Our study is focused on the node localization in WSNs, and the main object is to solove the node localization problem from the aspect of algorithm design, under the current hardware conditions of sensor nodes. The main contribution of this dissertation includes:
     1. In many WSNs’applications, for computation simplicity and ease of presentation, the sensing areas are commonly assumed flat and the node localization problem is solved in two-dimensional (2D) space only. In this paper, we present a distributed node localization system for WSNs, which fits for the application scenarios where the localization environment can be simplified as a 2D space. The system includes three common steps:①determine node-beacon distances,②compute node positions, and③refine the positions. Compared with other current distributed node localization systems, our system innovates in the second step and the third step.
     (1) An algorithm combination Min-max+LI is proposed to be the position derivation algorithm. Min-max is a representative node position derivation algorithm for WSNs, and LI is a control point densification algorithm used in engineering survey field originally. The combination usage of the two algorithms is an optimisation to let them make up each other in terms of their respective advantages and disadvantages in the localization computation.
     (2) SD method is presented for the refinement, and thus, the refinement procedure is transformed into a solution procedure for a nonlinear equation system. The feasibility and effectivity of our sytem are demonstrated through analysis in theory and simulation. Results show that our proposed sytem can perform better than some representative distributed node localization schemes presented in previous researches in terms of the trade-off among accuracy, coverage, computation cost, and communication overhead.
     2. Most previous approaches on node localization are designed and evaluated considering only 2D applications, but sometimes it is unreasonable to just simplify the node localization problem to 2D level due to the complexity of the actual application scenarios. The necessity of solving the node localization problem considering three-dimensional (3D) environments is discussed, and some innovative work are done on the system model design and algorithm application of 3D node localization in WSNs.
     (1) The advantages of using the mobile beacon mechanism are demonstrated, and a 3D node localization system using an aircraft-carried mobile beacon for the localization signal coverage is proposed. The working modes of the system is that the unknown nodes in the sensing area receive the UWB signals from the mobile beacon passively and measure the distance to the mobile beacon using TOA technique, and then, the nodes localize themselves locally.
     (2) SDI is proposed as the 3D node position derivation algorithm, and it is a spatial control point densification algorithm used in engineering survey field originally.
     Some features of our proposed system are discussed, and the feasibility and effectivity of using SDI as the position derivation algorithm are demonstrated through analysis in theory and simulation. Based on the results, mainly two conclusions are obtained. One is that SDI is sensitive to the node-beacon distance error, and hence, it is a suitable 3D node position derivation algorithm when the distance measurement is precise. Since UWB TOA technique can provide precise distance measurements, our system can perform well in general. The other is that SDI performances much better than the other two representative algorithms, Min-max and Lateration, in terms of the vertical positioning error under all the range situations while Min-max has the best performance on horizontal positioning when the range precision is poor. Therefore, in the cases where only corse ranging results can be obtained (e.g., using RSSI for ranging), both SDI and Min-max should be considered for 3D node position derivation, in which, Min-max is used to derive the horizontal position of a node while SDI is used to drive the vertical position.
引文
[1] Akyildiz, I.F., Su, W., Sanakarasubramaniam, Y., etc., Wireless sensor networks: a survey [J], Computer Networks, 2002, 38(4): 393-422.
    [2] Romer, K., Mattern, F., The design space of wireless sensor networks [J], Wireless Communications, IEEE, 2004,11(6): 54-61.
    [3]李建中,李金宝,石胜飞,传感器网络及其数据管理的概念、问题与进展[J],软件学报, 2003, 14(10): 1717-1727.
    [4] Abd-El-Barr, M.I., Youssef, M.A..M., Al-Otaibi, M..M., Wireless sensor networks - Part I: Topology and Design Issues [C], In: 18th IEEE Annual Canadian Conference on Electrical and Computer Engineering, Saskatoon, Saskatchewan, Canada, 2005: 1165- 1168.
    [5] Rabaey, J. M., Ammer, M. J., da Silva, Jr. J.L., etc., PicoRadio supports ad hoc ultra-low power wireless networking [J], Computer, 2000, 33(7): 42-48.
    [6] Bulusu, N., Heidemann, J., Estrin, D., GPS-less low cost outdoor localization for very small devices [J], IEEE Personal Communications Magazine, 2000, 7(5): 28-34.
    [7] Hightower, J. and Boriello, G., Location systems for ubiquitous computing [J], IEEE Computer, 2001,34(8): 57-66.
    [8] Abd-El-Barr, M.I., Al-Otaibi, M.M., Youssef, M.A.M., Wireless sensor networks - Part II: routing protocols and security issues [C], In: 18th IEEE Annual Canadian Conference on Electrical and Computer Engineering, Saskatoon, Saskatchewan, Canada, 2005, 69-72.
    [9] Karp, B. and Kung, H.T., GPSR: Greedy perimeter stateless routing for wireless networks [C], In: Raymond, P., Sajal, K.D., Ramon, C., eds., Proc. of the 6th Annual Int'l Conf. on Mobile Computing and Networking, Boston: ACM Press, 2000, 243-254.
    [10] Stojmenovic, I., Location updates for efficient routing in ad hoc wireless networks [M], Handbook of Wireless Networks and Mobile Computing, New York, NY, USA: John Wiley & Sons, 2002, 451-471.
    [11] Langendoen, K., Reijers, N., Distributed localization in wireless sensor networks: a quantitative comparison [J], Computer Networks, 2003, 43(4): 499-518.
    [12] PicoRadio project. URL: http: / bwrc.eecs.Berkeley.edu / Research / Pico_Radio / Default.htm.
    [13] Kahn J.M., Katz R.H., Pister K.S.J., Next Century Challenges: Mobile Networking for Smart Dust [C], In: Proceedings of the 5th Annual ACM/IEEE International Conference on Mobile Computing and Networking (MobiCom'99), ACM SIGMOBILE, Seattle, Washington, 1999, 483-492.
    [14] WINS (Wireless Integrated Network Sensors) project. URL: // wwwjanet.ucla.edu/WINS/.
    [15] MIT uAMPS project. URL: http://www-mtl.mit.edu/research/icsystems/uamps/.
    [16] NMS project. URL: http://nms.csail.mit.edu/.
    [17] SCADDS project. URL: http://www.isi.edu/scadds/.
    [18] Codeblue project. URL: http://www.eecs.harvard.edu/}mdw/proj/codeblue/.
    [19] Exscal project. URL: http://www.cast.cse.ohio-state.edu/exscal/.
    [20] ESP project. URL: http://projects.cerias.purdue.edu/esp/.
    [21] Caccamo, M., Zhang, L.Y., Lui Sha, et al, An Implicit Prioritized Access Protocol for Wireless Sensor Networks [C]. In: Proceedings of the 23rd IEEE Real-Time Systems Symposium, (RTSS'02), 2002, 39-48.
    [22] Warneke, B., Last, M., Liebowitz, B., Smart dust: communicating with a cubic-millimeter computer [J]. Computer, 2001, 34(1): 44-51.
    [23] http://www.xbow.com/Products/Wireless Sensor Networks.htm.
    [24] http://bibliotecnica.upc.es/PFC/arxius/migrats/50838-2.pdf.
    [25] Bahl, P, Padmanabhan, V.N., RADAR: An in-building RF-based user location and tracking system [C]. In: Proc. of the IEEE INFOCOM 2000, Tel Aviv, Israel: IEEE Computer and Communications Societies, 2000, 775?784.
    [26] Harter, A., Hopper, A., Steggles, P., etc., The anatomy of a context-aware application [C]. In: Proc. of the 5th Annual ACM/IEEE Int’l Conf. on Mobile Computing and Networking, Seattle: ACM Press, 1999, 59-68.
    [27] Want, R., Hopper, A., Falcao, V., etc., The active badge location system [J]. ACM Trans. on Information Systems, 1992, 10(1): 91-102.
    [28] Harter, A., Hopper, A., A distributed location system for the active office[J]. IEEE Network, 1994, 8(1): 62-70.
    [29] http://www.directionsmag.com/press.releases/index.php?duty=Show&id=383. 1999.
    [30] Harter, A., Jones, A., Hooper, A., A new location technique for the active office [J], IEEE Personal Communications, 1997, 4(5): 42-47.
    [31] Microsoft Research. Easy living, 2001. http://www.research.microsoft.com/easyliving/.
    [32] Hightower, J., Boriello, G., Want, R., SpotON: An indoor 3D location sensing technology based on RF signal strength [J]. Technical Report UW CSE 2000-02-02, Seattle: Department of Computer Science and Engineering, University of Washington, 2000.
    [33] Welch, G., Bishop, G., Vicci, L., etc., The HiBall tracker: High-Performance wide-area tracking for virtual and augmented environments [C]. In: Proc. of the ACM Symp. on Virtual Reality Software and Technology, London: ACM Press, 1999, 1-11.
    [34] Want, R., Schilit, B.N., Adams, N.I., etc., An overview of the ParcTab ubiquitous computing experiment [J], IEEE Personal Communications, 1995, 2(6): 28-43.
    [35] Orr, R.J., Abowd, G.D., The smart floor: A mechanism for natural user identification and tracking [C], In: Proc. of the 2000 Conf. on Human Factors in Computing Systems, The Hague: ACM Press, 2000, 275-276.
    [36] Pentland, A., Machine understanding of human action, In: Proc. of the 7th Int’l Forum on Frontier of Telecommunication Technology, Tokyo: ARPA Press, 1995, 757-764.
    [37] PinPoint Corporation. 2001. http://www.pinpointco.com.
    [38] WhereNet Corporation. 2001. http://www.widata.com/solutions_main.html.
    [39] Priyantha, N.B., Chakraborty, A., Balakrishnan, H., The cricket location-support system [C]. In: Proc. of the 6th Annual Int’l Conf. on Mobile Computing and Networking. Boston: ACM Press, 2000, 32?43.
    [40] Capkun, S., Hamdi, M., Hubaux, J.P., GPS-Free positioning in mobile ad-hoc networks [J], Cluster Computing, 2002, 5(2): 157-167.
    [41] Doherty, L., Pister, K.S.J., Ghaoui, L.E., Convex position estimation in wireless sensor networks, In: Proc. of the IEEE INFOCOM 2001, Vol.3, Anchorage: IEEE Computer and Communications Societies, 2001, 1655?1663.
    [42] Doherty, L., Algorithms for position and data recovery in wireless sensor networks [D], Berkeley: University of California, 2000.
    [43] He, T., Huang, C.D., Blum, B.M., etc., Range-Free localization schemes in large scale sensor networks [C], In: Proc. of the 9th Annual Int’l Conf. on Mobile Computing and Networking, San Diego: ACM Press, 2003, 81-95
    [44] Niculescu, D., Nath, B., Ad-Hoc positioning systems (APS) [C], In: Proc. of the 2001 IEEE Global Telecommunications Conf, San Antonio: IEEE Communications Society, 2001, 5: 2926?2931.
    [45] Niculescu, D., Nath, B., DV based positioning in ad hoc networks [J]. Journal of Telecommunication Systems, 2003, 22(1/4): 267-280.
    [46] Niculescu, D., Nath, B., Ad hoc positioning system (APS) using AoA [C]. In: Proc. of the IEEE INFOCOM 2003, Vol.3, San Francisco: IEEE Computer and Communications Societies, 2003, 1734-1743.
    [47] Beutel, J., Geolocation in a PicoRadio environment [D], Berkeley: UC Berkeley,1999.
    [48] Savarese, C., Rabaey, J.M., Beutel, J., Locationing in distributed ad-hoc wireless sensor network [C], In: Proc. of the 2001 IEEE Int’l Conf. on Acoustics, Speech, and Signal, Salt Lake: IEEE Signal Processing Society, 2001, 4: 2037-2040.
    [49] Savarese, C., Rabay, J., Langendoen, K., Robust positioning algorithms for distributed ad-hoc wireless sensor networks [C], In: Ellis CS, ed., Proc. of the USENIX Technical Annual Conf. Monterey: USENIX Press, 2002, 317?328.
    [50] Savvides, A., Han, C. C., Srivastava, M. B., Dynamic fine-grained localization in ad-hoc networks of sensors [C], In: Proc. of the 7th Annual Int’l Conf. on Mobile Computing and Networking. Rome: ACM Press, 2001, 166-179.
    [51] Savvides, A., Park, H., Srivastava, M. B., The bits and flops of the N-hop multilateration primitive for node localization problems [C], In: Proc. of the 1st ACM Int’l Workshop on Wireless Sensor Networks and Applications, Atlanta: ACM Press, 2002, 112-121.
    [52] Meguerdichian, S., Slijepcevic, S., Karayan, V., etc., Localized algorithms in wireless ad-hoc networks: Location discovery and sensor exposure [C], In: Proc. of the 2nd ACM Int’l Symp. on Mobile Ad Hoc Networking & Computing, Long Beach: ACM Press, 2001,106?116.
    [53] Shang, Y., Ruml, W., Zhang, Y., etc., Localization from mere connectivity [C], In: Proc. of the 4th ACM Int’l Symp. on Mobile Ad Hoc Networking & Computing, Annapolis: ACM Press, 2003, 201-212.
    [54]马祖长,孙怡宁,无线传感器网络节点的定位算法[J],计算机工程, 2004, 30(4): 13-14.
    [55]王福豹,史龙,任丰原,无线传感器网络中的自身定位系统和算法[J],软件学报, 2005, 16(5), 857-868.
    [56]朱俊,无线传感器网络定位算法的研究与实现[D],南京理工大学, 2005.
    [57]王陈琦,无线传感器网络中的定位技术研究[D],四川大学, 2005.
    [58]王建刚,无线传感器网络分布式节点定位算法研究[D],西北工业大学, 2006.
    [59]史龙,无线传感器网络自身定位算法研究[D],西北工业大学, 2006.
    [60]宫召杰,无线传感器网络中的自身定位算法研究[D],中国海洋大学, 2006.
    [61]尹晓丹,无线传感器网络定位算法研究[D],哈尔滨工业大学, 2006.
    [62]陈寒,无线传感器网络节点相对定位算法研究[D],湖南大学, 2006.
    [63]杨旸,传感器网络节点定位技术研究[D],浙江大学, 2006.
    [64]马玉秋,基于无线传感器网络的定位技术研究及实现[D],北京邮电大学, 2006.
    [65]肖玲,基于多维标度的无线传感器网络定位算法研究与实现[D],湖南大学, 2006.
    [66]端木庆敏,无线传感器网络节点定位算法研究[D],国防科学技术大学, 2006.
    [67]吴元忠,无线传感器网络节点自定位技术的研究[D],河海大学, 2007.
    [68]江斌,无线传感器网络节点自定位技术研究[D],电子科技大学, 2007.
    [69]申屠明,无线传感器网络定位算法研究[D],浙江大学, 2007.
    [70]黄清明,无线定位算法研究[D],山东大学, 2007.
    [71]刘利姣,无线传感器网络节点自定位研究[D],华中师范大学大学, 2007.
    [72]李本佳,无线传感器网络中的分布式定位算法[D],浙江大学, 2007.
    [73]刘艳文,无线传感器网络定位系统的设计与实现[D],西北工业大学, 2007.
    [74]肖建虹,李明,全站仪测边交会精度分析[J],地矿测绘, 2003, 19(2): 32-33.
    [75]林文介,文鸿雁等,测绘工程学[M],中国广州,华南理工大学出版社, 2003.
    [76]孙文瑜,徐成贤,朱德通,最优化方法[M],中国北京,高等教育出版社, 2003: 112-139.
    [77]角仕云,刘丽娅,实用科学与工程计算方法[M],中国北京,科学出版社,2000: 132-138.
    [78]李全信,空间测边交会的解法、精度估算和最佳图形探讨,解放军测绘学院学报, 1991, (4): 39-45.
    [79]李全信,空间测边交会的优化解法及精度分析[J],测绘工程,1999, 8(3): 40-46.
    [80]岳建平,马保卫,空间距离交会原理及应用[J],测绘通报, 2006, (11): 38-39.
    [81] Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., et al., A Survey on Sensor Networks [J], IEEE Communications Magazine, 2002, 40(8):102-114.
    [82]李晓延,浅谈无线传感器网络,半导体应用网, 2006,(9).
    [83] Yang Yu, Viktor K Prasanna, Bhaskar Krishnamachari. Information Processing and Routing in Wireless Sensor Networks [M], World Scientific Publishing Company, December, 2006.
    [84]孙利民,李建中,陈渝等,无线传感器网络[M],中国北京,清华大学出版社, 2005.
    [85]任丰原,黄海宁,林闯,无线传感器网络[J],软件学报, 2003, 14(7): 1282-1290.
    [86]陈丹,郑增威,李际军,无线传感器网络研究综述,计算机测量与控制, 2004, 12(8): 701-704.
    [87] Volgyesi, P., Balogh, G., Nadas, A., et al., Shooter Localization and Weapon Classification with Soldier-Wearable Networked Sensors [C], In: Proc. Of MobiSys’07, San Juan, Puerto Rico, USA: ACM press, 2007, 113-126.
    [88] Simon, G., Maroti, M., Ledeczi, A., et al., Sensor Network-Based Countersniper System [C], In: Proc. of the 2nd International Conference on Embedded Networked Sensor Systems, New York, USA: Association for Computing Machinery, 1-12.
    [89] Rabacy, J.M., Ammer, M.J., da Silva, J.L., etc., Picorodio supports Ad Hoc ultra-low power wireless networking [J], Computer, 2000, 33(7): 42-48.
    [90] Girod, L., Estrin, D., Robust range estimation using acoustic and multimodal sensing [C], In: Proc. of the IEEE/RSJ Int’l Conf. on Intelligent Robots and Systems (IROS 01), Vol.3, Maui: IEEE Robotics and Automation Society, 2001, 1312-1320.
    [91] Priyantha, N. B., Balakrishnan, H., Demaine, E., etc., Anchor-free distributed localization in sensor networks, Technical Report MIT-LCS-TR-892, MIT Lab for computer science, April, 2003.
    [92] Harter, A., Hopper, A., Steggles, P., etc., The anatomy of a context-aware application [C], In: Proc. of the 5th Annual ACM/IEEE Int’l Conf. on Mobile Computing and Networking, Seattle: ACM Press, 1999, 59-68.
    [93] Patwari, N., Alfred, O., Perkins, M., etc., Relative location estimation in wireless sensor networks, IEEE Transactions on Signal Processing, 2003, 51(8): 2137-2148.
    [94] Chen, P.C., A non-line-of-sight error mitigation algorithm [C], In: Proceedings of IEEE Wireless Communications and Networking Conference (WCNC), New Orleans, LA. USA: IEEE Computer and Communications Society, 1999, 316-320.
    [95] Wylie, M.P., Holtzman, J., The non-line of sight problem in mobile location estimation [C], In: Proceedings of the International Conference on Universal Personal Communications, Cambridge, MA: IEEE Communications Society, 1996, 827-831.
    [96] Priyantha, N.B., Miu, A.K.L., Balakrishnan, H., etc., The Cricket Compass for Context-Aware Mobile Applications [C], In: Proceedings of 7th ACM International Conference on Mobile Computing and Networking (ACM MOBICOM), Rome, Italy: ACM Press, 2001, 1-14.
    [97] Rao, A., Papadimitriou, C., Shenker, S., etc., Geographic routing without locationinformation [C], In: Proc. of the 9th Annual Int’l Conf. on Mobile computing and Networking, San Diego: ACM Press, 2003, 96-108.
    [98] Niculescu, D., Nath, B., Localized positioning in ad hoc networks [C], In: Cayirci, E., Znati, T., Ekici, E.,eds., Proc. of the 1st IEEE Int’l Workshop on Sensor Network Protocols and Applications, Anchorage: IEEE Communications Societies, 2003, 42-50.
    [99] Bulusu, N., Self-Configuring localization systems [D], Los Angeles, University of California, 2002.
    [100] Hazas, M., Ward, A., A novel broadband ultrasonic location system [C], In: Borriello, G., Holmquist, L.E., eds., Proc. of the 4th Int’l Conf. on Ubiquitous Computing, Goteborg: Springer-Verlag, 2002, 264-280.
    [101] Hazas, M., Ward, A., A high performance privacy-oriented location system [C], In: Titsworth, F., ed., Proc. of the 1st IEEE Int’l Conf. on Pervasive Computing and Communications, Fort Worth: IEEE Computer Society, 2003, 216-233.
    [102] Capkun, S., Hamdi, M., Hubaux, J.P., GPS-Free positioning in mobile ad-hoc networks [J], Cluster Computing, 2002, 5(2): 157-167.
    [103] Bergamo, P., Mazzini, G., Localization in sensor networks with fading and mobility [C], In: Proc. of the 13th IEEE Int’l Symp. On Personal, Indoor and Mobile Radio Communications, Lisbon: IEEE Communications Society, 2002, 750-754.
    [104] Hightower, J., Borriello, G., Location sensing techniques, Technical Report UW CSE 2001-07-30, Seattle, Department of Computer Science and Engineering, University of Washington, 2001.
    [105]史龙,王福豹,段渭军等,无线传感器网络range-free自身定位机制与算法[J],计算机工程与应用, 2004, 40(23): 127-130.
    [106] Bulusu, N., Estrin, D., Heidemann, J., Tradeoffs in location support systems: The case for quality-expressive location models for applications [C], In: Proc. of the Ubicomp 2001 Workshop on Location Modeling for Applications, Atlanta, 2001, 7-12.
    [107] Iyengar, R., Sikdar, B., Scalable and distributed GPS free positioning for sensor networks [C], In: Proc. of IEEE Int’l Conf. on Communications, Anchorage: IEEE Communications Society, 2003, 338?342.
    [108] Sundaram, N., Ramanathan, P., Connectivity based location estimation scheme for wireless ad hoc networks [C], In: Proc. of the 2002 IEEE Global Telecommunications Conf, Taipei: IEEE Communications Society, 2002, 143-147
    [109] Mauve, M., Widmer, J., and Hartenstein, H., A survey on position based routing in mobile ad-hoc networks [J], IEEE Network Magazine, 2001, 15(6): 30-39.
    [110] Chintalapudi, K., Dhariwal, A., Govindan, R., and Sukhatme, G., Ad-Hoc Localization Using Ranging and Sectoring [C], In: Proceedings of IEEE INFOCOM, 2004: 2662-2672.
    [111] Moore, D., Leonard, J., Rus, D., etc., Robust distributed network localization with noisy range measurements [C], In: Proceedings of the Second ACM Conference on EmbeddedNetworked Sensor Systems (SenSys), 2004: 50-61.
    [112] Priyantha, N. B., Balakrishnan, H., Demaine, E. D., and Teller, S., Mobile-assisted localization in wireless sensor networks [C], In: Proceedings of IEEE INFOCOM, 2005, 1: 172-183.
    [113] Ssu, K. F., Ou, C. H., and Jiau, H., Localization with mobile anchor points in wireless sensor networks [J], IEEE Trans. on Vehicular Technology, 2005, 54(3): 1187-1197.
    [114] Wang, C., and Xiao, L., Locating sensors in concave areas [C], In: Proceedings of IEEE INFOCOM, 2006: 1-12.
    [115] Biswas, P., Liang, T. C., Toh, K. C., etc., Semidefinite programming approaches to sensor network localization with noisy distance measurements [J], IEEE Transactions on Automation Science and Engineering, 2006, 3(4): 360-371.
    [116] Vivekanandan, V., Wong, V.W.S., Concentric Anchor Beacon Localization Algorithm for Wireless Sensor Networks [J], IEEE Transactions on Vehicular Technology, 2007, 56(5): 2733-2744.
    [117] Youssef, M., Relative location estimation in wireless sensor networks, Report, Department of Geomatics Engineering, The University of Calgary, 2005.
    [118] Bulusu, N., Heidemann, J., and Estrin, D., Adaptive beacon placement [C], In: Proc. of the The 21st International Conference on Distributed Computing Systems, 16-19 April, 2001, Phoenix (Mesa), Arizona, USA, 489-498.
    [119] Hu, L., and Evans, D., Localization for mobile sensor networks [C]. In: ACM MOBICOM’04, Philadelphia, PA, USA, 2004, 45-57.
    [120] Spec: Smartdust chip with integrated RF communications, 2001, http://www.jlhlabs.com/jhill_cs/spec/.
    [121] Sichitiu, M., and Ramadurai, V., Localization of wireless sensor networks with a mobile beacon [C], In: IEEE International Conference on Mobile Ad-hoc and Sensor Systems, Fort Lauderdale, Florida, USA, 2004, 174 - 183.
    [122] Cheng, X., Thaeler, A. Xue, G., etc., TPS: A time-based positioning scheme for outdoor wireless sensor networks [C], In: Proceedings of the 23rd Annual Joint Conference of the IEEE Computer and Communications Societies, ,Hong Kong, China, 2004, 4: 2685-2696.
    [123] Sun, G. L., and Guo, W., Comparison of distributed localization algorithms for sensor network with a mobile beacon [C], In: Proceedings of IEEE International Conference on Networking, Sensing and Control, Taipei, Taiwan, 2004, 1: 536-540.
    [124] Chen, Q. Q., Jiang, T., Zhou, Z. , A new ranging application of UWB modulated by orthogonal waves in wireless sensor network [C], In: Proc. of COMSWARE’08, Bangalore, India, 2008, 128 -131.
    [125]李全信,空间测边交会有关问题的讨论,地矿测绘, 1995, (1): 9-13.
    [126]高井祥,叶玉田,三维工程控制网应用条件的探讨,工程勘察, 1990, (6).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700