多目标粒度支持向量机及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
如何提高学习机的推广能力、训练复杂性和可理解性是机器学习领域的研究热点和重点。粒计算或粒度模型将复杂研究对象分割成一些简单.的研究对象,以便从微观的角度观察和分析问题,降低其复杂性,如训练复杂性。相反,对于微观的简单问题,通过逐步综合的方法将相关的简单问题合并,从宏观上研究问题以降低处理多个简单问题带来的复杂性。对于用户而言,分类错误率和训练复杂性是衡量分类算法的相互冲突的指标,构造分类错误率低且训练复杂性低的分类算法是多目标优化问题。近年来,多目标优化已融入了机器学习领域,并且可以构造给定训练集上的一簇多个目标折衷的学习方法,供决策者根据需求选取合适的学习机。对于支持向量机而言,不同的训练样本对于训练过程的贡献度不同,容易错分的样本对构造分类超平而的贡献度较大,而不容易错分的样本对构造分类超平面的贡献度较小。根据样本的贡献度构造训练集的粒度模型,选取对分类超平面贡献度较大的样本构造支持向量机是降低训练复杂性常用方法之一
     本文融合粒计算、多目标优化和支持向量机,研究了基于模糊格的粒计算、多目标粒计算和粒度支持向量机三种算法。论文的创新性工作如下:
     利用格和对偶格之间的同构映射消除向量集和粒集上两种偏序关系的不一致性,根据同构映射和正评价函数构造粒之间的模糊包含度和合并后的粒度对粒进行有条件的合并,构造了基于模糊格的粒计算分类算法,并从代数系统的角度证明构造的粒计算的可行性。数值实验结果证明了与支持向量机相比基于模糊格的粒计算不但加速了训练过程而目.具有较高的推广能力。
     针对粒计算产生的冗余粒,根据粒的数量和分类错误率两个指标的重要性不同,在Pareto支配关系的基础上,定义了基于重要度的Pareto支配关系(IPareto, Importance-based Pareto Dominance)比较个体的优劣,建立了粒的数量与分类错误率的多目标粒计算模型,设计了相应的演化算法。该演化算法用粒的两层结构表示个体,设计了个体之问的交叉算子、单一个体上的合并算子和变异算子,用先验信息指导算法收敛到IPareto前沿。实验结果表明与传统的粒计算相比多目标粒计算得到更多的分类机制,即多目标粒计算得到一簇分类器供用户选择,每个分类器都是分类错误率对应的最小规模的分类粒集。
     针对大量非支持向量导致了支持向量机较高的训练复杂性,通过支持向量的分布特征估计了其分布,建立训练集的粒度模型,剔除部分非支持向量,选取极有可能成为支持向量的样本构造粒度支持向量机。该类粒度支持向量机根据样本对训练的不同贡献度,选取贡献度较大的样本构造粒度模糊支持向量机;定义训练集上的等价关系,利用属性值的离散化构造训练集的粒度模型,选取包含不同类样本的粗糙集边界构造粒度模糊支持向量机;利用属性的重要性对属性集精简或粒化,构造粒度模糊支持向量机。实验结果表明该类学习机降低了训练复杂性,提高了推广能力。
     将提出的超盒粒计算分类算法用于无线传感器网络的节点定位问题。首先,利用已知节点与锚节点之间的通信量构造训练集;其次,对定位区域进行网格化,将训练集转化为分类问题的训练集;训练分类算法并用测试集验证算法的性能。实验结果表明超盒粒计算分类算法可以用于无线传感器网络的节点定位,并且取得了可接受的定位精度。
The research focus and emphasis on machine learning lie in how to improve the generalization ability, training speed, and intelligibility of learning machines. Granular computing (granular model) divides the complex task into some sub-tasks, so that people observe and analyze the research objectives from microcosmic, and the complexity, such as training complexity, is reduced. Conversely, for the microcosmic and simple task, the complexity caused dealing with multiple simple tasks is reduced by the gradual integration approach of sub-tasks in the view of macroscopic. For users, misclassified rate and training complexity are two conflict objectives used to evaluate the classification algorithms, and forming the classification algorithm with the minimal misclassified rate and minimal training complexity is a multi-objective optimization problem. In recent years, multi-objective optimization is embedded into machine learning field, which is applied to achieve a group of learning methods on the given training set, these learning methods can satisfy the user's selection in terms of their requirements. For support vector machines, different training samples have different contributions to the training process, and the sample being easily misclassified makes bigger contribution than the sample being classified correctly. It is a usual method to reduce the training complexity by training support vector machines on the reduced training set induced by their contributions.
     In this dissertation, fuzzy lattice-based granular computing, multi-objective granular computing, and granular support vector machines are proposed based on the fusion of granular computing, multi-objective optimization, and support vector machines. The innovative works are as follows:
     The inconsistency, between two partial order relations on vector set and granule set, is eliminated by the isomorphic mapping between lattice and its dual lattice. Fuzzy lattice-based granular computing classification algorithm is formed on the conditional union in terms of the granularity of united granule and fuzzy inclusion measure induced by the isomorphic mapping and positive valuation function. The feasibility of granular computing classification algorithm is proved in the view of algebraic system. Experimental results show that the proposed algorithms not only speed up the training process but also achieve the better generalization ability compared with SVMs and KNN algorithms.
     According to the redundancy granules generated by granular computing, Importance-based Pareto (IPareto) dominance is used to compare two individuals based on Pareto dominance and different importance between the misclassification rate and the number of granules. The multi-objective granular computing model including the number of granules and misclassification rate is proposed, and the corresponding evolutionary algorithm is designed based on IPareto dominance. The evolutionary algorithm represents the individual by two-level structure, designs crossover, mutation, and union operators to search the IPareto front by guide of prior information. Compared with the traditional granular computing, experimental results show that the multi-objective granular computing algorithms achieved a group of classifiers for users, and each classifier is the granule set with the minimal size corresponding to the misclassification rate.
     The granular model is formed by the contribution of samples to the training process, support vectors and non-support vectors are estimated by their distribution or contribution. A great deal of non-support vectors causing higher training complexity are discarded, and granular support vector machines are formed by the samples with higher contributions. The granular model of training set is formed by the equivalence relation induced by the discreterization of attribute value, and the boundary of rough set including samples with different class labels is used to form granular support vector machines. Granular support vector machines are formed by reduction or granular model of attribute set induced by significance of attribute. Experimental results show that the granular support vector machines not only downsize the training complexity but also achieve the better generalization ability compared with SVMs algorithms.
     The proposed hyperbox granular computing classification algorithm (HBGrCCA) is used to estimate location of sensors in wireless sensor network. Firstly, the communication measure between reference points and other points is composed of training set. Secondly, localization problem is transformed into corresponding classification problem by gridding of localization area. Experimental results show that HBGrCCA, used to estimate the location of blind nodes in wireless sensor network, achieved the acceptable localization precision.
引文
[1]S.Haykin神经网络与机器学习.北京:机械工业出版社,2009.
    [2]R.S.Michalski,R.L.Chilausky.Knowledge Acquisition by Encoding Expert Rules versus Computer Induction from Examples:A Case Study Involving Soybean Pathology. International Journal of Man-Machine Studies,1980,12(1):63-87.
    [3]P.Langley.Elements of Machine Learning.Morgan Kaufmann,San Francisco,CA,1996.
    [4]T.M.Mitchell著,曾华军,张银奎等译.机器学习.北京:机械工业出版社,2003.
    [5]E.Alpaydin.Introduction to Machine Learning.The MIT Press,2004.
    [6]W.S.McCulloch,W.Pitts.A Logical Calculus of The Ideas Immanent in Nervous Activity. Bulletin of mathematical Biophysics,1943,5:115-133.
    [7]E.Mjolsness,D.DeCoste.Machine Learning for Science: State of the Art and Future Prospects.Science 2001,293:2051-2055.
    [8]L.I.Smith.A tutorial on principal components analysis.Available: http://csnet.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf,2002.
    [9]R.Kohavi.A Study of Cross-validation and Bootstrap for Accuracy Estimation and Model Selection. Proceedlngs of the Fourteenth International Joint Conference on ArtificiaI Intelligence,1995.
    [10]G. Carbonell. Machine Learning: Paradigms and Methods. New York: Elsevier North-Holland,1990.
    [11]T.G. Dietterich.Machine Learning Research:Four Current Directions.Artificial Intelligence Magazine.1997,18(4),97-136.
    [12]V.N.Vapnik.Statistical Learning Theory.John Wiley and Sons,New York,1998.
    [13]V.N.Vapnik著,张学工译.统计学习理论的本质.北京:清华大学出版社,2000.
    [14]F.Rosenblatt.Neurocomputing:Foundations of Research.MIT Press,1988.
    [15]A.B.J.Novikoff On Convergence Proofs for Perceptrons.Proceedings of the Symposium on the Mathematical Theory of Automata,1962.
    [16]V.Vapnik,A.Chervonenkis.On the Uniform Convergence of Relative Frequemcies of Events to Their Probabilities. Theory of Probability and Its Applications. 1971,16(2):264-280.
    [17]V. N. Vapnik, A. J. Chervonenkis. Theory of Pattern Recognition. Nauka,1974.
    [18]V. N. Vapnik. Estimation of Dependencies Based on Empirical Data. Moscow:Nauka,1979.
    [19]Y. LeCun. A Learning Scheme for Asymmetric Threshold Networks. Proceedings of Cognitiva,1985.
    [20]D. E. Rumelhart, G. E. Hinton, R. J. Williams. Learning Representations by Backpropagating Errors. Nature.1986,323:533-536.
    [21]L. G. Valiant. A Theory of the Learnable. Communication of the ACM.1984, 27:1134-1142.
    [22]M. Powell. Algorithms for Approximation. Clarendon Press New York, NY, USA,1987.
    [23]C. Cortes, V. Vapnik. Support-Vector Networks. Machine Learning,1995,20:273-297
    [24]D. Meyer, F. Leisch, K. Hornik. The Support Vector Machine under Test, eurocomputing. 2003,55(1-2):169-186.
    [25]王珏,周志华,周傲英.机器学习及其应用.北京:清华大学出版社,2006.
    [26]周志华,王珏.机器学习及其应用 2007.北京:清华大学出版社,2007.
    [27]周志华,王珏.机器学习及其应用 2009.北京:清华大学出版社,2009.
    [28]L. A. Zadeh. Fuzzy Sets and Information Granulation. North Holland Publishing,1979
    [29]L. A. Zadeh. Toward a Theory of Fuzzy Information Granulation and Its Centrality in Human Reasoning and Fuzzy Logic. Fuzzy Sets and Systems,1997,90(2):111-127.
    [30]L. Zhang, B. Zhang. Fuzzy Reasoning Model under Quotient Space Structure, Information Sciences,2005,173(4):353-364.
    [31]L. Zhang, B. Zhang. The Structure Analysis of Fuzzy sets. International Journal of Approximate Reasoning,2005,40,92-108.
    [32]L. Zhang, B. Zhang. The Theory and Application of Tolerance Relations. International Journal of Granular Computing, Rough Sets and Intelligent Systems,2009,1(2):179-189.
    [33]B. Zhang, L. Zhang. Theory and Applications of Problem Solving, Elsevier Science Publishers,1992.
    [34]J. R. Hobbs. Granularity. Proceedings of the Ninth International Joint Conference on Artificial Intelligence,1985.
    [35]T. Y. Lin. Neighborhood Systems and Relational Databases. Proceedings of the ACM Sixteenth Annual Conference on Computer Science,1988.
    [36]T. Y. Lin. Data Mining and Machine Oriented Modeling:A Granular Computing Approach. Journal of Applied Intelligence.2000,13(2):113-124.
    [37]T. Y. Lin. Granular Computing Rough Set Perspective. The Newsletter of the IEEE Computational Intelligence Society.2005,2(4):1543-4281.
    [38]T. Y. Lin. Granular Computing:A Problem Solving Paradigm. Proceedings of the IEEE International Conference on Fuzzy Systems,2005.
    [39]Y. Y. Yao. Information Granulation and Rough Set Approximation. International Journal of Intelligent Systems.2001,16(1):87-104.
    [40]刘清,黄兆华.G-逻辑及其归结推理.计算机学报.2004,27(7):865-872.
    [41]V. G. Kaburlasos, S. E. Papadakis. A Granular Extension Of The Fuzzy-ArtMap (FAM) Neural Classifier Based On Fuzzy Lattice Reasoning(FLR), Neurocomputing, 2009,72:2067-2078.
    [42]崔逊学.多目标进化算法及其应用.北京:国防工业出版社,2006.
    [43]盂红云.多目标进化算法及其应用研究.西安:西安电子科技大学,2005
    [44]A. Abraham, L. Jain. Evolutionary Multiobjective Optimization. Theoretical Advances and Applications, Springer,2005.
    [45]K. Deb. Multi-Objective Optimization Using Evolutionary Algorithms. New York:Wiley, John & Sons,2001
    [46]E. Zitzler, L. Thiele, J. Bader. SPAM:Set Preference Algorithm for Multiobjective Optimization. Lecture Notes in Computer Science,2008,5199:847-858.
    [47]郑金华.多目标进化算法及其应用.北京:科学出版社,2007.
    [48]R. S. Rosenberg. Simulation of Genetic Populations with Biochemical Properties. University of Michigan, Ph.D.thesis,1967.
    [49]J. D. Schaffer. Multiple Objective Optimization with Vector Evaluated Genetic Algorithms. Proceedings of the First International Conference on Genetic Algorithms and their Applications,1985.
    [50]D. A. Van Veldhuizen, G. B. Lamont. Multiobjective Evolutionary Algorithms:Analyzing the State-of-the-art. IEEE Transaction on Evolutionary Computation,2000,8(2):125-147.
    [51]V. N. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag,2000.
    [52]J. C. Platt. Fast Training of Support Vector Machines Using Sequential Minimal Optimization. Advances in Kernel Methods:Support Vector Machines, MIT Press,1998.
    [53]J. C. Platt. Using Sparseness and Analytic Qp to Speed Training of Support Vector Machines. Advances in Neural Information Processing Systems. MIT Press,1999.
    [54]S. S. Keerthi, E. G. Gilbert. Convergence of a Generalized SMO Algorithm for SVM Classifier Design. Machine Learning,2002,46 (1-3):351-360.
    [55]S.S. Keerthi, S. K. Shevade, C. Bhattacharyya, K. R. K. Murthy. Improvements to Platt's SMO Algorithm for SVM Classifier Design. Technical Report,1999.
    [56]Z. Pawlak. Rough Sets. International Journal of Computer and Information Science.1982, 11(5):341-356.
    [57]Z. Pawlak. Drawing Conclusions from Data-the Rough Set Way. International Journal of Intelligent Systems.2001,16(1):3-11.
    [58]Z. Pawlak. Rough Sets:Theoretical Aspects of Reasoning about Data. Boston:Kluwer Academic Publisher,1991.
    [59]J. M. Wei. Rough Set Based Approach to Selection of Node. International Journal of Computational Cognition.2003, 1(2):25-40.
    [60]K. Thangavel, A. Pethalakshmi. Feature Selection for Medical Database Using Rough System. International Journal on Artificial Intelligence and Machine Learning.2005, 6(1):11-17.
    [61]F. H. Wang. On Acquiring Classification Knowledge from Noisy Data Based on Rough Set. Expert Systems with Applications.2005,29(1):49-64.
    [62]C. Yu, M. H. Wu, M. Wu. Combining Rough Set Theory with Neural Network Theory for Pattern Recognition. Neural Processing Letters.2004,19(1):73-87.
    [63]陈家鼎,郑忠国.概率与统计.北京:北京大学出版社,2007.
    [64]R. S. Michalski, S. Chilausky. Learning by Being Told and Learning from Examples:An Experimental Comparison of the Two Methods of Knowledge Acquisition in the Context of Developing an Expert System for Soybean Disease Diagnosis. Policy Analysis and Information systems.1980,4(2):125-160.
    [65]J. Wang, Q. Tao. Machine Learning:The State of the Art. IEEE Intelligent Systems.2008, 23(6):49-55.
    [66]J. Quinlan. Boosting First-order Learning. Proceedings of the 7th International Workshop on Algorithmic Learning Theory,1996.
    [67]J. Quinlan. Induction of Decision Trees. Machine Learning.1986,1(1):81-106.
    [68]L. A. Zadeh. Fuzzy Set. Information and Control.1965,8:338-353.
    [69]L. A. Zadeh,金雅芬.近似推理的理论(i).计算机科学.1990,16(2):8-15.
    [70]L. A. Zadeh,金雅芳.近似推理的理论(ii).计算机科学.1990,16(3):66-74.
    [71]L. A. Zadeh,金雅芳.近似推理的理论(ii).计算机科学.1990,16(4):17-23.
    [72]王兴伟,王琦,黄敏.NGI中一种微则经济学模糊QoS单播路由机制.计算机科学.2007,4(3):30-34.
    [73]程轶,苗夺谦,冯琴荣.动态粗糙模糊集及其在模糊规则提取中的应用.小型微型计算机系统.2009,30(2):289-294.
    [74]D. Estrin,et al. Connecting the physical world with pervasive networks [J]. IEEE Pervasive Computing,2002, 1(1):59-69.
    [75]J. Kahn, R. Katz, K. Pister. Next Century Challenges:Mobile Networking for Smart Dust. Proceedings of Conference on Mobile Computing Networking,1999.
    [76]郑金军WiFi与WiMax混战在无线网域.信息系统工程,2008(10):64-65.
    [77]刘子京,裴文江.基于ZigBee协议的无线传感器网络研究.计算机技术与发展,2009,19(5):192-194.
    [78]M. Z. Win, R. A. Scholtz. Impulse Radio:How It Works. IEEE Communication Letter, 1998(2):36-38.
    [79]M. Sugano, T. Kawazoe, Y. Ohta, M. Murata. Indoor Localization System Using RSSI Measurement of Wireless Sensor Network Based on ZigBee Standard, Proceedings of International Conference on Wireless Sensor Network,2006.
    [80]J. Caffery. A New Approach to the Geometry of TOA Location. Proceedings of IEEE Vehicular Technology Conference,2001.
    [81]D. Niculescu, N. Badri. Ad hoc Positioning System (APS) Using AOA. Annual Joint Conference of the IEEE Computer and Communications Societies,2003.
    [82]D. A. Tran, T. Nguyen. Localization in Wireless Sensor Networks Based on Support Vector Machines. IEEE Transactions on Parallel and Distributed Systems,2008,19(7):981-994.
    [83]Y. Y. Yao. Three Perspectives of Granular Computing. Journal of Nanchang Institute of Technology.2006,25(2):16-21.
    [84]L. Zhang, B. Zhang. A Quotient Space Approximation Model of Multi-resolution Signal Analysis. Journal of Computer Science and Technology.2005,20(1):90-94.
    [85]张铃,张钹.模糊商空间理论(模糊粒度计算方法).软件学报.2003,14(4):770-776.
    [86]G. Y. Wang, F. Hu, G. H. Huan, et al. A Granular Computing Model Based on Tolerance Relation. The Journal of China Universities of Posts and Telecommunications.2005, 12(3):86-90.
    [87]胡峰,黄海,王国胤,等.不完备信息系统的粒计算方法.小型微型计算机系统.2005,26(8):1335-1339.
    [88]邓蔚,王国胤,吴渝.粒计算对进化计算的一个改进.计算机科学.2004,31(10):209-211.
    [89]张钹,张铃.问题求解的理论及应用.北京:清华大学出版社,1990.
    [90]金聪,熊盛武.数值分析.武汉:武汉理工大学出版社,2003.
    [91]徐翠微.计算方法引论.北京:高等教育出版社,2008.
    [92]左孝凌,李为鑑,刘永才.离散数学.上海:上海科技文献出版社,1988.
    [93]谢零坚,刘承平.模糊数学方法及其应用.武汉:华中科技大学出版社,2000.
    [94]苗夺谦,李道国.粗糙集理论、算法与应用.北京:清华大学出版社,2008.
    [95]W. Pedrycz,于福生.基于知识的聚类——从数据到信息粒.北京师范大学出版社,2008.
    [96]陆建汀,张亚非,宋自林.模糊关联规则的研究与应用.北京:科学出版社,2008.
    [97]Y. Y. Yao. Artificial Intelligence Perspectives on Granular Computing, Proceedings of IEEE International Conference on Granular Computing,2005.
    [98]Y. Y. Yao. Human-Inspired Granular Computing. Novel Developments in Granular Computing: Applications for Advanced Human Reasoning and Soft Computation,2010.
    [99]T. Y. Lin. Granular Computing on Binary Relations I:Data Mining and Neighborhood Systems. Rough Sets in Knowledge Discovery,1998,107-121.
    [100]T. Y. Lin. Granular Computing on Binary Relations Ⅱ:Rough Set Representations and Belief Functions. Rough Sets in Knowledge Discovery,1998,121-140.
    [101]T. Y. Lin. An Overview of Rough Set Theory from the Point of View of Relational Databases. Bulletin of International Rough Set Society,1997,1(1):30-34.
    [102]T. Y. Lin. Data Mining:Granular Computing Approach. Methodologies for Knowledge Discovery and Data Mining, Lecture Notes in Artificial Intelligence,1999,1574,24-33.
    [103]T. Y. Lin. Granular Computing:Fuzzy Logic and Rough Sets. Computing with Words in Information/Intelligent Systems,1999.
    [104]T. Y. Lin. Topological and Fuzzy Rough Sets. Decision Support by Experience Application of the Rough Sets Theory,1992.
    [105]M. Grana. A Brief Review of Lattice Computing, Proceedings of the World Congress on Computational Intelligence,2008.
    [106]G. Birkhoff. Lattice Theory.1967, Providence, Rhode Island:American Mathematical Society.
    [107]M. Grana, A. M. Savio, M. Garcia-Sebastian, E. Fernadez. A Lattice Computing Approach for On-line fMRI Analysis, Image and Vision Computing,2010,28 (7):1155-1161.
    [108]M. Grana, M. Garcia-Sebastian, C. Hernandez. Lattice Independent Component Analysis for fMRI Analysis Draft Slides, Lecture Notes in Computer Science,2009,5768,725-734.
    [109]M. Grana, I. Villaverde, J. O. Maldonado, C. Henandez. Two Lattice Computing Approaches for the Unsupervised Segmentation of Hyperspectral Images, Neurocomputing, 2009,72(10-12):2111-120.
    [110]S. Nanda. Fuzzy Lattices. Bulletin Calcutta Mathemetics Society.1989,81:1-2.
    [111]K. Chakrabarty. On Fuzzy Lattice. Lecture Notes in Artificial Intelligence.2001, 2005:238-242.
    [112]V.G. Kaburlasos, V. Petridis. Fuzzy Lattice Neurocomputing (FLN):A Novel Connectionist Scheme For Versatile Learning and Decision Making by Clustering, International Journal of Computers and Their Applications,1997,4(3):31-43.
    [113]V. G. Kaburlasos. Towards a Unified Modeling and Knowledge- Representation Based on Lattice Theory, Studies in Computational Intelligence,2006.
    [114]V. G. Kaburlasos, V. Petridis. Fuzzy Lattice Neurocomputing (FLN) Models, Neural Networks,2000,13(10):1145-1170.
    [115]V. G. Kaburlasos, S. E. Papadakis. A Granular Extension Of The Fuzzy-ArtMap (FAM) Neural Classifier Based On Fuzzy Lattice Reasoning (FLR), Neurocomputing 2009,72:2067-2078.
    [116]V. G. Kaburlasos, S. E. Papadakis. Granular Self-Organizing Map (Gr-SOM) for Structure Identification, Neural Networks,2006,19(5):623-643.
    [117]V. G. Kaburlasos,I. N. Athanasiadis, P. A. Mitkas. Fuzzy Lattice Reasoning (FLR) Classifier And Its Application For Ambient Ozone Estimation, International Journal of Approximate Reasoning,2007,45:152-188.
    [118]M. E. Valle, P. Sussner. A General Framework For Fuzzy Morphological Associative Memories, Fuzzy Sets and Systems,2008,159 (7):747-768.
    [119]A. M. da Silva, P. Sussner. A Brief Review And Comparison Of Feedforward Morphological Neural Networks With Applications To Classification, Lectures Notes in Computer Science,2008,5164,783-792.
    [120]P. Sussner, E. L. Esmi. An Introduction To Morphological Perceptrons With Competitive Learning, Proceedings of International Joint Conference on Neural Networks,2009.
    [121]P. Sussner, E. L. Esmi. Constructive Morphological Neural Networks:Some Theoretical Aspects and Experimental Results in Classification, Studies in Computational Intelligence, 2010.
    [122]苗夺谦,范世栋.知识的粒度计算及其应用,系统工程理论与实践,2002,22(1):48-56.
    [123]李道国,苗夺谦,张红云.粒度计算的理论、模型与方法.复旦学报(自然科学版),2004,43(5):837-841
    [124]I. Diintsch, G. Gediga. Uncertainty Measures of Rough Set Prediction. Artificial Intelligence,1998,106:109-137.
    [125]K. J. Lang, D. J. Witbrock. Learning to Tell Two Spirals Apart. Proceedings of Connectionist Models Summer School, Morgan Kaufmann,1989.
    [126]R. M. B. Alves, C. A. O. Nascimento, L. V. Loureiro, et al. Multi-objective Optimization of an Industrial Isoprene Production Unit by Using Genetic Algorithm Approach. Computer Aided Chemical Engineering,2005,20:211-216.
    [127]齐照辉,梁伟,刘雪梅,仟俊.弹道导弹助推段突防多目标优化设计方法.2010,22(2):39-43.
    [128]杨宏志,李超,许金良.基于多目标进化算法的公路路线优化模型.2010,34(3):496-500.
    [129]A. Benedetti, M. Farina, M. Gobbi. Evolutionary Multiobjective Industrial Design:the Case of a Racing Car Tire-suspension System. IEEE Transactions on Evolutionary Computation, 2006,10(3):230-244.
    [130]K. Deb, A. Kumar. Interactive Evolutionary Multi-objective Optimization and Decision-making Using Reference Direction Method. Proceedings of the 9th annual conference on Genetic and evolutionary computation,2007.
    [131]A. P. Kirman. Pareto as an Economist. The New Palgrave:A Dictionary of Economics, 1987,5:804-08.
    [132]C. Coello, A. Carlos, Lamont, et al. Evolutionary Algorithms for Solving Multi-Objective Problems, Springer Press,2007.
    [133]I. Das, J. Dennis. A Closer Look at Drawbacks of Minimizing Weighted Sums of Objectives for Pareto Set Generation in Multicriteria Optimization Problems. Structural Optimization,1997,14(1):63-69.
    [134]A. Messac, A. Ismail-Yahaya, C.A. Mattson. The Normalized Normal Constraint Method for Generating the Pareto Frontier. Structural and Multidisciplinary Optimization,2003, 25(2):86-98.
    [135]A. Messac, C. A. Mattson. Normal Constraint Method with Guarantee of Even Representation of Complete Pareto Frontier. AIAA Journal,2004,42(10):2101-2111.
    [136]D. Mueller-Gritschneder, H. Graeb, U. Schlichtmann. A Successive Approach to Compute the Bounded Pareto Front of Practical Multiobjective Optimization Problems. SIAM Journal on Optimization,2009,20(2):915-934.
    [137]N. Srinivas, K. Deb. Multi-Objective Function Optimization Using Non-dominated Sorting Genetic Algorithms. Evolutionary Computation,1995,2(3):221-248.
    [138]K. Deb, A. Pratap, S. Agarwal, T. Meyarivan. A Fast and Elitist Multi-objective Genetic Algorithm:NSGA-Ⅱ. IEEE Transaction on Evolutionary Computation,2002,6(2):181-197.
    [139]E. Zitzler, L. Thiele. Multiobjective Evolutionary Algorithms:A Comparative Case Study and the Strength Pareto Approach. IEEE Transactions on Evolutionary Computation, 1999,3(4):257-271.
    [140]E. Zitzler, M. Laumanns, L. Thiele. SPEA2:Improving the Strength Pareto Evolutionary Algorithm. Computer Engineering and Networks Laboratory,2001.
    [141]F. Glover. Tabu Search-Part Ⅰ. ORSA Journal on Computing 1989,1(3):190-206.
    [142]F. Glover. Tabu Search-Part Ⅱ. ORSA Journal on Computing 1990,2(1):4-32.
    [143]S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi. Optimization by Simulated Annealing. Science, 1983,220 (4598):671-680.
    [144]Marco Dorigo, Thomas Stutzle著,张军 胡晓敏 罗旭耀译.蚁群优化.北京:清华大学出版社,2007.
    [145]B. L. Miller, D. E. Goldberg. Genetic Algorithms, Tournament Selection, and the Effects of Noise. Complex Systems,1995,9:193-212.
    [146]袁慰平,孙志忠,吴宏伟,闻震初.计算方法与实习.南京:东南大学出版社,2005.
    [147]边肇棋,张学工.模式识别.北京:清华大学出版社,2007.
    [148]P. Vincke. Preferences and Numbers. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.14.2913
    [149]R. L. Solso. Cognitive Psychology. Boston:Allyn & Bacon,1988.
    [150]C. M. Fonseca, P. J. Fleming. Multiobjective Optimization and Multiple Constraint Handling with Evolutionary Algorithms. Part I:A Unified Formulation. IEEE Transaction on Systems, Man, Cybernetics, Part A:Systems and Humans,1998,28(1):26-37.
    [151]D. Cvetkovic, I. C. Parmee. Preferences and Their Application in Evolutionary Multiobjective Optimization. IEEE Transaction on Evolutionary Computation.2002.1(6) 42-57.
    [152]J. Branke, K. Deb. Integrating User Preferences into Evolutionary Multiobjective Optimization. Kanpur Genetic Algorithm Laboratory Rep. May 2004.
    [153]K. Deb, J. Sundar. Reference Point Based Multiobjective Optimization Using Evolutionary Algorithms. Proceedings of Genetic Evolutionary Computation Conference (GECCO),2006.
    [154]L. Rachmawati, D. Srinivasan. Incorporating the Notion of Relative Importance of Objectives in Evolutionary Multiobjective Optimization. IEEE Transactions on Evolutionary Computation,2010,14(4):530-546.
    [155]M. Rahman, B. Desai, P. Bhattachary. Medical Image Retrieval with Probabilistic Multi-class Support Vector Machine Classifiers and Adaptive Similarity Fusion. Computerized Medical Imaging and Graphics,2008,32 (2):95-108.
    [156]Y. Li, S. Gong, J. Sherrah, H. Liddell. Support Vector Machine Based Multi-view Face Detection and Recognition. Image and Vision Computing,2004,22 (5):413-427.
    [157]F. Lauer, C. Y. Suen, G. Bloch. A Trainable Feature Extractor for Handwritten Digit Recognition. Pattern Recognition,2007,40(6):1816-1824.
    [158]Y. C. Tang, B. Jin, Y. Q. Zhang. Granular Support Vector Machines with Association Rules Mining for Protein Homology Prediction. Artificial Intelligence in Medicine,2005,35(1-2): 121-134.
    [159]Y. C. Tang, B. Jin, Y. Q. Zhang, H. Fang, B. Wang. Granular Support Vector Machines Using Linear Decision Hyperplanes for Fast Medical Binary Classification. Proceedings of Annual IEEE International Conference on Fuzzy Systems,2005.
    [160]Y. C. Tang, Y. Q. Zhang, Z. Huang, X. T. Hu, Y. Zhao. Granular SVM-RFE Feature Selection Algorithm for Reliable Cancer-Related Gene Subsets Extraction on Microarray Gene Expression Data. Proceedings of IEEE Symposium on Bioinformatics and Bioengineering,2005.
    [161]R. Akbani, S. Kwek, N. Japkowicz. Applying Support Vector Machines to Imbalanced Datasets. Proceedings of European Conference on Machine Learning,2004.
    [162]袁亚湘.最优化理论与方法.北京:科学出版社,1997.
    [163]Y. H. Liu, H. P. Huang. Fuzzy Support Vector Machines for Pattern Recognition and Data Mining. International Journal of Fuzzy Systems,2002,4(3):826-835.
    [164]C. Lin, S. Wang. Training Algorithms for Fuzzy Support Vector Machines with Noisy Data. Pattern Recognition Letters,25 (2004) 1647-1656.
    [165]C. Lin, S. Wang. Fuzzy Support Vector Machines. IEEE Transactions on Neural Networks, 2002,13(2):464-471.
    [166]T. Inoue, S. Abe. Fuzzy Support Vector Machines for Pattern Classification. In Proceedings of International Joint Conference on Neural Networks,2001.
    [167]S. Abe. Analysis of Multiclass Support Vector Machines. Proceedings of International Conference on Computational Intelligence for Modelling Control and Automation,2003.
    [168]S. Abe, T. Inoue. Fuzzy Support Vector Machines for Multiclass Problems. Proceedings of European Symposium on Artificial Neural Networks,2002.
    [169]D. Tsujinishi, S. Abe. Fuzzy Least Squares Support Vector Machines. Proceedings of International Joint Conference on Neural Networks,2003.
    [170]D. Tsujinishi, S. Abe. Fuzzy Least Squares Support Vector Machines for Multiclass Problems. Neural Networks,2003,16 (5-6):785-792.
    [171]T. Kikuchi, S. Abe. Comparison between Error Correcting Output Codes and Fuzzy Support Vector Machines. Pattern Recognition Letters,2005,26(12):1937-1945.
    [172]S. Zhao, E. C.C. Tsang. On Fuzzy Approximation Operators in Attribute Reduction with Fuzzy Rough Sets. Information Sciences,2008,178 (16):3163-3176.
    [173]K. Thangavel, A. Pethalakshmi. Dimensionality Reduction Based on Rough Set Theory:A Review. Applied Soft Computing,2009,9(1):1-12.
    [174]M. Sarkar. Fuzzy-rough Nearest Neighbor Algorithms in Classification. Fuzzy Sets and Systems,2007,158(19):2134-2152.
    [175]Y. Tsai, C. Cheng, J. Chang. Entropy-based Fuzzy Rough Classification Approach for Extracting Classification Rules. Expert Systems with Applications,2006,31(2):436-443.
    [176]J. Catlett. On Changing Continuous Attributes into Ordered Discrete Attributes. Proceedings of the European Working Session on Machine Learning,1991.
    [177]M. R. Chmielewski, J. W. Grzymala-Busse. Global Discretization of Continuous Attributes as Preprocessing for Machine Learning. International Journal of Approximate Reasoning, 1996,15(4):319-331.
    [178]M. Boulle. Khiops:A Statistical Discretization Method of Continuous Attributes. Machine Learning,2004,55:53-69.
    [179]M. Richeldi, M. Rossotto. Class-driven Statistical Discretization of Continuous Attributes. Lecture Notes in Computer Science,1995,912:335-338.
    [180]Z. Pawlak, A. Skowron. Rough sets and Boolean reasoning. Information Sciences, 2007,177(1):41-73.
    [181]K. Kianmehr, M. Alshalalfa, R. Alhajj. Fuzzy Clustering-based Discretization for Gene Expression Classification. Knowledge and Information Systems,2010,24(3):441-465.
    [182]D. Janssens, T. Brijs, K. Vanhoof, G.t Wets. Evaluating the Performance Of Cost-Based Discretization Versus Entropy- and Error-Based Discretization. Computers & Operations Research,2006,33 (11):3107-3123.
    [183]E. Grail-Maes, P. Beauseroy. Optimal Decision Rule with Class-Selective Rejection and Performance Constraints. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009,31(11):2073-2082.
    [184]J. Wang, D. Miao. Analysis on attribute reduction strategies of rough set. Journal of Computer Science and Technology,1998,13(2):189-192.
    [185]苗夺谦,王国胤,刘清,林早阳,姚豫.粒计算:过去、现在与展望.北京:科学出版社,2007.
    [186]X. Hu, N. Cercone. Learning in Relational Databases:A Rough Set Approach. International Journal of Computational Intelligence.1995,11(2):328-338.
    [187]J. Jelonek, K. Slowinski. Rough Set Reduction of Attributes and their domains for neural networks. International Journal of Computational Intelligence,1995,11(2):339-347
    [188]苗夺谦,胡桂荣.知识约简的一种启发式算法.计算机研究与发展,1999,36(6):681-684.
    [189]J. B. MacQueen. Some Methods for Classification and Analysis of Multivariate Observations. Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability,1967.
    [190]T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, A. Y. Wu. An Efficient K-means Clustering Algorithm:Analysis and Implementation. IEEE Transaction on Pattern Analysis and Machine Intelligence,2002,24(7):881-892.
    [191]J. P. Lynch. An Overview of Wireless Structural Health Monitoring for Civil Structures, Philosophical Transactions of the Royal Society of London, Series A, Mathematical and Physical Sciences,2007,365,345-372.
    [192]P. C. Robert. International Journal on Advances in the Science of Precision Agriculture. Kluwer,1998-2005. [Online]. Available:http://www.kluweronline.com/issn/1385-2256
    [193]B. J. Feder, Wireless sensor networks spread to new territory, New York Times, July 26 2004. [Online]. Available: http://www.nytimes.com/2004/07/26/business/26sensor.html
    [194]I. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci. Wireless Sensor Networks:A Survey, Computer Networks,2002,38(4):393-422.
    [195]N. S. Correal, N. Patwari. Wireless Sensor Networks:Challenges and Opportunities. Proceedings of the Virginia Tech Symposium on Wireless Personal Communications,2001.
    [196]M. Perkins, N. S. Correal, R. J. O'Dea, Emergent Wireless Sensor Network Limitations:A Plea for Advancement in Core Technologies, IEEE Sensors,2002,2,1505-1509.
    [197]B. Karp, H. T. Kung. GPSR: Greedy Perimeter Stateless Routing for Wireless Networks. Proceedings of the Sixth Annual ACM/IEEE International Conference on Mobile Computing and Networking,2000.
    [198]B. Hofmann-WeUenhof, H. Lichtenegger, J. Collins. Global Positioning System, Theory and Practice. Springer-Verlag,1993.
    [199]J. Bachrach and C. Taylor. Handbook of Sensor Networks, Wiley,2005.
    [200]P. Bahl and V. Padmanabhan. RADAR: An In-building RF-based User Location and Tracking System. Proceedings of INFOCOM,2000.
    [201]U. Bischoff, M. Strohbach, M. Hazas, G. Kortuem. Constraint-based Distance Estimation in Ad-hoc Wireless Sensor Networks. Proceedings of the Third European Workshop on Wireless Sensor Networks,2006.
    [202]A. Ward, A. Jones, A. Hopper. A New Location Technique for the Active Office. IEEE Personal Communications,1997,4(5):42-47.
    [203]N. Priyantha, A. Chakraborty, H. Balakrishnan. The Cricket Location-support System. Proceedings of the Sixth Annual ACM International Conference on Mobile Computing and Networking,2000.
    [204]A. Savvides, C. C. Han, M. B. Strivastava. Dynamic Fine-grained Localization in Ad-hoc Networks of Sensors. Proceedings of the 7th Annual International Conference on Mobile Computing and Networking,2001.
    [205]D. Niculescu, B. Nath. Ad hoc Positioning System (APS) Using AoA. Proceedings of INFOCOM,2003.
    [206]B. Dil, S. Dulman, P. J. M. Havinga. Range-based Localization in Mobile Sensor Networks. Proceedings of the Third European Workshop on Wireless Sensor Networks,2006.
    [207]T. He, C. Huang, B. M. Blum, J. A. Stankovic, T. Abdelzaher. Range-free Localization Schemes for Large Scale Sensor Networks. Proceedings of the 9th Annual International Conference on Mobile Computing and Networking,2003.
    [208]R. Nagpal, H. Shrobe, J. Bachrach. Organizing a Global Coordinate System from Local Information on an Ad hoc Sensor Network. Second International Workshop on Information Processing in Sensor Networks,2003.
    [209]S. Guha, R. Murty, E. Sirer. Sextant:A Unified Node and Event Localization Framework Using Non-convex Constraints. ACM International Symposium on Mobile Ad Hoc Networking and Computing,2005.
    [210]F. Gustafsson and F. Gunnarsson. Mobile Positioning Using Wireless Networks. IEEE Signal Processing Magazine,2005,22(4):41-53.
    [211]A. J. Weiss. Direct Position Determination of Narrowband Radio Frequency Transmitters, IEEE Signal Processing Letters,2004,11(5):513-516.
    [212]Y. Qi, H. Kobayashi, H. Suda. Analysis of Wireless Geolocation in a Non-line-of-sight Environment. IEEE Transaction on Wireless Communication,2006,5(3):672-681.
    [213]J. G. Proakis. Digital Communications, Graw Hill,2000.
    [214]C. Nerguizian, C. Despins, S. Affes. Geolocation in Mines with an Impulse Response Fingerprinting Technique and Neural networks. IEEE Transaction on Wireless Communications,2006,5(3):603-611.
    [215]M. McGuire, K. N. Plataniotis, A. N. Venetsanopoulos. Location of Mobile Terminals Using Time Measurements and Survey Points. IEEE Transaction on Vehicular Technology, 2003,52(4):999-1011.
    [216]S. Gezici, H. Kobayashi, H. V. Poor. A New Approach to Mobile Position Tracking. Proceedings of IEEE Symposium on Advances in Wired and Wireless Communications, 2003.
    [217]T. N. Lin, P. C. Lin. Performance Comparison of Indoor Positioning Techniques Based on Location Fingerprinting in Wireless Networks. Proceedings of International Conference on Wireless Networks, Communications and Mcbil Computing,2005.
    [218]R. O. Duda, P. E. Hart, D. G. Stork. Pattern Classification. New York:Wiley-Interscience, 2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700