面向并行工程的零件可制造性评价方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
提高产品质量、降低生产成本、缩短开发时间是制造业在全球激烈竞争的市场上取得成功和发展的关键因素和永恒的追求目标,并行工程的产品开发哲理、设计与制造集成的开发方式是近年来人们的研究热点。本文提出一个面向数控机床和金属切削加工零件的计算机辅助可制造性评价的系统方法,采用在产品设计过程中逐步评价和设计完成之后的整体评价相结合的评价策略。旨在提供一个设计决策支持工具,用于在产品的详细设计过程中从制造的角度来改进设计质量和缩短设计时间。
     评价一个零件的设计方案的可制造性,涉及根据制造资源判断零件的整个制造过程中各个环节的可行性和制造难易程度,包括零件的结构工艺性、零件精度设计的合理性和经济性、可装夹性、可装配性等方面,指出设计方案存在的问题、提供设计方案的制造经济指标。本文的研究内容主要涉及以下几个方面:详细设计过程中的可制造性逐步评价方法、基于简化加工工艺规划的整体可制造性评价方法、面向组合夹具的零件可装夹性评价方法等。
     在本研究中,零件的设计方案以B_rep实体模型表示,零件的公差和表面质量以实体模型中各个相关面的属性表示。通过自动特征识别方法获得零件的制造特征模型,基于制造特征模型建立零件的设计方案和制造资源之间的联系。以零件的制造特征作为可制造性评价方法的基本评价单元,实现可制造性评价的各个评价目标。
     在零件的设计过程中的任一阶段,可制造性的逐步评价方法以当前已生成的特征模型为评价对象,实现了可制造性评价与产品设计过程穿插交替进行。逐步可制造性评价方法基于加工方法存在性规则,判断零件的所有特征是否存在可行的加工方法。通过充分利用零件前一次的评价结果和前后两次评价之间零件特征模型的变化,确定零件当前状态中真正需要进行评价的特征集合以及当前需要评价的特征参数,保证了可制造性评价的实时性。
     基于简化加工工艺规划进行零件的整体可制造性评价方法,即根据零件的精加工工艺规划进行可制造性评价。为了获得零件的简化工艺规划,进一步提出了保证公差要求的装夹和加工操作自动规划方法和基于相交特征的相交边界信息确定特征加工顺序约束的方法。在简化加工工艺规划中,根据公差要求和加工顺序,有效地处理多刀具访问方向的特征的加工方法优选和确定问题,有效地处理顺序约束冲突问题,从而压缩了工艺规划过程的搜索空间,
    
     浙江 人学 博I:学 位论 义
     一
     提高规划的效率。在整个简化工艺规划过程中判断零件的公差设计是否可达
     到,判断工艺规划是否存在,判断零件的装夹方案否可行。
     为了实施零件的可装夹性评价,本文提出一种基于组合夹具自动规划的可
     装夹性评价方法。通过判断主定位基准的质量,可行侧面定位方案数量,可
     行装卸运动和工件的可行夹紧边四个方面实现可装夫定位可行性评价。为了
     自动获得零件的装夹定位方案,提出一种面向孔系基础板组合夹具的夹具自
     动规划方法,该方法利用连杆机构原理和连杆曲线与工件边界的交点来确定
    Z 全部候选定位方案。提出平移装卸运动和旋转装卸运动概念,根据工件边界
     和定位销的位置关系确定工件的装卸方便性。从几何角度和力学角度分析工
     件的可行夹紧边的质量,提出了可行夹紧边的确定方法和夹紧质量评价准则。
     基于以上研究的成果,本文研制了一个面向并行工程的零件可制造性评价
     的原型系统一ZDMES。当前该系统以钻铣类加工中心和数控机床为制造资
     源,面向棱柱形的零件,实现了在零件的整个设计过程进行基于规则的可制
     造性逐步评价、针对完整设计的整体可制造性评价,以及面向孔系组合夹具
     的零件装夹可行性评价。从而验证了本博士论文提出的学术思想以及所开发
     的原型系统ZDMES的正确性。
It is the final objective pursued by manufacturing industry and research community that to improve product quality and reduce lead-time and cost of product, and is the mainly factor of the enterprise in global marketplace to achieve the success and the development. In order to achieve such objectives, increasing research attention is being given to concurrent engineering and the integration of engineering design and manufacturing during the last decades. In this thesis, a systematic approach to computer-aided manufacturability evaluation of machined parts has been developed. This approach combines the incremental evaluation used during the detailed design process and the entireness evaluation used after the design. The final goal of this research present a decision-making support tool, which can be used during design stages to improve the products quality from the manufacturing point view.
    Evaluating the manufacturability of a proposed design involves determining whether or not it is manufacturable with a given set of manufacture resource during its whole manufacturing process. If a part is manufacturable, then finding the associated manufacturing efficiency, if a part is not manufacturableor, then pointing out the problems. The manufacturability includes many aspects, such as geometry structure of parts, the rationality of the tolerance specification, fixturability and the assemblability etc. In the research, the main research topics are focused on the following aspects: the study on the incremental evaluation approach during the detailed design process, the study on the entireness evaluation after the design has completed and the study on the fixturability evaluation of the machined parts for modular fixture.
    In this research, design is represented as a B_rep solid model. The tolerance and surface roughness information is represented as attributes of various faces of the solid. The manufacturing feature model of part design is established by automatic manufacturing feature recognition method. Manufacturing features are used to model the available machining operations of the part design. The manufacturing feature of the part design is taken as a basic element to carry out
    
    
    
    various evaluation tasks in all evaluation objectives.
    The proposed incremental evaluation approach can effectively performs manufacturability evaluation on any intermediate product model during the design process. The function of the incremental evaluation is to find out the feature with manufacturability problem by determining the feasibility of the operations of various type of manufacturing feature. It makes the design model evolvement from one state to another state by performing the manufacturability evaluation alternatively. Moreover it is incremental, i.e. it conducts the evaluation on current product model based on the evaluation results on the previous model. In order to maintain the coherence and the speed of the evaluation process, the status change of the feature in design progress is investigated, and as a result, the feature set that must be evaluated at current evaluation is established.
    The proposed entireness evaluation approach can effectively performs manufacturability evaluation on completed product model, which is based on the simplified process planning. In order to obtain the simplified process plan automatically and efficiently, a novel approach to automatic setup planning and operation sequencing of a part is proposed, meanwhile, an approach to establishment of feature sequence constraints based on the intersecting boundary is proposed. In this approach, according to geometric precedence and tolerance precedence among features, the reasonable machining operations of features with multiple machining operations are determined, and the conflicts between geometric precedence and tolerance precedence of features are disposed. The approach can generate the process plan by which the part can be machined to satisfy the required tolerances, and the approach also has high efficiency. The entireness manufacturabilit
引文
[1] Winner W.I., et. al. The Role of Concurrent Engineering in Weapons System Acquisition. IDA Report R338,ADA203/615.Dec, 1988
    [2] Bralla JG, editor. Handbook of product design for manufacturing. New York: McGraw-Hill,1986.
    [3] [Dong 1993] Dong Z. Design for automated manufacturing. In: Kusiak A, editor. Concurrent engineering: automation, tools, and techniques. New York: John Wiley and Sons, 1993 pp.207-234.
    [4] Anderson MM, Khler S. Lund T. Design for assembly. Bedford, UK: IFS Publications, 1983.
    [5] Boothroyd G, Dewhurst P. Design for assembly: a designer's hand-book. Wakerfield, RI:Boothroyd Dewhurst, 1983.
    [6] Makino A, Barkan P, Pfaff R. Design for serviceability. Proceed-ings of the 1989 ASME Winter Annual Meeting. San Francisco, CA, 1989.
    [7] Gershenson J, Ishii K. Life-cycle serviceability design. In: Kusiak A, editor. Concurrent engineering: automation, tools, and techniques. New York: John Wiley and Sons, 1993 pp.363-384.
    [8] Zhang HC, Kuo TC, Lu H, Huang SH. Environmentally conscious design and manufacturing:a state-of-the-art survey. Journal of Manu-facturing Systems 1997;16(5):352-371.
    [9] 谢友柏.分布式设计知识资源的建设与应用.中国机械工程.1998,9(2)16~18
    [10] Su C. J. et al. An Integrated Form-Feature-based Design System for Manufacturing. J. of Intelligent Manufacturing. 1995 (6): 277-290.
    [11] Ziemke M. C., Spann M. S. Concurrent engineering's roots in the world war Ⅱ era. In W. G.Sullivan & H. R. Parsaei, editors, Concurrent Engineering, Contemporary Issues and Modern Design Tools, pp24-41, Chapman and Hall, 1993.
    [12] Holt D. J. Saturn: The manufacturing story, Automotive Engineering. 98, NOⅤ. 1990.
    [13] Boothroyd G. dewhurstP. Design for Assembly-A Designer's Handbook, Technical report,Department of Mechanical Engineering, University of Massachusetts. 1986.
    [14] Ishii K Modeling of Concurrent Engineer Design, In Andrew Kusiak, editor, Concurrent Engineering: Automation, Tools and Techniques, pp19-39, Jokn Wiley & sons, Inc., 1993.
    [15] Roson D. W. et al., Features and Algorithms for Tooling Cost Evaluation in Injection Molding and Die Casting. In Proceeds of the ASME International Computers in Engineering Conference, pp1-8, ASME, 1992.
    [16] Venkatachalam A. R. Automating Manufacturability Evaluation in CAD Systems through Expert Systems Approaches. Expert Systems with Applications. 1994,7(2): 495-506.
    [17] Chen Y. M. et al. Knowledge-based Menufacturability Assessment: an Object-oriented Approach. J. Of Intelligent Manufacturing. 1995, (6): 321-337.
    [18] HayesC. C. Plan-based Manufacturability Analysis and Generation of Shape-Changing Redesign Suggestions. J. Of Intelligent Manufacturing. 1996, (7):121-132.
    [19] Wynne Hsu, C. S. George Lee, S. F. Su. Feedback Approach to Design for Assembly by Evaluation of Assembly Plan. Computer Aided Design, 1993, 25(7):395-410.
    [20] 宋玉银,肖亦晖,成晔,蔡复之.产品可制造性及评价方法的研究.清华大学学报(自然科学版),1998,38(7)110-114.
    [21] 褚学宁,高保华.并行工程中的产品可制造性评价.机械科学与技术.1998,17(1):164-165.
    [22] 杨培林,朱均,文永红.面向并行工程的产品设计综合评价及决策.西安交通大学学报.2000,34(2):85-88
    
    
    [23] Shah, J. J., Wright P. K. Developing Theoretical Foundations of DFM, Proceedings of ASME DETC'2000 Design For Manufacturing, Sept. 10-14, Baltimore, MD, USA.
    [24] Shanker S. R. et al., A Generalized Methodology for Evaluating Manfacturability, In W. G.Sullivan & H. R. Parsaei, editors, Concurrent Engineering, Contemporary Issues and Modern Design Tools, pp248-263, Chapman and Hall, 1993.
    [25] Trucks, H. Designing for Economical Production, Society of Manufacturing Engineers,Dearborn, MI. 1987
    [26] Boothroyd G, Dewhurst P. Design for Assembly (?) Handbook, ME Dept.,Univ. of Massachusetts, 1983.
    [27] Corbett J., Dooner M., Meleka J., Pym C. Design for Manufacture: Strategies, Principles and Techniques. Addison Wesley, 1991.
    [28] Smith, C. The Manufacturing Advisory Service: Web Based Process and Material Selection. In U C Berkeley Mechanical Engineering Depart., Ph.D. Thesis, August 1999.
    [29] Miles L Techniques of Value Analysis and Engineering, McGraw Hill, 1972.
    [30] Hazelrigg, G. I. A Framework for Decision Based Design. In ASME Joumal of Mechanical Design, Ⅴ 120(4) 1998.
    [31] Dept. of Navy. Productability Measurement Guidelines, Final Draft, Dec 1991.
    [32] Taguchi, G System of Experimental Design: Engineering Methods to Optimize Quality and Minimize Cost, UNIPUB/Kraus International Publications, Dearborn, Michigan, 1987.
    [33] Gupta S K, Nan D S. A Systematic Approach for Analyzing the Manufacturability of Machined Parts. Computer Aided Design. 1995, 27(5): 323-342.
    [34] Das D, Gupta S K, Nau D S. Generating redesign suggestions to reduce setup cost: a step towards automated redesign. Computer Aided Design 1996, 28(10): 763-782.
    [35] 高曙明.自动特征识别技术综述.计算机学报.1998,21(3):281-288.
    [36] Shah J. J., Mantyla M. Parametric and Feature-based CAD/CAM. New York. John Wiley & sons, 1995.
    [37] Cutkosky M R, Tenenbaum J M. Toward a Framework for Concurrent Design. International J.of Systems Automation: Research and Application. 1992, 1(3): 239-261.
    [38] 高峰,胡庆夕,李培根,段正澄.基于制造约束的零件可制造性评价.华中理工大学学报.1997,27(3):20-23.
    [39] 黄新刚,王先逵,刘成颖等.面向并行工程的结构工艺性评价系统.机械与电子,1999(4)3~5
    [40] Chemg J G, Shao X Y, Chen Y et al. Feature-based Part Modeling and Process Planning for Rapid Response Manufacturing. Computers in Industrial Engineer, 1998,34(2):525-530.
    [41] 吴瑞荣,张玉云,王先逵,段广洪.面向对象的可制造性评价系统.清华大学学报,1998,38(2):72-75.
    [42] Yannoulakis N J, Wysk R A. Quantitative Measures of Manufacturability for Rotational Parts.Trans. Of ASME.J. of Engineering for Industry, 116(2): 189-198, 1994.
    [43] Kesteloot P, Tilley S, Sleeckx E. IDAM: An Architecture for an Integrated DFM/DFA System,Proc. Of Conf. Flexible Automation and Integrated Manufacturing, 409-418, 1994.
    [44] Vliet J. W. V., Luttervelt C. A. V.,Ka;s H. J. J., State-of-the-Art Report on design for Manufacturing. Preceedings of ASME DETC'1999 design for manufacturing, Sept. 12-15,1999, Las Vegas, Nevada, USA.
    [45] Boothroyd, G, Dewhurst, P. I. Product Design for Manufacture and Assemblylr. Design for Manufacture: Strategies, Principles and Techniques, Corbett J., Dooner M., Meleka J., Pym C.,(eds), Addison Wesley, 1991.
    [46] Gupta S K Nau N S, Regli W C at el. IMACS: A system for Computer Aided Manufacturability Analysis. Technical Report, TR95-16, ISR, U. of Maryland, 1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700