国家数字地震台网中心技术系统集成中关键问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
数字地震台网中心技术系统是地震观测数字化后地震观测技术发展的结果,结合了地震观测专业技术和计算机技术,是一个技术交叉的新领域。国家数字地震台网中心技术系统是中国第一个自主开发、集成的国家性数字化地震观测台网中心技术系统,在它的建设集成过程中遇到了大量的地震观测技术与计算机技术方面的问题,本文从这些问题中选择了三个关键性的问题加以研究,对这三个问题内在特性进行比较全面的分析,提出了解决办法并加以实践。
     本文的主要内容为:
     一、技术系统可靠性问题的研究
     首先分析了技术系统可靠性与复杂性、系统自动化程度的关系;然后比较实时运行系统与研究系统之间的差异,说明实时运行系统研制集成时应主要关注其输入输出部分对外部环境的适应性;接着根据技术系统的特点,将技术系统的可靠性分为5类:计算机硬件系统的可靠性、计算机应用平台的可靠性、地震专业处理系统的可靠性、系统功能性的可靠性和数据产品的可靠性;最后总结了提高技术系统可靠性的4种方法:提高单系统的可靠性、热备系统、冷备系统和并行系统。
     提高国家数字地震台网中心技术系统可靠性措施包括了全部4种方法。用RAID技术提高存储单系统的可靠性;用双机热备技术提高核心服务器的可靠性;用并行技术提高实时处理系统和人机交互处理系统的可靠性;用最低程度运行的冷备份系统对整个大系统进行备份,从而进一步提高整个系统的可靠性。
     二、国家大地震速报问题的研究
     在震中搜索计算定位法和计算机屏显图解定位法的基础上,提出发震时刻搜索定位法。然后基于发震时刻搜索定位法的原理,改进了模拟观测的计算机屏显图解系统,并将该系统与数字观测的实时处理系统、人机交互系统集成为国家数字地震台网中心的大地震速报系统。
     国家数字地震台网中心对远震和极远震的定位能力比较弱,本文对如何提高远震和极远震速报质量进行了研究与实践。利用地震数据传输的新技术LISS(Live Internet Seismic Server),在国家数字地震台网中心的速报系统测定到远震或极远震的震中初值后,立即调取震中附近地震台站的近实时数据参与定位,显著提高了国家数字地震台网中心速报系统对远震和极远震的定位精度和速报速度。
     三、地震数据管理服务问题的研究
     本文对地震数据进行了新分类,将地震数据分成状态数据、观测数据和分析数据等三类。状态数据是事物状态属性的描述,它的数值随着时间的推移和事物状态属性变化而发生变化。观测数据是地震仪客观记录的数据,包含原始连续波形数据和地震事件波形数据。分析数据是指震相数据、事件目录、震源参数和专题报告等经过研究人员分析再产生的数据。
     根据三类地震数据的特点,提出了地震数据存储管理策略。观测数据数据量特别巨大,
    
    数据特性比较简单,因此它们比较适合厂FJ文件系统进行管理;分析数据数据晕不是很大,但
    是它们属性关系非常复杂,因此适合用关系型数据库进行管理;状态数据和观测数据、分析
    数据的关系都非常密切,因此在数据库中和文件系统中保存各个时间版本的状态数据。
     根据地震数据存储管理策略建立了国家数字地震台网中心的数据管理系统,并建立网站
    以统一服务界面。
The integration of technical system for the center of digital seismic network should use the techniques of earthquake monitoring and computer, which is the result of developing of digital seismic network. There are many problems in integrating the National Center of China Digital Seismic Network (NCCDSN). However, the thesis only focus on three key problems, which are the stability of the technical system, the national big earthquake quick report, and the seismic data management and service.
    1 The research on the problem of the stability of the technical system
    The thesis analyses the relationship among stability, complexity, and automation of technical system. Then it compares the real time running system and die studying system, and gets the conclusion that integrating the real time running system should focus on the interfaces of input and output. After that it divides the technical system's stability into five categories: the hardware stability, the software stability, the seismic professional system's stability, the function's stability, and the product's stability. Lastly, it raises four methods to improve the technical system's stability,: which are improving the single system stability, the online backup system, the offline backup system, and parallel running system.
    The all four methods are used to improve the NCCDSN technical system's stability. The RAID"is used to improve the storage system's stability. The HACMP is used to improve the core server's stability. The parallel running system is used to improve the stability of seismic professional system. The offline backup system is used to improve the whole system's stability.
    2 The research on the problem of the national big earthquake quick report
    The origin time searching method is raised on the basis of epicenter searching method and computer screen picturing method. According to the origin time searching method, the old anolog computer screen picturing system is revised. Then the new computer screen picturing system is integrated into the real time processing system and interactive processing system to form the national big earthquake quick report system. The national big earthquake quick report system makes earthquake quick reporting easily.
    The national big earthquake quick report system is difficult to locate the far earthquake, hi order to improve the quality of locating far earthquake, the international seismic station's near real time data are collected using the LISS. It improves die quality of far earthquake locating, and shortens the reporting time.
    3 The research on the problem of the seismic data management and service
    The seismic data is newly divided into three categories: the status data, the observing data, and die analysis data. The status data describe the object's status, which vary with time. The observing data are observed by the seismograph, which do not vary with time. The analysis data's production should need people's processing.
    The data storage management strategies are made according to the different characteristics of the three kinds of data. The observing data's volume is very big and their attributes are simple, so they
    
    
    can be managed by file system. The analysis data's volume is not big and their attributes are complex, so they can be managed by database system. The status data should be kept in both file system and database system. The Web site is established to provide the same service interface for clients.
引文
[1] Dieter Seidl, Hans Berckhemer, Manfred Henger. The seismological concept of the GRSN within the Global Seismic Network, http://hpkom21.geo.uni-leipzig.de/~theogeo/theo/grsn10/Chap_2.doc.
    [2] 傅淑芳,刘宝诚.1991.地震学教程.北京:地震出版社
    [3] James Dewey and Perry Byerly, The Early History of Seismometry (to 1900), 2001, http://neic.usgs.gov/neis/seismology/
    [4] 陈long等.1998.数字时代的地震观测.北京:地震出版社,
    [5] Amadej Tmkoczy, Jens Havskov, Lars Ottemller and Peter Bormann. Seismic Networks, 2001 Global Seismological Services, http://www.seismo.com/msop/msop/08%20networks/networks.html
    [6] 庄灿涛等.2003.数字地震观测技术.北京:地震出版社
    [7] 童汪练.2000.国家数字地震台网地震仪参数及传递函数汇集.中国数字地震观测系统建设国家数字地震台网验收材料 编号 A-1-0-8
    [8] SeismiQuery, one of IRIS services, http://www.iris.edu/SeismiQuery/
    [9] 黄志斌、宋锐、顾小虹等.2000.中国地震局国家数字地震台网中心单位工程验收文件.中国.数字地震观测系统建设国家数字地震台网验收材料 编号A-1-1
    [10] 黄志斌、宋锐、顾小虹等.2001.国家数字地震台网中心的技术系统.地震,Vol 21 No.4:7~11
    [11] 黄志斌、王永力.2000.PPP在地震数据传输中的应用.地震地磁观测与研究,Vol 21 No 6:81~84
    [12] 庄灿涛等.1997.国家防震减灾中心楼技术系统实施方案.国家防震减灾中心技术系统工程
    [13] 宋锐、顾小虹、王永力等.2001.国家数字地震台网中心实时处理及大地震速报软件系统.地震,Vol 21 No.4:47~59
    [14] 左如斌、黄志斌、薛峰等.2001.国家数字地震台网中心Web网站.地震,Vol 21 No.4:106~111
    [15] 黄志斌、庄灿涛.2000.DVD盘库与地震数据的存储.地震地磁观测与研究,Vol 21 No 3:77~80
    [16] 王永力、宋锐、黄志斌等.2001.国家数字地震台网中心实时观测数据接收技术.地震,Vol 21No.4:118~121
    [17] 黄金莉、顾小虹.2001.国家数字地震台网中心应用地震波形数据格式及转换.地震,Vol 21No 4:60~65
    [18] Live Internet Seismic Server, Last update: April 30, 2003, http://www.liss.org/index.htm
    [19] 《Interconnecting Cisco Network Devices》 CISCO培训教材2000年
    [20] 鲁士文等.1998.认识和使用TCP/IP.电子工业出版社
    [21] [美]Gilbert Held著,魏桂英、廖卫东、何军译,廖卫东审校.1995.据通信技术.清华大学出版社
    [22] Zhuang Cantao, Huang Zhibin. 2002. Construction of Digital Seismic Network and Technical System of Earthquake Disaster Mitigation in Mainland China, Proceedings of the First China-Japan Workshop on Earthquake Disaster Mitigation, 205-210,
    
    
    [23] IBM RS/6000 7025 F50 Series User's Guide, Second Edition, February 1998
    [24] James W. DeRoest 著,林燕如、徐淑平、林慧雯译,AIX RS/600完全系统管理手册AIX Version 4更新版,1998年7月
    [25] High Availability Cluster Multi-Processing for AIX, Concepts and Facilities, Version 4.2.2, Cotober 1997
    [26] High Availability Cluster Multi-Processing for AIX, Planning Guide, Version 4. 2.2, Cotober 1997
    [27] High Availability Cluster Multi-Processing for AIX, Installation Guide, Version 4.2.2, Cotober 1997
    [28] High Availability Cluster Multi-Processing for AIX, Administration Guide, Version 4.2.2, Cotober 1997
    [29] Strategies for the design of a Data Management System, June 1986, Incorporated Research Institutions for Seismology
    [30] 赵仲和等.2001.地球科学数据库系统(WDC-D)—地震学科部分.国家科技基础工作专项验收材料
    [31] 张亦麟等.1995.地震观测技术.地震出版社
    [32] Quick Start, ADSTAR Distributed Storage Manager for AIX, Version 3, 1997
    [33] Administration's Guide, ADSTAR Distributed Storage Manager for AIX, Version 3, 1997
    [34] 赵仲和等.1996.Internet地球科学资源导引地震出版社
    [35] 薛峰等.1998.中国地震速报台网走时残差分析与走时修正

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700