非血红素铁酶及分子间相互作用力场的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文的研究工作分为两个方面,一是单核非红素酶的结构和催化性能的研究。单核非血红素酶是能够活化分子氧的铁氧化酶的一种,在生物、环境以及医学领域具有广泛的应用和重要的价值。非血红素酶中的一个常见的保守结构单元是2-组氨酸-1-羰基(2-His-l-carboxylate)三元组。我们通过分子动力学模拟和QM/MM计算从分子水平和电子水平上研究了羟乙基膦酸双加氧酶(HEPD)酶的结构及催化反应机理,分析了酶催化反应的影响因素。二是分子间弱相互作用的研究。分子间弱相互作用(比如卤键,氢键,硫键,磷键,cation-π等)在化学,生命科学和材料科学中占有重要地位。用分子动力学方法研究生物大分子和功能材料大分子的结构,形貌和性能时需要能恰当描述分子间弱相互作用的力场。但目前已有的分子力场不能合理描述分子间弱相互作用。为此我们设计了可极化椭球力场(PEff),用来描述具有方向性的分子川弱相互作用,并用我们所建造的力场研究了生物大分子中的卤键相互作用。我们的研究结果也为设计具有方向性的配位相互作用(比如Zn酶,Fe酶中配位相互作用)的力场提供了重要思路。
     本论文的主要研究内容和结论如下
     1.HEPD(?)(?)是一种典型的非血红索铁酶,它可以催化草铵膦(PTT)和磷霉素(Fosfomycin)等生物合成中的关键步骤。我们采用QM/MM方法,研究了HEPD酶的催化反应机理。QM/MM的计算模拟结果表明,HFPD酶中存在着不同的反应路径,整个反应过程分为四个步骤,包括氢转移,O-O键的断裂,C-C键的断裂,和产物HMP的生成。我们的研究结果表明,谷氨酸残基Glu176可以在一定程度上通过质子转移过程参与催化反应。对于整个反应过程来说,不同的反应路径具有一定的可调节性,并且它们与蛋白质环境有明显的相关性。我们提出的反应机理在很大程度上解释一些实验上观察到的比较矛盾的现象,修正了己有的羟基过氧化机理(hydroperoxylation)和羟基化机理(hydroxylation),这些结果为进一步理解和调节非血红素铁酶中的催化反应机理提供了一定的指导。
     2.目前的一些实验研究表明,水分子在HEPD的催化反应过程中扮演着非常重要的角色。分子动力学模拟结果也表明,活性口袋附近存在一些运动受限的水分子。我们通过QM/MM方法研究了水分子参与的催化反应机理,水分子可以把羟基自由基(·OH)束缚在活性口袋中,并且可以把羟基自由基通过特定的反应转换成铁的氢氧化物(Fe-OH)。这个反应路径对于防止羟基自由基对酶的活性损伤有一定的意义。我们还发现,水分子可以作为非血红素铁酶活性中心的氧原子的一个来源,我们的计算结果表明,最终产物HMP中的氧无素大约有40%来自水分子,因此,我们提出的反应机理可以定量地解释O18同位素标记的实验结果。
     3我们设计了一个新的力场函数,称之为可极化椭球力场(Polarizable Ellipsoidal force field, PEff)用来描述方向性较强的分子间弱相互作用。卤键是一种非常重要的弱键相互作用,而目前大部分经典力场都不能正确地模拟卤键作用,鉴于这种情况,我们首先将PEff力场用于卤键研究。静电势分布的各向异性和短程作用是卤键的两个基本特征,PEff力场较好地描述了这两个特征。在PEff力场中,共价卤原子的各向异性电荷分布采用一个球形的负电荷分布和一个椭球形的正电荷电荷分布的组合来描述,而极化能的贡献则通过一个诱导偶极模型来描述。通过模拟卤键势能面获得了PEff力场参数,最后得到的力场中包含一些有确定物理意义的组成部分,包括静电作用,排斥/色散作用以及极化相互作用等。我们的研究结果表明,PEff模型基本上可以正确地再现MP2水平计算得到的卤键势能面特点。
     4.可极化椭球力场PEff与现在广泛应用的分子动力学模拟软件包在很大程度上兼容,因此很容易整合到现有的程序中。我们拟合得到的参数具有一定的可迁移性,同时这些参数与AMBER通用力场(GAFF)的参数是基本上兼容的。进一步地,我们采用PEff模型预测了人类组织蛋白酶L(hcatL)的卤键结构,所得结果与该蛋白酶的晶体结构非常吻合。这些结果表明,我们提出的PEff力场可以作为设计配位相互作用(比如Zn酶,Fe酶的活性中心)力场的重要基础。
The researches mainly includes two aspects, one is about the structural and catalytic properties of the mononuclear non-heme enzyme. The mononuclear non-heme enzyme is a kind of iron dependent oxygenases, which is important in biological, environmental and medical applications. A common structural motif of these non-heme enzymes is the2-His-1-carboxylate facial triad binding the divalent iron. Molecular dynamic simulations and QM/MM methods were used to study the catalytic reaction mechanism of Hydroxyethylphosphonate dioxygenase (HEPD) enzyme. The conditions that may ailed the enzymatic reaction were analyzed and the tunability of the reaction pathway was discussed Intermolecular interactions(such as halogen bonds and cation-π et al) and the coordinated interactions are usually highly directional, which cannot properly be described in classic force field. We designed a polarizable ellipsoidal force field (PEff) to improve the description of intermolecular interactions in classic force fields. And the PEff model has been attempted to study the halogen bonding in biomolecules. The PEff model is also useful to derive the force field of coordinated interactions (such as zinc and iron enzymes).
     The conclusions are summarized in the following section:
     1. Hydroxyethylphosphonate dioxygenase (HEPD) is a typical mononuclear non-heme enzyme, which catalyzes a critical step in phosphinothricin (PT) biosynthetic pathway. HEPD activates O2by the divalent iron and catalyzes the conversion of2-HEP to HMP. By employing ab initio quantum mechanical/molecular mechanical (QM/MM) and molecular dynamics simulations(MD), we have provided further evidence against the previously proposed hydroperoxylation or hydroxylation mechanism of hydroxyethylphosphonate dioxygenase (HEPD). HEPD employs an interesting catalytic cycle based on concatenated bifurcations. This enzymatic reaction occurs in four major steps on the basis of our QM/MM calculations. The first step is the abstraction of hydrogen atom from the substrate, which leads to a distal or proximal hydroperoxo species (Fe(Ⅲ)-OOH). The second step is the cleavage of the O-O bond, and in the third step, the carbon-carbon bond is broken subsequently. Finally,2-HEP is converted to HMP The residue Glu176could take part in the catalytic reaction via a proton assisted mechanism. The reaction directions seem to be tunable and show significant environment dependence. These conclusions may provide insight to the development of biochemistry and material sciences.
     2. The experimental studies suggest that water molecules play an important role in the catalytic reaction process of HEPD. Molecular dynamic (MD) simulations also point out that the trapped water at the active site is important in the active site.This work proposes a water involved reaction mechanism, where water molecules serve as an oxygen source in the generation of mononuclear non-heme iron oxo complexes. Meanwhile, water molecules seem to be responsible for converting the reactive hydroxyl radical group ('OH) to the ferric hydroxide (Fe(Ⅲ)-OH) in a specific way. This converting reaction may prevent the enzyme from damages caused by the hydroxyl radical groups. This work could provide a better interpretation on how the intermediates interact with water molecules and a quantitatively understanding on the018label experimental evidences in which only a relatively smaller ratio of oxygen atoms in water molecules (about40%) are incorporated into the final product HMP.
     3. The current research reports a polarizable ellipsoidal force field (PEff) for the directional intermolecular interactions. Since widely applications of halogen bonds and the difficulty of modeling them in classical force fields, the PEff model was used to study the halogen bonds. The anisotropic effects and short-range quantum effects are two essential characters in the formation of halogen bonds. The anisotropic charge distribution was represented with the combination of a negative charged sphere and a positively charged ellipsoid. The polarization energy was incorporated by the induced dipole model. The resulting force field is "physically motivated", which includes separate, explicit terms to account for the electrostatic, repulsion/dispersion and polarization interaction.
     4.The PF.ff modelis largelycompatible with existing,standard simulation packages The fitted parameters are transferable and compatible with the general AMBER force field (GAFF). This PEff model could correctly reproduces the potential energy surface of halogen bonds at MP2level. Finally, the prediction of the halogen bond properties of human Cathcpsin L (hcatL) has been found to be in excellent qualitative agreement with the co-crystal structures. Judging from the notably improved accuracy in comparison with the fixed charge models, the PEff model is expected to form the foundation for developing high quality force field of coordinated complex.
引文
[1]A. J. Thomson, H. B. Gray, Bio-inorganic Chemistry, Curr. Opin. Chcin. Biol. 1998,2, 155-158
    [2]K. J. Waldron, N. J. Robinson, How do Bacterial Cells Ensure that Metalloproteins Get the Correct Metal?, Nat. Rev. Micro. 2009, 7 25-35.
    [3]G. A. Jeffrey, An Introduction to Hydrogen Bonding, Oxford University Prevs, New York 1997.
    [4]H.Baumgartel,Different Aspects of IntermolecularInteraction,Oldenbourg Verlag 2007.
    [5]P. Metrangolo, T. Pilati, G. Resnati, Halogen Bonding and Other Noncovalent Interactions Involving Halogensa Terminology Issue, CrystEngComm 2006,8, 946-947.
    [6]J. C. Ma, D. A. Dougherty, The Cation- π Interaction, Chem. Rev. 1997,97, 1303-1324.
    [7]S. Tsuzuki, M. Yoshida, T. Uchimaru, M. Mikami, The Origin of the Cation/71 Interaction: TheSignificant Importance of the Induction in Li+ and Na+ Complexes,J.Phys. Chem.A 2001, 105, 769-773.
    [8]A. D. Buckingham, B. D. Utting, Intermolecular Forces, Annt. Rev.Phys. Chem. 1970, 21, 287-316.
    [9]P. Metrangolo, F. Meyer, T. Pilati, G. Resnati, G. Terraneo, Halogen Bonding in Supramolecular Chemistry, Angew. Chem.Int.Ed. 2008,47, 6114-6127.
    [10]D. E. Torres Pazmino, M. Winkler, A. Glieder, M. W. Fraaije, Monooxygenases as Biocatalysts: Classification, Mechanistic Aspects and Biotechnological Applications,J. Biotechiol. 2010,146, 9-24.
    [11]T.D.H. Bugg, Dioxygenase Enzymes:Catalytic Mechanisms and Chemical Models, Tetrahedron 2003,59, 7075-7101.
    [12]J. P. Evans, F. Niemevz, G. Buldain, P. O. deMontellano, Isoporphyrin IntermediateinHemeOxygenaseCatalysis:OXIDATIONOF α-MESO-PHENYLHEMH,J. Biol. Chem. 2008, 283, 19530-19539.
    [13]M.D.Maines,HemeOxygenase:Function,Multiplicity,Regulatory Mechanisms, and Clinical Applications, The EASEB Journal 1988, 2, 2557-68.
    [14]M J. Ryle, R. P. Hausinger, Non-heme Iron Oxygenases, Curr. Opin. Chem. Biol. 2002, 6, 193-201.
    [15]E. L. Hegg, L. Q Jr, The 2-His-l-Carboxylate Facial Triad — An Emerging Structural Motif in Mononuclear Non-Heme Iron(Ⅱ) Enzymes, Eur. J. Biochem. 1997, 250, 625-629.
    [16]K. Koehntop, J. Emerson, L. Que, Jr., The 2-His-l-Carboxylate Facial Triad: a Versatile Platform for Dioxygen Activation by Mononuclear Non-heme Iron(Ⅱ) enzymes, JBIC J. Biol,Inorg. Chem. 2005, 10, 87-93.
    [17]P.C. A.Bruijnincx, G.vanKoten,R. J.M.Klein Gebbink,Mononuclear Non-heme IronEnzymes with the 2-His-l-Carboxylate Facial Triad:Recent Developments in Enzymology and Modeling Studies, Chem. Soc. Rev. 2008, 37, 2716-2744.
    [18]S. J. Friese, B. E. Kucera, L. Que, W. B. Tolman, Self-Assembly of the 2-His-l-Carboxylate Facial Triad in Mononuclear Iron(Ⅱ) and Zinc(Ⅱ) Models of Metalloenzyme Active Sites, Inorg. Chem.2006,45,8003-8005.
    [19]J. Kim, Y. Zang, M. Costas, R. G. Harrison, E. C. Wilkinson, L. Que Jr, A Non-heme Iron(Ⅱ) Complex that Models the Redox Cycle of Lipoxygenase, JBIC J. Biol. Inorg. Chem.2001,6,275-284.
    [20]J. R. Frisch, R. McDonnell, E. V. Rybak-Akimova, L. Que, Factors Affecting the Carboxylate Shift Upon Formation of Nonheme Diiron-O(2) Adducts, Inorg. Chem.2013.
    [21]S. V. Kryatov, E. V. Rybak-Akimova, V. L. MacMurdo, L. Que, A Mechanistic Study of the Reaction between a Diiron(Ⅱ) Complex [FeII2(μ-OH)2(6-Me3-TPA)2]2+ and O2 to Form a Diiron(Ⅲ) Peroxo Complex, Inorg. Chem.2001,40,2220-2228.
    [22]M. P. Jensen, S. J. Lange, M. P. Mehn, E. L. Que, L. Que, Biomimetic Aryl Hydroxylation Derived from Alkyl Hydroperoxide at a Nonheme Iron Center. Evidence for an FelVO Oxidant,J.Am. Chem. Soc.2003,125,2113-2128.
    [23]P. C. A. Bruijnincx, M. Lutz, A. L. Spek, W. R. Hagen, G. van Koten, R. J. M. Klein Gebbink, Iron(Ⅲ)-Catecholato Complexes as Structural and Functional Models of the Intradiol-Cleaving Catechol Dioxygenases, Inorg. Chem.2007,46, 8391-8402.
    [24]M. K. Panda, A. John, M. M. Shaikh, P. Ghosh, Mimicking the Intradiol Catechol Cleavage Activity of Catechol Dioxygenase by High-Spin Iron(Ⅲ) Complexes of a New Class of a Facially Bound [N2O] Ligand, Inorg. Chem. 2008,47,11847-11856.
    [25]J. Fahrenkamp-Uppenbrink, P. Szuromi, J. Yeston, R. Coontz, Theoretical Possibilities, Science 2008,321,783.
    [26]A. J. Stone, Intermolecular Potentials, Science 2008,321,787-789.
    [27]J. Marti-Rujas, L. Colombo, J. Lu, A. Dey, G. Terraneo, P. Metrangolo, T. Pilati, G. Resnati, Hydrogen and Halogen Bonding Drive the Orthogonal Self-assembly of an Organic Framework Possessing 2D Channels, Chem. Commun.2012,48, 8207-8209.
    [28]C. Prasang, H. L. Nguyen, P. N. Horton, A. C. Whitwood, D. W. Bruce, Trimeric Liquid Crystals Assembled using both Hydrogen and Halogen Bonding, Chem. Commun.2008,0,6164-6166.
    [29]A. V. Jentzsch, D. Emery, J. Mareda, S. K. Nayak, P. Metrangolo, G. Resnati, N. Sakai, S. Matile, Transmembrane Anion Transport Mediated by Halogen Bond Donors, Nat. Commun.2012,3,905.
    [30]Y. Lu, Y. Liu, Z. Xu, H. Li, H. Liu, W. Zhu, Halogen Bonding for Rational Drug Design and New Drug Discovery, Expert Opin. Drug Dis.2012,7,375-383.
    [31]W. Wang, Y. Zhang, B. Ji, On the Difference of the Properties between the Blue-Shifting Halogen Bond and the Blue-Shifting Hydrogen Bond, J. Phys. Chem. A 2010,114,7257-7260.
    [32]B. Raghavendra, E. Arunan, Unpaired and σ Bond Electrons as H, Cl, and Li Bond Acceptors: An Anomalous One-Electron Blue-Shifting Chlorine Bond, J. phys. Chem.A 2007, 111, 9699-9706
    [33]A. Bauza, D. Quinonero, A. Frontera, P. M. Deya, Substituent Effects in Halogen Bonding Complexes between Aromatic Donors and Acceptors: a Comprehensive ab initio Study, Phys. Chew.Chem.Phys. 2011,13, 20371-20379.
    [34]Q. Li, B. Jing, Z. Liu, W. Li, JCheng, B. Gong, J Sun, Surprising Enhancing Effect of Methyl Group on the Strength of O[centered ellipsis]XF and S[centered ellipsis]XF (X = Cl and Br) Halogen Bonds,J. Chem.Phys. 2010,133, 114303.
    [35]D. A. Kraut, K. S. Carroll, D.Herschlag, Challenges in Enzyme Mechanism and Energetics,Anmt.. Rev. Biochem. 2003, 72, 517-571.
    [36]F.Maseras, K. Morokuma, IMOMM: A New Integrated ab initiotMolecular MechanicsGeometry Optimization Scheme ofEquilibrium Structures and Transition States,J. Comput.Chem. 1995,16, 1170-1179.
    [37]J. Gao, Hybrid Quantum and Molecular Mechanical Simulations An Alternative Avenue to Solvent Effects in Organic Chemistry, Ace.Chem. Res. 1996, 29, 298-305.
    [38]M. J. Field, P. A.Bash, M. Karplus, A Combined QuantumMechanical and Molecular Mechanical Potential for Molecular Dynamics Simulations,J.Comput. Chem. 1990,11, 700-733.
    [39]U. C. Singh, P. A. Kollman, A Combined ab initio Quantum Mechanical and Molecular Mechanical Method for Carrying Out Simulations on Complex Molecular Systems: Applications to the CFI3C1 + Cl- Exchange Reaction and Gas Phase Protonation of Polyethers,J. Comput,Chem. 1986, 7, 718-730.
    [1]A. JMulholland,Modelling Enzyme ReactionMechanisms,Specificityand Catalysis, DrugDiscov. Today2005,10, 1393-1402
    [2]T. CBruice, Computational Approaches: Reaction Trajectories, Structures, and Atomic MotionsEnzyme Reactions and Proficiency, Chem.Rev2006,106, 3119-3139.
    [3]H. M. Senn, W. Thiel, QM/MM Methods for Biomolecular Systems, Angew. Chem .,Int.Ed. 2009, 48,1198-1229
    [4]Y.Zhang, J. Kua, JA McCammon, Role of the Catalytic Triad and Oxyanion Hole in Acetylcholinesterase Catalysis:An ab initio QM/MM Study, J. Am. Chem. Soc. 2002,124, 10572-10577
    [5]H. Lin, D. Truhlar, QM/MMWhat Have We Learned, Where are We, and Where Do We Go from Here?Theor Chem Ace 2007, 117,185-199.
    [6]H. Senn, W Thiel, in Atomistic Approaches in Modern Biology, ed by M. Reiher, Springer Berlin Heidelberg, 2007, Vol. 268, Chap. 84, pp. 173-290.
    [7]A. Warshel, Computer Simulations of Knzyme Catalysis: Methods, Progress, and Insights, Anmt. Rev. Riophys.Biomol. Struct. 2003, 32, 425-443
    [8]R. A. Friesner, V. Guallar, Ab initio Quantum Chemical and Mixed Quantum Mechanics/Molecular Mechanics (QM/MM) Methods for Studying Enzymatic Catalysis, Anmt. Rev.Phys.Chem. 2005, 56, 389-427
    [9]J. Gao, D. G. Truhlar, Quantum Mechanical Methods for Knzyme Kinetics, Anmt. Rev. Rhys.Chem. 2002, 53, 467-505.
    [10]Q. Cui,M. Elstner,E.Kaxiras,T. Frauenheim, MKarplus,AQM/MM Implementation of the Self-Consistent Charge Density Functional Tight Binding (SCC-DFTB) Method,J.Phys.Chem.B 2000, 105, 569-585.
    [11]Y. Zhang, T.-S. Lee, W. Yang, A Pseudobond Approach to Combining Quantum Mechanical andMolecular MechanicalMethods, .J. Chem.Phys.1999, 110, 46-54.
    [12]J. Gao, X. Xia, A Priori Evaluation of Aqueous Polarization Effects Through Monte Carlo QM-MM Simulations, Science 1992,258,631-635.
    [13]A. Warshel, M. Levitt, Theoretical Studies of Enzymic Reactions:Dielectric, Electrostatic and Steric Stabilization of the Carbonium Ion in the Reaction of Lysozyme, J. Mol.Biol.1976,103,227-249.
    [14]徐光宪,黎乐民,王德民,量子化学基本原理和从头算计算法,科学出版社1985.
    [15]I. N. Levine, Quantum Chemistry, Atlyn and Bacon 1983.
    [16]P.-O. Lowdin, Quantum Theory of Many-Particle Systems.Ⅲ. Extension of the Hartree-Fock Scheme to Include Degenerate Systems and Correlation Effects, Physical Review 1955,97,1509-1520.
    [17]P. Hohenberg, W. Kohn, Inhomogeneous Electron Gas, Physical Review 1964, 136,B864-B871.
    [18]R. G. Y. Parr, Weitao, Density-Functional Theory of Atoms and Molecules, Oxford:Oxford University Press 1994.
    [19]D. C. Langreth, M. J. Mehl, Beyond the Local-Density Approximation in Calculations of Ground State Electronic Properties, Phys. Rev. B 1983,28, 1809-1834.
    [20]J. P. Perdew, W. Yue, Accurate and Simple Density Functional for the Electronic Exchange Energy:Generalized Gradient Approximation, Phys. Rev. B 1986,33, 8800-8802.
    [21]A. D. Becke, Density Functional Calculations of Molecular Bond Energies, J. Chem. Phys.1986,84,4524-4529.
    [22]A. D. Becke, A new mixing of Hartree--Fock and Local Density Functional Theories,J.Chem. Phys.1993,98,1372-1377.
    [23]M. Ernzerhof, G. E. Scuseria, Assessment of the Perdew--Burke--Ernzerhof Exchange-Correlation Functional,J.Chem. Phys.1999,110,5029-5036.
    [24]A. D. Becke, Density-Functional thermochemistry. IV. A New Dynamical Correlation Functional and Implications for Exact-Exchange Mixing,J.Chem. Phys.1996,104,1040-1046.
    [25]C.Lee,W.Yang,R. G. Parr,Developmentof theColle-Salvetti Correlation-EnergyFormula in to a Functional of the Electron Density, Phis. Rev. B 1988, 37, 785-789.
    [26]J. P. Perdew, Density-Functional Approximation for the Correlation Energy of the Inhomogeneous Electron Gas, Phys. Rev. B1986, 33, 8822-8824
    [27]A. DBecke, Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior, Physical Review A 1988, 38, 3098-3 100.
    [28]C. Adamo, V. Barone, Exchange Functionals with Improved Long-Range Behavior and Adiabatic ConnectionMethods without Adjustable Parameters: The mPW and mPWIPW Models,J.Chem. Phys. 1998, 108, 664-675.
    [29]X. Xu, W.A.Goddard, The X31.YP Extended Density Functional for Accurate Descriptions ofNonbond Interactions, Spin States, and Thermochemcal Properties, Proc. Natl. Acad Sci. U. S. A. 2004, 101, 2673-2677.
    [30]Y. Zhao, D. Truhlar, The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-class Functionals and 12 Other Functionals, Thear Chem Ace 2008, 120, 21 5-241.
    [31]Y. Zhao, N. E. Schultz, D. G. Truhlar, Exchange-Correlation Functional with BroadAccuracy for Metallic and NonmetallicCompounds, Kinetics, and Noncovalent Interactions,J.Chem. Phys. 2005, 123, 161103.
    [32]Y..Zhao,N. E. Schultz,D.G.Truhlar,Design of DensityFunctionals by Combining theMethodof ConstraintSatisfactionwith Parametrizationfor Thermochemistry, ThermochemicalKinetics, and NoncovalentInteractions, J. Chem. Theory Comput. 2006, 2, 364-382.
    [33]J. Paier, M. Marsman, G. Kresse, Why Does the B3LYP Hybrid Functional Fail for Metals?,J Chem. Phys. 2007, 127, 024103.
    [34]Y. Zhao, D. G. Taihlar, Density Functionalswith BroadApplicability in Chemistry, Acc. Chem. Res. 2008, 41, 157-167.
    [35]H. Umeyama, K. Morokuma, The Origin of Hydrogen Bonding. An Energy Decomposition Study,J.Am.Chem. Soc.1977,99,1316-1332.
    [36]T. Ziegler, A. Rauk, A Theoretical Study of the Ethylene-metal Bond in Complexes between Copper(1+), Silver(1+), Gold(1+), Platinum(0) or Platinum(2+) and Ethylene, Based on the Hartree-Fock-Slater Transition-State Method, Inorg. Chem.1979,18,1558-1565.
    [37]B. Jeziorski, R. Moszynski, K. Szalewicz, Perturbation Theory Approach to Intermolecular Potential Energy Surfaces of van der Waals Complexes, Chem. Rev.1994,94,1887-1930.
    [38]P. Su, H. Li, Energy Decomposition Analysis of Covalent Bonds and Intermolecular Interactions,J.Chem. Phys.2009, 131,014102.
    [39]M. Schutz, G. Rauhut, H.-J. Werner, Local Treatment of Electron Correlation in Molecular Clusters:Structures and Stabilities of (H2O)n, n=2-4, J. Phys. Chem. A 1998,102,5997-6003.
    [40]H. Stoll, G. Wagenblast, H. Preuβ, On the Use of Local Basis Sets for Localized Molecular Orbitals, Theoret. Chim. Acta 1980,57,169-178.
    [41]Y. Mo, S. D. Peyerimhoff, Theoretical Analysis of Electronic Delocalization, J. Chem. Phys.1998,109,1687-1697.
    [42]E. D. Glendening, A. Streitwieser, Natural Energy Decomposition Analysis:An Energy Partitioning Procedure for Molecular Interactions with Application to Weak Hydrogen Bonding, Strong Ionic, and Moderate Donor Acceptor Interactions, J. Chem. Phys.1994,100,2900-2909.
    [43]E. D. Glendening, Natural Energy Decomposition Analysis:Extension to Density Functional Methods and Analysis of Cooperative Effects in Water Clusters, J. Phys. Chem.A 2005,109,11936-11940.
    [44]G. Naray-Szabo, G. G. Ferenczy, Molecular Electrostatics, Chem. Rev.1995,95, 829-847.
    [45]P. W. Kenny, Hydrogen Bonding, Electrostatic Potential, and Molecular Design, J. Chem. Inf. Model.2009,49,1234-1244.
    [46]S. R. Cox, D. E. Williams, Representation of the Molecular Electrostatic Potential by a Net Atomic Charge Model,J.Comput. Chem.1981,2,304-323.
    [47]R. Car, M. Parrinello, Unified Approach for Molecular Dynamics and Density-Functional Theory, Phys. Rev. Lett. 1985, 55, 2471-2474.
    [48]W.D. Cornell, P. Cieplak, C. I. Bayly, I. R Gould, K. M. Merz, D.M.Ferguson, D. C. Spellmeyer, T. Fox, J.W. Caldwell, P. A.Kollman, A Second Generation Force Field for the Simulation ofProteins, NucleicAcids, and Organic Molecules,J.Am. Chan. Soc. 1995, 117, 5179-5197.
    [49]A. D. MacKerell, D. Bashford, Bellott, R. L. Dunbrack, J. D. Evanseck, M. J. Field, S.Fischer, J. Gao, H. Guo, S. Ha, et al., All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins(?),J.Phys.Chem.B1998, 102, 3586-3616.
    [50]H Sun, COMPASS:An ab Initio Force-Field Optimized for Condensed-Phase ApplicationsOverview with Details on Alkane and Benzene Compounds,J. Phys. Chem.B1998,102, 7338-7364.
    [51]S Patel, A. D. Mackerell, C. L. Brooks, CHARMM Fluctuating Charge Force Field for Proteins,J.Comput. Chem. 2004, 25, 1504-1514.
    [52]JSala,E. Guardia,M.Masia, ThePolarizable PointDipoles Method with Electrostatic Damping: Implementation on a Model System,J. Chan. Phys. 2010, 133, 234101.
    [53]G. Lamoureux, B. Roux, Modeling Induced Polarization with Classical Drude Oscillators: Theory and Molecular Dynamics Simulation Algorithm, J. Chan. Phys. 2003, 119, 3025-3039.
    [54]H. Hu, W. Yang,Free Energies of Chemical Reactions inSolution andin Enzymes with Ab Initio Quantum Mechanics/Molecular Mechanics Methods, Anmt. Rev. Phy.s. Chem. 2008, 59, 573-601.
    [55]J. Gao, Hybrid Quantum and Molecular Mechanical Simulations: An Alternative Avenue to Solvent Effects in Organic Chemistry, Acc. Chan. Res. 1996, 29, 298-305.
    [56]M. Garcia-Viloca, J. Gao, M. Karplus, D. G. Truhlar, Flow Enzymes Work: Analysis by Modern Rate Theory and Computer Simulations, Science2004, 303, 186-195.
    [57]S. C. L. Kamerlin, M. Haranczyk, A. Warshel, Progress in Ab lnitio QM/MM Free-Energy Simulations of Electrostatic Energies in Proteins:Accelerated QM/MM Studies of pKa, Redox Reactions and Solvation Free Energies(?),J.Phys. Chem.B 2008,113,1253-1272.
    [58]Y. Zhang, H. Lin, Flexible-boundary QM/MM calculations:Ⅱ. Partial Charge Transfer Across the QM/MM Boundary that Passes through a Covalent Bond, Theor Chem Ace 2010,126,315-322.
    [59]S. Pezeshki, H. Lin, Adaptive-Partitioning Redistributed Charge and Dipole Schemes for QM/MM Dynamics Simulations:On-the-fly Relocation of Boundaries that Pass through Covalent Bonds, J. Chem. Theory Comput.2011,7, 3625-3634.
    [60]M. Svensson, S. Humbel, K. Morokuma, Energetics Using the Single Point IMOMO Calculations:Choices of Computational Levels and Model System, J. Chem. Phys.1996,105,3654-3661.
    [61]D. Bakowies, W. Thiel, Hybrid Models for Combined Quantum Mechanical and Molecular Mechanical Approaches,J.Phys. Chem.1996,100,10580-10594.
    [62]N. Reuter, A. Dejaegere, B. Maigret, M. Karplus, Frontier Bonds in QM/MM Methods:A Comparison of Different Approaches, J. Phys. Chem. A 2000,104, 1720-1735.
    [63]V. Thery, D. Rinaldi, J.-L. Rivail, B. Maigret, G. G. Ferenczy, Quantum Mechanical Computations on Very Large Molecular Systems:The Local Self-Consistent Field Method,J.Comput. Chem.1994, 15,269-282.
    [64]P. H. Konig, M. Hoffmann, T. Frauenheim, Q. Cui, A Critical Evaluation of Different QM/MM Frontier Treatments with SCC-DFTB as the QM Method,J. Phys. Chem.B 2005,109,9082-9095.
    [65]V. Kairys, J. H. Jensen, QM/MM Boundaries Across Covalent Bonds:A Frozen Localized Molecular Orbital-Based Approach for the Effective Fragment Potential Method,J.Phys. Chem. A 2000,104,6656-6665.
    [66]J. Gao, P. Amara, C. Alhambra, M. J. Field, A Generalized Hybrid Orbital (GHO) Method for the Treatment of Boundary Atoms in Combined QM/MM Calculations,J Phys. Chem. A 1998, 102, 4714-4721.
    [67]R.Salomon-Ferrer,D. A.Case,R C.Walker, An Overview of the Amber Biomolecular SimulationPackage,WileyInterdisciplinary Reviews: Computational Molecular Science 2013, 3, 198-210.
    [68]B. R. Brooks, C.L. Brooks, A. D Mackerell, L. Nilsson, R. J. Petrella, B.Roux, Y. Won, G.Archontis, C. Bartels, S. Boresch, et al., CHARMM: The Biomolecular Simulation Program,J.Comput.Chem. 2009, 30, 1545-1614
    [69]M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, T. Vreven, K. N. Kuclin, J. C. Burant, et al., in Book Ganssian 03, Revision D, ed., ed. by Editor, City, 2003, Chap Chapter.
    [70]M. W. Schmidt, K. K. Baldridge, J. A. Boatz., S. T. Elbert, M. S. Gordon, J. H Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S. Su, et al., General Atomic and Molecular Electronic Structure System,J.Comput. Chem. 1993, 14, 1347-1363.
    [71]G. te Velde, F. M. Bickelhaupt, E. J. Baerends, C. Fonseca Guerra, S. J. A. van Gisbergen, J. G. Snijders, T. Ziegler, Chemistry with ADF,J Comput. Chem. 2001, 22, 931-967.
    [72]M. Valiev, E. J. Bylaska, N. Govind, K. Kowalski, T. P. Straatsma, H. J. J. Van Dam,D.Wang, J.Nieplocha,E.Apra, T.L.Windus,et al.,NWChem: A Comprehensive and Scalable Open-source Solution for Large Scale Molecular Simulations,Comput. Phys.Commun. 2010,181, 1477-1489.
    [73]P. Sherwood, A. H. de Vries, M. F. Guest, G. Schreckenbach, C. R. A. Catlow, S. A. French, A. A. Sokol, S. T. Bromley, W. Thiel, A. J. Turner, et al., QUASI: A General Purpose Implementation of the QM/MM Approach and Its Application to Problems in Catalysis, J Mol. Struc.-Theochem 2003, 632, 1-28.
    [74]J. Torras, G. d. M. Seabra, E. Deumens, S. B. Trickey, A. E. Roitberg, A Versatile AMBER-Gaussian QM/MM Interface Through PUPIL,J. Comput. Chem. 2008, 29, 1564-1573.
    [1]K D Koehntop, J. P. Emerson, L. Que, The 2-His-1-Carboxylate Facial Triad:a Versatile Platform for Dioxygen Activation by Mononuclear Non-heme iron(Ⅱ) Enzymes, J. Bio. Inorg. Chem.2005, 10,87-93.
    [2]M Costas, M. P. Mehn, M. P. Jensen, L. Que, Dioxygen Activation at Mononuclear Nonheme Iron Active Sites:Enzymes, Models, and Intermediates, Chem.Rev.2004,104,939-986.
    [3]D. T. Gibson, R. E. Parales, Aromatic Hydrocarbon Dioxygenases in Environmental Biotechnology, Cnrr. Opin. Biotechnol.2000,11,236-243.
    [4]A. S. Hakemian, A. C. Rosenzweig, The Biochemistry of Methane Oxidation, Annn. Rev. Biochem.2007,76,223-241.
    [5]J. E. Baldwin, S. E. Abraham, The Biosynthesis of Penicillins and Cephalosporins, Nat.Prod Rep.1998, 5,129-145.
    [6]N. J. Kershaw, M. E. C. Caines, M. C. Sleeman, C. J. Schofield, The Enzymology of Clavam and Carbapenem Biosynthesis, Chem. Commm.2005, 4251-4263.
    [7]D. Schwartz, S. Berger, E. Heinzelmann, K. Muschko, K. Welzel, W. Wohlleben, Biosynthetic Gene Cluster of the Herbicide Phosphinothricin Tripeptide from Streptomyces viridochromogenes Tu494, Appl. Environ. Microb.2004,70, 7093-7102.
    [8]J. A. V. Blodgett, P. M. Thomas, G. Li, J. E. Velasquez, W. A. van der Donk, N. L Kelleher, W. W. Metcalf, Unusual Transformations in the Biosynthesis of the Antibiotic Phosphinothricin Tripeptide, Nat. Chem. Biol.2007,3,480-485.
    [9]R. M. Cicchillo, H. Zhang, J. A. V. Blodgett, J. T. Whitteck, G. Li, S. K. Nair, W. A. van der Donk, W. W. Metcalf, An Unusual Carbon-Carbon Bond Cleavage Reaction During Phosphinothricin Biosynthesis, Nature 2009,459,871-874.
    [10]H. Hirao, K. Morokuma, Ferric Superoxide and Ferric Hydroxide Are Used in the Catalytic Mechanism of Hydroxyethylphosphonate Dioxygenase:A Density Functional Theory Investigation,J.Am.Chem. Soc. 2010, 132, 17901-17909.
    [11]J. T. Whitteck, P. Malova, SC. Peck, R.M.Cicchillo, F. Hammerschmidt, W. A. vanderDonk,OntheStereochemistryof 2-Hydroxyethylpliosphonate Dioxygenase,J.Am. Chem. Soc. 2011, 133,4236-4239.
    [12]J T.Whitteck, R. M.Cicchillo, W.A.v.d. Donk,Hydroperoxylationby HydroxyethylphosphonateDioxygenase,J.Am. Chem.Soc.2009,131, 16225-16232.
    [13]B. Brooks, R. Bruccoleri, B Olafson, D. States, S. Swaminathan, M. Karplus, Cf IARMM: AProgramfor Macromolecular Energy,Minimization,and Dynamics Calculations,J.Comput.Chem. 1983,4, 187-217
    [14]C. R. Sondergaard, M. H. M. Olsson, M Rostkowski, J. H Jensen, Improved Treatment of I.igandsand Coupling Effects in Hmpirical Calculation and Rationalization of pKa Values,J.Chem. Theory Comput. 2011,7, 2284-2295.
    [15]I. S. Joimg, T. E. Cheatham, Determination of Alkali and Halide Monovalent Ion Parameters for Use in Explicitly Solvated Biomolecular Simulations, J.Phys. Chew.B2008, 112, 9020-9041.
    [16]A D. MacKerell, D. Bashford, Bellott, R. E. Dunbrack, J. D. Evanseck, M. J. Field, S. Fischer, J. Gao,H.Guo, S. Ha, et al., All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins(?),J.Phys Chem. B 1998, 102, 3586-3616.
    [17]C.L. Brooks,M. Karplus,DeformableStochastic Boundariesin Molecular Dynamics,J.Chem.Phys. 1983,79, 6312-6325
    [1]K. D. Koehntop, J. P. Emerson, L. Que, The 2-His-1-Carboxylate Facial Triad: a Versatile Platform for Dioxygen Activation by Mononiiclear Non-heme Iron(Ⅱ) Enzymes,J. Bio. Inorg. Chcm. 2005, 10, 87-93.
    [2]M. Sono,M. P. Roach, H. D Coulter,J H. Davvson, Heine-Containing Oxygenases, Chem. Rev. 1996, 96, 2841-2888.
    [3]M. Costas, M. P. Mehn, M. P. Jensen, L. Que, Dioxygen Activation at Mononuclear Nonheme Iron Active Sites: Enzymes, Models, and Intermediates, Chem. Rev. 2004, 104, 939-986.
    [4]A. Ozer, R.K. Bruick, Non-heme Dioxygenases: Cellular Sensors and Regulators Jelly Rolled into One?, Nat.Chem.Biol. 2007, 3, 144-153.
    [5]A. De La Lande, D. R. Salahub, J. Maddaluno, A. Scemama, JPilme, O. Parisel, H. Gerard, M. Caffarel, J.-P. Piquemal, Spin-driven Activation ofDioxygen in Various MetaHoenzymes and their Inspired Models,J. Comput. Chem. 2011, 32, 1178-1182.
    [6]A. Bassan, T. Borowski, P. E. M. Siegbahn, Quantum Chemical Studies of Dioxygen Activation by Mononuclear Non-heme Iron Enzymes with the 2-His-1-Carboxylate Facial Triad, Dalton Trans. 2004, 3 153-3 162.
    [7]A. Decker, J. U. Rohde, E. J. Klinker, S. D. Wong, L. Que, E. I. Solomon, SpectroscopicandQuantumChemicalStudiesonLow-SpinFe-IV= O Complexes: Fe-O Bonding and its Contributions to Reactivity,J. Am. Chem. Soc. 2007, 129, 15983-15996.
    [8]J.-U.Rohde, M.R.Bukowski, L. Que,FunctionalModels for Mononuclear Nonheme Iron Enzymes, Curr. Opiti, Chem. Riol. 2003, 7, 674-682.
    [9]A. J. Simaan, F. Banse, J -J. Girerd, K. Wieghardt, E. Bill, The Electronic Structure ofNon-Heine Iron(Ⅲ)-hydroperoxo and Iron(Ⅲ)-peroxo Model Complexes Studied by Mossbauer and Electron Paramagnetic Resonance Spectroscopies, Inorg. Chem. 2001, 40, 6538-6540.
    [10]E. I. Solomon, S. D. Wong, L. V. Liu, A. Decker, M. S. Chow, Peroxo and Oxo Intermediates in Mononuclear Nonheme Iron Enzymes and Related Active Sites, Cnrr. Opin. Chem. Biol.2009,13,99-113.
    [11]A. Chanda, F. T. de Oliveira, T. J. Collins, E. Munck, E. L. Bominaar, Density Functional Theory Study of the Structural, Electronic, and Magnetic Properties of a mu-oxo Bridged Dinuclear Fe-IV Complex Based on a Tetra-Amido Macrocyclic Ligand, Inorg. Chem.2008,47,9372-9379.
    [12]D. Rinaldo, D. M. Philipp, S. J. Lippard, R. A. Friesner, Intermediates in Dioxygen Activation by Methane Monooxygenase:A QM/MM Study, J. Am. Chem. Soc.2007,129,3135-3147.
    [13]P. C. A. Bruijnincx, G. van Koten, R. Gebbink, Mononuclear Non-heme Iron Enzymes with the 2-His-l-Carboxylate Facial Triad. Recent Developments in Enzymology and Modeling Studies, Chem. Soc. Rev.2008,37,2716-2744.
    [14]A. Decker, E. I. Solomon, Dioxygen Activation by Copper, Heme and Non-heme Iron Enzymes:Comparison of Electronic Structures and Reactivities, Curr.Opin. Chem. Biol.2005,9,152-163.
    [15]E. I. Solomon, A. Decker, N. Lehnert, Non-heme Iron Enzymes:Contrasts to Heme Catalysis, Proc. Natl. Acad Sci. U.S.A.2003,100,3589-3594.
    [16]D. T. Gibson, R. E. Parales, Aromatic Hydrocarbon Dioxygenases in Environmental Biotechnology, Curr.Opin. Biotechnol.2000,11,236-243.
    [17]A. S. Hakemian, A. C. Rosenzweig, The Biochemistry of Methane Oxidation, Anm. Rev. Biochem.2007,76,223-241.
    [18]J. E. Baldwin, S. E. Abraham, The Biosynthesis of Penicillins and Cephalosporins, Nat. Prod Rep.1998, S,129-145.
    [19]N. J. Kershaw, M. E. C. Caines, M. C. Sleeman, C. J. Schofield, The Enzymology of Clavam and Carbapenem Biosynthesis, Chem. Commun.2005, 4251-4263.
    [20]D. Schwartz, S. Berger, E. Heinzelmann, K. Muschko, K. Welzel, W. Wohlleben, Biosynthetic Gene Cluster of the Herbicide Phosphinothricin Tripeptide from StreptomycesviridochromogenesTu494,Appl. Environ. Alicrob. 2004, 70, 7093-7102.
    [21]J. A. V. Blodgett, P. M. Thomas, G. Li, J. E. Velasquez, W. A. van der Donk, N. L. Kelleher, W. W. Metcalf, Unusual Transformations in the Biosynthesis of the Antibiotic Phosphinothricin Tripeptide, Nat.Chem. Biol. 2007, 3, 480-485.
    [22]A. Kim, J.Kim,B. M. Martin,D.Dunaway-Mariano,Isolation and Characterizationof theCarbon-PhosphorusBond-formingEnzyme Phosphoenolpyruvate Mutase from the MolluskMytilus edulis, J. Bio.Chem. 1998, 273, 4443.
    [23]H. Seto, T. Kuzuyama,Bioactive NaturalProducts with CarbonPhosphorus Bonds and their Biosynthesis, Nat. Prod. Rep. 1999,16, 589
    [24]R. M. Cicchillo, H. Zhang, J. A. V.Blodgett, J. T. Whitteck, G. Li, S. K. Nair, W. A. van der Donk, W. W. Metcalf, An Unusual Carbon-Carbon Bond Cleavage Reaction During Phosphinothricin Biosynthesis, Nature 2009,459, 871-874.
    [25]J.T.Whitteck,R.M.Cicchillo, W. A.v. d.Donk,Hydroperoxylationby HydroxyethylphosphonateDioxygenase, J.Am. Chem. Soc.2009,131, 16225-16232.
    [26]H. Hirao, K. Morokuma, Ferric Superoxide and Ferric Hydroxide Are Used in the Catalytic Mechanism of Hydroxyethylphosphonate Dioxygenase: A Density Functional Theory Investigation,J.Am.Chem. Soc. 2010, 132, 17901-17909.
    [27]H. Hirao, D. Kumar, L. Que, S. Shaik, Two-State Reactivity in Alkane Hydroxylation by Non-Heine IronOxo Complexes, J.Am. Chem. Soc. 2006, 128, 8590-8606.
    [28]D. Kumar, W. Thiel, S. P. de Visser, Theoretical Study on the Mechanism of the Oxygen Activation Process in Cysteine Dioxygenase Enzymes, J.Am.Chem. Soc. 2011, 133, 3869-3882.
    [29]T. Borowski, P. E. M.Siegbahn, Mechanism for Catechol Ring Cleavage by Non-Heme Iron Intradiol Dioxygenases:A Hybrid DFT Study, J. Am.Chem. Soc. 2006, 128,12941-12953.
    [30]C. J. Cramer, D. G. Truhlar, Density Functional Theory for Transition Metals and Transition Metal Chemistry, Phys. Chem. Chem. Phys.2009,11, 10757-10816.
    [31]C. Rong, S. Lian, D. Yin, A. Zhong, R. Zhang, S. Liu, Effective Simulation of Biological Systems. Choice of Density Functional and Basis Set for Heme-Containing Complexes, Chem. Phys:Lett.2007,434,149-154.
    [32]A. Altun, S. Shaik, W. Thiel, What is the Active Species of Cytochrome P450 during Camphor Hydroxylation? QM/MM Studies of Different Electronic States of Compound I and of Reduced and Oxidized Iron-oxo Intermediates, J. Am. Chem. Soc.2007,129,8978-8987.
    [33]K. Hemelsoet, F. De Vleeschouwer, V. Van Speybroeck, F. De Proft, P. Geerlings, M. Waroquier, Validation of DFT-Based Methods for Predicting Qualitative Thermochemistry of Large Polyaromatics, ChemPhysChem 2011,12, 1100-1108.
    [34]H. Chen, M. Ikeda-Saito, S. Shaik, Nature of the Fe-02 Bonding in Oxy-Myoglobin:Effect of the Protein,J.Am. Chem. Soc.2008,130, 14778-14790.
    [35]M. Swart, A. R. Groenhof, A. W. Ehlers, K. Lammertsma, Validation of Exchange-Correlation Functionals for Spin States of Iron Complexes, J. Phys. Chem. A 2004,108,5479-5483.
    [36]M. Swart, Accurate Spin-State Energies for Iron Complexes, J. Chem. Theory Compnt.2008,4,2057-2066.
    [37]R. Ahlrichs, M. Bar, M. Haser, H. Horn, C. Kolmel, Electronic Structure Calculations on Workstation Computers:The Program System Turbomole, Chem. Phys. Lett.1989,162,165-169.
    [38]O. Christiansen, H. Koch, P. J(?)rgensen, The Second-Order Approximate Coupled Cluster Singles and Doubles Model CC2, Chem. Phys. Lett.1995,243, 409-418.
    [39]F. Weigend, M. Haser, H. Patzelt, R. Ahlrichs, RI-MP2: Optimized Auxiliary BasisSets andDemonstrationof Efficiency,Chem. Phys.Lett. 1998,294, 143-152.
    [40]C. Hattig, A.Hellweg, A. Kohn, Distributed Memory Parallel Implementation of Energies and Gradients for Second-Order Moller-Plesset Perturbation Theory with the Resolution-of-the-Identity Approximation, Phys.Chem.Chem,Phys. 2006, 8, 1159-1 169.
    [41]F.Weigend, R. Ahlrichs,BalancedBasis Sets of Split Valence, Triple Zeta Valence and QuadrupleZeta Valence Quality for H to RnDesign and Assessment of Accuracy, Phys. Chem. Chem. Phys. 2005, 7, 3297-3305.
    [42]C. Hattig, F. Weigend, CC2 Excitation Energy Calculations on Large Molecules using the Resolution of the Identity Approximation,J. Chem.Phys. 2000,113, 5154-5161.
    [43]C.Hattig, A. Kohn, Transition Moments and Excited-state First-order Properties in the Coupled-Cluster Model CC2 using the Resolution-of-the-ldentity Approximation,J.Chem. Phys. 2002, 117,6939-6951
    [44]F. Wennmohs, F. Neese, A Comparative Study of Single Reference Correlation Methods of the Coupled-Pair Type, Chemical Physics 2008,343, 217-230
    [45]F. Neese, A. Hansen, F. Wennmohs, S. Grim me, Accurate Theoretical Chemistry with Coupled Pair Models, Act: Chem. Res. 2009, 42, 641-648.
    [46]H. Chen, W. Lai, S.Shaik, Multireference and Multiconfiguration Ab Initio Methods in Heme-Related Systems: What Have We Learned So Far?,J.Phys. Chem. B2011,115, 1727-1742.
    [47]M.Radon,K.Pierloot,Binding of CO,NO, and 02 to Heme byDensity Functional and Multireference ab Initio Calculations,J.Phys. Chem. A 2008, 112, 11824-11832.
    [48]N. Nakatani, Y. Hitomi, S. Sakaki, MultistateCASPT2 Study ofNative lron(Ⅲ)-DependentCatecholDioxygenaseandItsFunctionalModels: Electronic Structure and Ligand-to-Metal Charge-Transfer Excitation, J.Phys. Chem. B2011, 115, 4781-4789.
    [49]P. Sherwood, A. H. de Vries, M. F. Guest, G. Schreckenbach, C R. A. Catlow, S. A. French, A. A. Sokol, S. T. Bromley, W. Thiel, A. J. Turner, et al., QUASI:A General Purpose Implementation of the QM/MM Approach and its Application to Problems in Catalysis, J Mol. Struc.-Theochem 2003,632,1-28.
    [50]W. Smith, T. R. Forester, DL_POL_Y 2.0:A General-Purpose Parallel Molecular Dynamics Simulation Package, J. Mol.Graph.1996,14,136-141.
    [51]D. Bakowies, W. Thiel, Hybrid Models for Combined Quantum Mechanical and Molecular Mechanical Approaches,J.Phys. Chem.1996,100,10580-10594.
    [52]A. D. MacKerell, D. Bashford, Bellott, R. L. Dunbrack, J. D. Evanseck, M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, et al., All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins(?),J.Phys. Chem.B1998, 102,3586-3616.
    [53]A. J. H. Wachters, Gaussian Basis Set for Molecular Wavefunctions Containing Third-Row Atoms,J.Chem. Phys.1970,52,1033-1036.
    [54]H. Chen, M. Ikeda-Saito, S. Shaik, Nature of the Fe-O2 Bonding in Oxy-Myoglobin:Effect of the Protein, J. Am. Chem. Soc.2008,130, 14778-14790.
    [55]D. Balcells, E. Clot, O. Eisenstein, C-H Bond Activation in Transition Metal Species from a Computational Perspective, Chem. Rev.2010, 110,749-823.
    [56]O. Andreas Andersen, T. Flatmark, E. Hough, Crystal Structure of the Ternary Complex of the Catalytic Domain of Human Phenylalanine Hydroxylase with Tetrahydrobiopterin and 3-(2-Thienyl)--alanine, and its Implications for the Mechanism of Catalysis and Substrate Activation, J. Mol. Biol.2002,320, 1095-1108.
    [57]E. I. Solomon, T. C. Brunold, M. I. Davis, J. N. Kemsley, S.-K. Lee, N. Lehnert, F. Neese, A. J. Skulan, Y.-S. Yang, J. Zhou, Geometric and Electronic Structure/Function Correlations in Non-Heme Iron Enzymes, Chem. Rev.1999, 100,235-350.
    [58]E. C. Wasinger, N. Mitic, B. Hedman, J. Caradonna, E. I. Solomon, K. O. Hodgson, X-ray Absorption Spectroscopic Investigation of the Resting Ferrous and Cosubstrate-Bound Active Sites of Phenylalanine Hydrowlaset, Bioehemistrv2002, 41, 6211-6217.
    [59]S. de Visser, J.Valentine, W.Nam, A Biomimetic Ferric Hydroperoxo Porphyrin Intermediate,Angew.Chem.,Int.Ed. 2010,49, 2099-2101
    [60]R. D. Bach,O. Dmitrenko,The "Somersault" Mechanism tor theP-450 Hydroxylation of HydrocarbonsThe Intervention of Transient Inverted Metastable Hydroperoxides, J. Am. Chem. Sot: 2006, 128, 1474-1488
    [61]R. D. Bach, O. Dmitrenko,Transient Inverted Metastable Iron Hydroperoxides inFentonChemistry.ANonenzymaticModelforCytochromeP450 Hydroxylation,J.Org.Chem. 2010, 75, 3705-3714.
    [62]J. Conradie, D. A. Quarless, H. F. Hsu, T. C. Harrop, S. J. Lippard, S. A. Koch, A. Ghosh, Electronic Structure and FeNO Conformation of Nonheme Iron-Thiolate-NO Complexes: An Experimental and DFT Study, J. Am. Chem. Sot: 2007, 129, 10446-10456.
    [63]C.J.Cramer, W.B.Tolman,K.H.Theopold,A.L. Rheingold,Variable Character of O - O and M - O Bonding in Side-on (η2) 1:1 Metal Complexes of O2,Prot:Natl. Acad Sci.U. S. A. 2003, 100, 3635-3640.
    [64]F. Ogliaro, S. P. de Visser, S. Cohen, P. K. Sharma, S. Shaik, Searching for the Second Oxidant in the Catalytic Cycle of Cytochrome P450:A Theoretical Investigation of the Iron(Ⅲ)-Hydroperoxo Species and Its Epoxidation Pathways, J. Am. Chem. Soc. 2002,124, 2806-2817.
    [65]D.L.Harris, G.H.Loew, Theoretical Investigation of the ProtonAssisted Pathway to Formation of Cytochrome P450 Compound I, J. Am. Chem. Soc. 1998, 120, 8941-8948.
    [66]A. Bassan, M. R. A. Blomberg, P. E. M. Siegbahn, L. Que, Two Faces of a Biomimetic Non-heme HO-Fe-v=O Oxidant:Olefin Epoxidation versus Cis-dihydroxylation, Angew. Chem.,Int.Ed 2005,44, 2939-2941.
    [67]A.J.Allentoff,J. L. Bolton,A.Wilks,J.A.Thompson, P. R. Ortiz de Montellano, Heterolytic versus Homolytic Peroxide Bond Cleavage by Sperm Whale Myoglobin and Myoglobin Mutants,J.Am.Chem. Soc:1992,114, 9744-9749
    [68]A. Bassan, M. R. A. Blomberg, P. E. M. Siegbahn, L. Que, A Density Functional Study of O-O Bond Cleavage for a Biomimetic Non-heme Iron Complex Demonstrating an Fe-V-intermediate,J.Am. Chem. Soc.2002, 124, 11056-11063.
    [69]J. Zheng, D. Wang, W. Thiel, S. Shaik, QM/MM Study of Mechanisms for Compound I Formation in the Catalytic Cycle of Cytochrome P450cam,J.Am. Chem. Soc.2006,128,13204-13215.
    [70]Z. Cao, Y. Mo, W. Thiel, Deprotonation Mechanism of NH4+ in the Escherichia coli Ammonium Transporter AmtB:Insight from QM and QM/MM Calculations, Angew. Chem., Int. Ed. 2007,46,6811-6815.
    [71]N. Lehnert, R. Y. N. Ho, L. Que, E.I. Solomon, Electronic Structure of High-Spin Iron(Ⅲ)-Alkylperoxo Complexes and Its Relation to Low-Spin Analogues:Reaction Coordinate of O-O Bond Homolysis,J.Am. Chem. Soc. 2001, 123,12802-12816.
    [72]N. Lehnert, R. Y. N. Ho, L. Que, E. I. Solomon, Spectroscopic Properties and Electronic Structure of Low-Spin Fe(Ⅲ)-Alkylperoxo Complexes:Homolytic Cleavage of the O-O Bond, J. Am. Chem. Soc.2001, 123,8271-8290.
    [73]N. Lehnert, F. Neese, R. Y. N. Ho, L. Que, E. I. Solomon, Electronic Structure and Reactivity of Low-Spin Fe(Ⅲ)-Hydroperoxo Complexes:Comparison to Activated Bleomycin, J. Am. Chem. Soc.2002, 124,10810-10822.
    [74]M. Zhao, D. T. Song, S. J. Lippard, Water Induces a Structural Conversion and Accelerates the Oxygenation of Carboxylate-Bridged Non-heme Diiron Enzyme Synthetic Analogues, Inorg. Chem.2006,45,6323-6330.
    [75]J. T. Whitteck, P. Malova, S. C. Peck, R. M. Cicchillo, F. Hammerschmidt, W. A. van der Donk, On the Stereochemistry of 2-Hydroxyethylphosphonate Dioxygenase,J.Am. Chem. Soc.2011,133,4236-4239.
    [76]K. Senthilkumar, J. I. Mujika, K.E. Ranaghan, F. R. Manby, A. J. Mulholland, J. N. Harvey,Analysis of Polarizationin QM/MM Modelling of Biologically Relevant Hydrogen Bonds,J. RoyalSoc. Interface2008, 5, 207-216.
    [77]F. Bartha, O. Kapuy, C. Kozmutza, C.Van Alsenoy, Analysis of Weakly Bound Structures: Hydrogen Bond and the Flection Density in a Water Dimer, J Atol. Struc.-Theochem 2003, 666-667, 117-122
    [78]N.Strickland, A. J. Mulhollancl, J. N.Harvey, The Fe-CO Bond Fnergy in Myoglobin: A QM/MM Study of the Effect ofTertiary Structure, Biophys.J. 2006, 90, E27-E29.
    [79]J. P. Gallivan, D. A. Dougherty, Cation-π Interactions in StructuralBiology, Proc. Natl. Acad. Sci.U. S. A. 1999, 96, 9459-0464
    [80]D. Quinoncro, C. Garau, C. Rotger, A. Frontera, P. Ballestcr, A. Costa, P. M. Deya, Anion-π Interactions: Do They Exist?, Angew. Chem., Int.Ed. 2002,41, 3389-3392.
    [81]D. A. Dougherty, Cation-pi Interactions in Chemistry and Biology: A New View of Benzene, Phe, Tyr, and Trp, Science 1996, .171, 163-168
    [82]J. C. Ma, D. A. Dougherty, The Cation-π Interaction, Chem. Rev. 1997,97, 1303-1324.
    [83]S. Shaik, S. P. de Visser, D. Kumar, ExternalFlectric Field Will Control the Selectivity of Enzymatic-Like Bond Activations, J. Am.Chem. Soc. 2004, 126, 11746-11749.
    [84]H. Hirao, H. Chen, M. A.Carvajal, Y. Wang, S.Shaik,Effect of External Electric Fields on the C-H Bond Activation Reactivity of Nonheme IronOxo Reagents,J.Am. Chem. Soc. 2008, 130, 33 19-3327.
    [85]S. D. Straight, J. Andreasson, G. Kodis, S. Bandyopadhyay, R. H. Mitchell, T. A. Moore, A. L. Moore, D. Gust, Molecular AND and INHIBIT Gates Based on Control of Porphyrin Fluorescence by Photochromes, J.Am.Chem. Soc. 2005, 127, 9403-9409.
    [86]F. Xu, E. J. Golightly, K. R. Duke, S. F.Eassen, B. Knusen, S. Christcnscn, K. M. Brown, S. H. Brown, M. Schiilein, Humicola Insolens Cellobiose Dehydrogenase:Cloning, Redox Chemistry, and "Logic Gate"-Like Dual Functionality,Enzyme. Microb. Technol.2001,28,744-753.
    [87]S. J. Langford, T. Yann, Molecular Logic:A Half-Subtractor Based on Tetraphenylporphyrin,J.Am. Chem. Soc.2003,125,11198-11199.
    [88]E. Maligaspe, F. D'Souza, NOR and AND Logic Gates Based on Supramolecular Porphyrin-Fullerene Conjugates, Org. Lett.2009,12,624-627.
    [89]N. S. Hush, J. R. Reimers, L. E. Hall, L. A. Johnston, M. J. Crossley, Optimization and Chemical Control of Porphyrin-Based Molecular Wires and Switches, Ann. N. Y. Acad Sci.1998, 852,1-21.
    [1]D. Schwartz, S. Berger, E. Heinzelmann, K. Muschko, K.Welzel, W. Wohlleben, Biosynthetic Gene Cluster of the Herbicide Phosphinothricin Tripeptide from Streptomyces Viridochromogenes Tu494, Appl.Environ. Alicrob. 2004, 70, 7093-7102.
    [2]J. A. V. Blodgett, P. M. Thomas, G. Li, JE. Velasquez, W. A van dcr Donk, N. L Kelleher, W. W. Metcalf, Unusual Transformations in the Biosynthesis of the Antibiotic Phosphinothricin Tripeptide, Nat. Chem. Biol. 2007, 3, 480-485.
    [3]E.L. Hegg, L. Q. Jr, The 2-His-1-Carboxylate Facial TriadAn Evmerging Structural Motif in Mononuclear Non-Heme Iron(Ⅱ) Enzymes,Eur.J. Biochem. 1997, 250, 625-629
    [4|M. L. Neidig, C. D. Brown, K. M. Light, D G. Fujimori, E. M. Nolan, J. C. Price, E. W. Barr, J. M. Bollinger, C.Krebs, C. T. Walsh, et al., CD and MCD of CytC3 and Taurine Dioxygenase: Role of the facial Triad in Alpha-KG-Dependent Oxygenases,J.Am. Chem. Soc. 2007, 129, 14224-14231.
    [5]P. C. A. Bruijnincx, G. van Koten, R. Gebbink, Mononuclear Non-heme Iron Enzymes with the 2-His-l-Carboxylate Facial Triad:Recent Developments in Enzymology and Modeling Studies, Chem. Soc. Rev. 2008, 37, 2716-2744.
    [6]L. Que, One Motif- Many Different Reactions, Nat Struct Mol Biol 2000, 7 182-184.
    [7]D. T.Gibson, R.E.Parales, Aromatic HydrocarbonDioxygenases in Environmental Biotechnology, Curr.Opin.Biotechmol. 2000,11, 236-243.
    [8]A. S. Hakemian, A. C. Rosenzweig, The Biochemistiy of Methane Oxidation, Anmt. Rev. Biochem. 2007, 76, 223-241.
    [9]R. M. Cicchillo, H. Zhang, J. A. V. Blodgett, J.T.Whitteck, G. Li, S. K. Nair, W. A. van der Donk, W. W. Metcalf, An Unusual Carbon-Carbon Bond Cleavage Reaction During Phosphinothricin Biosynthesis, Nature 2009, 459, 871-874.
    [10]J.T.Whitteck, R. M.Cicchillo, W.A.v.dDonk,Hydroperoxylationby Hydroxyethylphosphonate Dioxygenase,J.Am. Chem. Soc.2009,131, 16225-16232.
    [11]S. C. Peck, H. A. Cooke, R M. Cicchillo, P. Malova, F. Hammerschmidt, S. K. Nair, W. A. van der Donk, Mechanism and Substrate Recognition of 2-Hydroxyethylphosphonate Dioxygenase, Biochemistry 2011,50,6598-6605.
    [12]J. T. Whitteck, P. Malova, S. C. Peck, R. M. Cicchillo, F. Hammerschmidt, W. A. van der Donk, On the Stereochemistry of 2-Hydroxyethylphosphonate Dioxygenase, J. Am. Chem. Soc.2011,133,4236-4239.
    [13]L. Du, J. Gao, Y. Liu, D. Zhang, C. Liu, The Reaction Mechanism of Hydroxyethylphosphonate Dioxygenase:a QM/MM Study, Org. Biomol. Chem. 2012,10,1014-1024.
    [14]K. Ranguelova, J. Suarez, L. Metlitsky, S. Yu, S. Z. Brejt, S. Z. Brejt, L. Zhao, J. P. M. Schelvis, R. S. Magliozzo, Impact of Distal Side Water and Residue 315 on Ligand Binding to Ferric Mycobacterium tuberculosis Catalase-Peroxidase (KatG)(?), Biochemistry 2008,47,12583-12592.
    [15]M. S. Seo, J.-H. In, S. O. Kim, N. Y. Oh, J. Hong, J. Kim, L. Que, W. Nam, Direct Evidence for Oxygen-Atom Exchange between Nonheme Oxoiron(IV) Complexes and Isotopically Labeled Water, Angewandte Chemie 2004, 116, 2471-2474.
    [16]Y.-M. Lee, S. Dhuri, S. Sawant, J. Cho, M. Kubo, T. Ogura, S. Fukuzumi, W. Nam, Water as an Oxygen Source in the Generation of Mononuclear Nonheme Iron(Ⅳ) Oxo Complexesl3, Angew. Chem., Int. Ed 2009,48,1803-1806.
    [17]S. C. Sawant, X. Wu, J. Cho, K.-B. Cho, S. H. Kim, M. S. Seo, Y.-M. Lee, M. Kubo, T. Ogura, S. Shaik, et al., Water as an Oxygen Source:Synthesis, Characterization, and Reactivity Studies of a Mononuclear Nonheme Manganese(Ⅳ) Oxo Complex, Angew. Chem., Int. Ed.2010,49,8190-8194.
    [18]H. Hirao, K. Morokuma, Ferric Superoxide and Ferric Hydroxide Are Used in the Catalytic Mechanism of Hydroxyethylphosphonate Dioxygenase:A Density Functional Theory Investigation, J. Am. Chem. Soc.2010,132,17901-17909.
    [19]H. Hirao, K. Morokuma, ONIOM(DFT:MM) Study of 2-HydroxyethylphosphonateDioxygenase:WhatDetermines the Destinies of Different Substrates?J. Am. Chem. Soc. 2011,133, 14550-14553.
    [20]B. R. Brooks, R E. Bruccoleri, B. D. Olafson, D. J.States, S.Swaminathan, M. Karplus, CHARMM: A Program for Macromolecular Energy, Minimization, and Dynamics Calculations,J. Coinput. Chem. 1983, 4, 187-217.
    [21]Y. Wang, H. Chen, M Makino, Y.Shim, S.Nagano, S. Asamizu, H. Onaka, S. Shaik,TheoreticalandExperimental StudiesoftheConversionof Chromopyrrolic Acid to an Antitumor Derivative by Cytochrome P450 StaP: The Catalytic Role of Water Molecules,J.Am.Chem. Soc. 2009, 131, 6748-6762.
    [22]P. Sherwood, A. H de Vries, MF Ciuest, G. Schreckenbach, C. R. A. Catlow, S. A. French, A. A. Sokol, S T Bromley, W. Thiel, A. JTurner, et al., QUASI: A General Purpose Implementation of the QM/MM Approach and its Application to Problems in Catalysis, J Mol. Strue-Theochem 2003, 632, 1-28.
    [23]R. Ahlrichs, M. Bar.M. Haser,H.Horn,C.Kolmel, ElectronicStructure Calculations on Workstation Computers. The Program System Turbomole, Chem. Phys. Lett. 1989, 162, 165-169
    [24]W. Smith, T. R. Forester, DL.poLY 2.0: A General-Purpose Parallel Molecular Dynamics Simulation Package,J.Mol.Graph. 1996,14, 136-141
    [25]D. Bakowies, W. Thiel, Hybrid Models for Combined Quantum Mechanical and Molecular Mechanical Approaches,J.Phys. Chew. 1996,100, 10580-10594
    [26]P. Wiggins, Life Depends upon Two Kinds of Water, PLoS ONE2008, 3, el406.
    [27]F. Guo, J. M. Friedman, Osmolyte-Induced Perturbations of Hydrogen Bonding between Hydration LayerWaters: Correlation with Protein Conformational Changes,J.Phys. Chem.B2009,113, 16632-16642
    [28]S.Shaik, H.Chen,D. Janardanan,Exchange-Enhanced Reactivity in Bond Activation by Metal-Oxo Enzymes and Synthetic Reagents, Nat ('hem 2011, 3, 19-27.
    [29]M. T.Green, J.H Dawson,H B.Gray, Oxoiron(Ⅳ) in Chloroperoxidase Compound ⅡIs Basic: Implications for P450 Chemistry, Science 2004, 304, 1653-1656.
    [30]H. Hirao, L. Q. Jr., W. Nam, S. Shaik, A Two-State Reactivity Rationale for Counterintuitive Axial Ligand Effects on the C-H Activation Reactivity of Nonheme FeⅣ=O Oxidants, Chem. Eur. J.2008,14,1740-1756.
    [31]C. V. Sastri, M. J. Park, T. Ohta, T. A. Jackson, A. Stubna, M. S. Seo, J. Lee, J. Kim, T. Kitagawa, E. Munck, et al., Axial Ligand Substituted Nonheme FeⅣO Complexes:Observation of Near-UV LMCT Bands and FeO Raman Vibrations, J.Am. Chem. Soc.2005,127,12494-12495.
    [32]C. V. Sastri, J. Lee, K. Oh, Y. J. Lee, J. Lee, T. A. Jackson, K. Ray, H. Hirao, W. Shin, J. A. Halfen, et al, Axial Ligand Tuning of a Nonheme Iron(Ⅳ)-Oxo Unit for Hydrogen Atom Abstraction, Proc. Natl. Acad Sci. U. S. A.2007,104, 19181-19186.
    [1]P.Politzer,J.S. Murray,HalogenBonding:AnInterimDiscussion, ChemPhysChem2013, 14, 278-294
    [2]P.Politzer,P.Lane, M. Concha, Y. Ma, J. Murray, An overview of halogen bonding,J. Mol. Model2007,13, 305-311
    [3]E. Parisini, P. Metrangolo, T. Pilati, G.Resnati, G. Terraneo, Halogen Bonding in Halocarbon-Protein Complexes: a Structural Survey, Chem. Soc. Rev. 2011, 40, 2267-2278.
    [4]P. Auffinger. F. A. Hays, E. Westhof, P. S. Ho, Halogen Bonds in Biological Molecules, Proc. Nutl. Acad Sci. U. S. A. 2004, 101, 16789-16794.
    [5]H.L. Nguyen,P.N.Horton, M. B. Hursthouse, A. C.Legon, D.W. Bruce, HalogenBonding: A NewInteractionfor Liquid Crystal Formation,J.Am. Chem. Soc. 2003,126, 16-17
    [6]R Wilcken, M. O. Zimmermann, A Lange, A. C. Joerger, F. M. Boeckler, Principles and Applications of" Halogen Bonding in Medicinal Chemistry and Chemical Biology,J. A Med.Chem. 2012, 56, 1363-1388.
    [7]G. Minguez Espallargas, F. Zordan, L. Arroyo Marin, H. Adams, K. Shankland, J. van de Streek, L.Brammer, RationalModificationof the Hierarchyof Intermolecular Interactions in Molecular Crystal Structures by UsingTunable Halogen Bonds, Chem. Eur. J. 2009,15, 7554-7568.
    [8]K. Riley, J. Murray, J. Fanfrlik, J. Rezac, R. Sola, M. Concha, F. Ramos, P. Politzer, Halogen Bond Tunability II:the Varying Roles of Electrostatic and Dispersion Contributions to Attraction in Halogen Bonds, J Mol. Model 2012, 1-9.
    [9]Y.-X. Lai, J.-W. Zou, Y.-H. Wang, Q.-S. Yu, Ab Initio and Atoms in Molecules Analyses of Halogen Bonding with a Continuum of Strength,J Mol. Struc.-Theochem 2006,776, 83-87.
    [10]P. Politzer, J. S. Murray, T. Clark, Halogen Bonding: an Electrostatically-Driven Highly Directional Noncovalent Interaction, Phys. Chem. Chem. Phys.2010, 12, 7748-7757.
    [11]W. Wang, N.-B. Wong, W. Zheng, A. Tian, Theoretical Study on the Blueshifting Halogen Bond,J.Phys. Chem. A 2004,108,1799-1805.
    [12]Y.-X Lu, J.-W. Zou, Y.-H. Wang, Y.-J. Jiang, Q.-S. Yu. Ab Initio Investigation of the Complexes between Bromobenzene and Several Electron Donors:Some Insights into the Magnitude and Nature of Halogen Bonding Interactions,J.Phys. Chem. A 2007,111,10781-10788.
    [13]R.-Y. Li, Z.-R. Li, D. Wu, Y. Li, W. Chen, C.-C. Sun, Study of π Halogen Bonds in Complexes C2H4-nFn-ClF (n=0-2),J.Phys. Chem. A 2005, 109, 2608-2613.
    [14]X. An, B. Jing, Q. Li, Novel Halogen-Bonded Complexes H3NBH3-XY (XY ClF, ClC1, BrF, BrCl, and BrBr):Partially Covalent Character,J.Phys. Chem. A 2010,114,6438-6443.
    [15]S. Tsuzuki, A. Wakisaka, T. Ono, T. Sonoda, Magnitude and Origin of the Attraction and Directionality of the Halogen Bonds of the Complexes of C6F5X and C6H5X (X=I, Br, Cl and F) with Pyridine, Chem. Eur.J.2012,18,951-960.
    [16]M. Carter, A. K. Rappe, P. S. Ho, Scalable Anisotropic Shape and Electrostatic Models for Biological Bromine Halogen Bonds,J.Chem. Theory Comput.2012, 8,2461-2473.
    [17]M. A. Ibrahim, Molecular Mechanical Perspective on Halogen Bonding, J. Mol. Model2011, 18,4625-4638.
    [18]P. H. Konig, M. Hoffmann, T. Frauenheim, Q. Cui, A Critical Evaluation of Different QM/MM Frontier Treatments with SCC-DFTB as the QM Method, J. Phys. Chem.B 2005,109,9082-9095.
    [19]B. Wang, D. G. Truhlar, Combined Quantum Mechanical and Molecular Mechanical Methods for Calculating Potential Energy Surfaces:Tuned and Balanced Redistributed-Charge Algorithm,J.Chem. Theory Comput.2010,6, 359-369.
    [20]B. Wang, D. G. Truhlar, Partial Atomic Charges and Screened Charge Models of the Electrostatic Potential,J.Chem. Theory Comput. 2012,8,1989-1998
    [21]B.Wang,D. G. Truhlar, Including Charge PenetrationEffects inMolecular Modeling,J.Chem. Theory Comput. 2010, 6, 3330-3342.
    [22]M. Alberti, AAguilar, J. M. Lucas, F. Pirani, D.Cappelletti, C. Coletti, N. Re, Atom-BondPairwise AdditiveRepresentationfor Cation-BenzenePotential Energy Surfaces: An ab Initio Validation Study, J.Phy. Chem. A 2006,110, 9002-9010.
    [23]J. Wang, R.M. Wolf, J. W. Caldwell, P. A. Kollman, D. A.Case, Development and Testing of a GeneralAmber ForceField, J.Comput. Chem.2004,25, 1 157-1174
    [24]S. Patel, A. D. Mackerell, C. L. Brooks, CHARMM Fluctuating Charge Force Field forProteins: Ⅱ Protein/Solvent Propertiesfrom Molecular Dynamics Simulations Using a Nonadditive Electrostatic Model, J.Comput. Chem. 2004, 25, I 504-1514
    [25]G. Eamoureux, B. Roux, Modeling Induced Polarization with Classical Drude Oscillators: Theory and Molecular Dynamics Simulation Algorithm, J. Chcm. Phys. 2003, 119, 3025-3039.
    [26]J.Sala,E. Guardia,M.Masia, The Polarizable Point Dipoles Method with Electrostatic Damping: Implementation on a Model System,J. Chem.Phys. 2010, 133, 234101.
    [27]G. A. Kaminski, H.A. Stern, B. J. Berne, R. A. Friesner, Development of an Accurate and Robust Polarizable Molecular Mechanics ForceField from ab Initio Quantum Chemistry,J. Phys. Chem. A 2003, 108, 62 1-627.
    [28]P. Cieplak, J. Caldwell, P. Kollman, Molecular Mechanical Models for Organic and Biological Systems Going beyond the Atom Centered Two Body Additive Approximation: Aqueous Solution Free Energies of MethanolandN-mcthyl Acetamide,Nucleic AcidBase,andAmideHydrogenBondingand Chloroform/Water Partition Coefficients of the Nucleic Acid Bases, J. Comput. Chem. 2001, 22, 1048-1057.
    [29]J. W. Ponder, D. A. Case, in Adv. Protein Chem., ed. by D. Valerie, Academic Press,2003, Vol. Volume 66, pp.27-85.
    [30]C. I. Bayly, P. Cieplak, W. Cornell, P. A. Kollman, A Well-Behaved Electrostatic Potential Based Method Using Charge Restraints for Deriving Atomic Charges: the RESP Model,J.Phys.Chem.1993,97,10269-10280.
    [31]D. Ghosh, R. Biswas, Theoretical Calculation of Absolute Radii of Atoms and Ions. Part 1. The Atomic Radii,Int.J.Mol. Sci.2002,3,87-113.
    [32]S. S. Batsanov, Anisotropy of the van der Waals Configuration of Atoms in Complex, Condensed, and Gas-Phase Molecules, Russ. J. Coord Chem.2001, 27,890-896.
    [33]F. H. Herbstein, Crystalline Molecular Complexes and Compounds:Structures and Principles, Oxford University Press 2005
    [34]J. Wang, P. Cieplak, J. Li, T. Hou, R. Luo, Y. Duan, Development of Polarizable Models for Molecular Mechanical Calculations I:Parameterization of Atomic Polarizability,J.Phys. Chem.B2011,115,3091-3099.
    [35]S. Nakagawa, P. Mark, H. Agren, Recipe of Polarized One-Electron Potential Optimization for Development of Polarizable Force Fields, J. Chem. Theory Comput.2007,3,1947-1959.
    [36]T. C. Lillestolen, R. J. Wheatley, First-Principles Calculation of Local Atomic Polarizabilities,J.Phys.Chem.A2007,111,11141-11146.
    [37]J. Wang, X.-Q. Xie, T. Hou, X. Xu, Fast Approaches for Molecular Polarizability Calculations, J. Phys. Chem. A 2007,111,4443-4448.
    [38]Y. Gu, T. Yan, Thole Model for Ionic Liquid Polarizability,J.Phys. Chem. A 2012,117,219-227.
    [39]M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, T. Vreven, K. N. Kudin, J. C. Burant, et al., in Book Gaussian 03, Revision D, ed., ed. by Editor, City,2003, Chap. Chapter.
    [40]Y. Duan, C. Wu, S. Chowdhury, M. C. Lee, G. Xiong, W. Zhang, R. Yang, P. Cieplak, R. Luo, T. Lee, et al., A Point-Charge Force Field for Molecular Mechanics Simulations of Proteins Based on Condensed-Phase Quantum Mechanical Calculations,J.Comput. Chem.2003, 24,1999-2012.
    [41]P. Su, H. Li, Energy Decomposition Analysis ofCovalent Bonds and Intermolecular Interactions,J. Chem. Phys. 2009, 131, 014102.
    [42]M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, et al., General Atomic and Molecular Electronic Structure System,J. Compnt.Chem. 1993,14, 1347-1363.
    [43]L. A Hardegger, B. Kuhn, B. Spinnler, L. Anselm, R. Ecabert, M. Stihle, B. Gsell, R. Thoma, J. Diez, J. Benz., et al.. Halogen Bonding at the Active Sites of Human Cathepsin L and MEK1 Kinase: Efficient Interactionsin Different Environments, ChemMedChem 2011, 6, 2048-2054.
    [44]L.A. Hardegger, B. Kuhn, B. Spinnler, L. Anselm, R. Ecabert, M.Stihle, B. Gsell, R. Thoma, J. Diez, J. Benz, et al, Systematic Investigation of Halogen Bondingin Protein-Ligand Interactions,Angew. Chem.. Int.ED.. 2011,50, 314-318.
    [45]S. Estrada, M. Nycander, N. J. Hill, C. J. Craven, J. P. Waltho, 1. Bjork, The Role of Gly-4 of Human Cystatin A (Stefin A) in the Binding of Target Proteinases Characterization byKinetic andEquilibriumMethods of theInteractions of CystatinA Gly-4 Mutants with Papain, Cathepsin B,and Cathepsin L(?), Biochemistry 1998, 37, 7551-7560.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700