C_(60)及(5,5)椅式单壁碳纳米管内嵌有机小分子结构的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Kroto等人在1985年首次发现了C_(60)分子,Kraetschmer等人在1990年实现了其宏观量生产。1991年S.Iijima等人发现了碳纳米管。从此,富勒烯和碳纳米管所具有的独特结构与性质将人们带入崭新的材料科学领域,也充分引起了科学家们广泛的注意。1991年,第一个富勒烯包合物La@C_(82)制备成功后,不仅掀起了富勒烯包合物的研究热潮,而且纳米微孔材料的中空管特性也使得人们想象在微孔介质中吸附存储氢气、天然气以及其他一些有机小分子气体。
     本文用密度泛函理论(DFT) B3LYP方法,对富勒烯有机小分子包合物(C_2H_2@C_60、C_2H_4@C_60和C_2H_6@C_60)和内包合有机小分子的碳纳米管复合物(C2H2@(5,5)SWNT、C_2H_4@(5,5)SWNT和C_2H_6@(5,5)SWNT)分别进行了理论研究。其主要研究结果如下:
     1.有机小分子在碳笼的中心时包合物最稳定。在这种包合物中有机小分子是电子的受体,而碳笼则为电子的给体,这与金属富勒烯包合物恰恰相反。前线分子轨道分析和结合能分析都表明,这种包合物的形成过程为吸热过程。虽然碳笼和有机小分子之间存在着排斥作用,且这种排斥作用引起了碳笼的形变和有机小分子键长的缩短,但并没有破坏其笼状结构。这说明理论上C_(60)可以很好地存储C_2H_2, C_2H_4和C_2H_6等有机小分子在其笼里。但是因为它们之间有相互排斥作用,在实验合成时,如果将C_(60)换成直径大于9(?)的高碳笼或者采用化学开笼等特殊的合成方法会取得更佳效果。
     2.中心掺杂物放在碳纳米管的管轴上的异构体相对于掺杂物垂直于管轴的异构体要稳定。结合能研究预测内嵌有机小分子碳纳米管复合物的形成过程为吸热过程;前线分子轨道研究表明有机小分子的插入会使其HOMO-LUMO能隙变大;有机小分子的插入会引起碳纳米管直径的轻微加大,来减少碳管张力,其形变程度按C_2H_2、C_2H_4、C_2H_6的顺序依次增大;外围碳纳米管的存在会使内嵌小分子的C-C、C-H键长受到轻微压缩,对键长的压缩程度也按内嵌的分子为C_2H_2、C_2H_4、C_2H_6的顺序依次增大;电荷分析结果表明极微量电荷会从碳管转移到内嵌的有机小分子,且其电荷转移量按内嵌的分子为C_2H_2、C_2H_4、C_2H_6的顺序依次增大。
Kroto et al discovered the Buckminster-fullerene in 1985 and Kraetschmer et al succeeded in producing macroscopic quantities of C_(60) in 1990. In the next year, carbon nanotubes were discovered by S. Iijima. Then, the unique structure and properties of C60 and carbon nanotubes attracted considerable attention and lead people to the novel fields of materials. Since the first endohedral metallofullerenes, La@C_(82) was discovered in 1991, there has been much interest in studying not only endohedral fullerene but also endohedral carbon nanotube which could be ideal container for some small molecules such as H_2, CH_4 and so on.
     In this paper, endohedrally acetylene, ethylene and ethane doped fullerene (C_2H_2@C_60, C_2H_4@C_60 and C_2H_6@C_60) and single-walled carbon nanotube(C_2H_2@(5,5)SWNT, C_2H_4@(5,5)SWNT and C_2H_6@(5,5)SWNT) were studied theoretically using Density Functional Theory (DFT) at B3LYP leveal, respectively. The main results are as follow:
     1. When the dopant sited at the center of the C60 cage, the energy of complex is at its minimum. The dopant is an electron acceptor and the cage is a donor which is different from the case of metallofullerenes. The frontier orbital analysis and the binding energy calculations suggest that the formations of C_2H_2@C_60, C_2H_4@C_60 and C_2H_6@C_60 would be endothermic. The cage and dopant affect each other rarely except for the slight distortion of C_60 cage and compression of the hydrocarbon molecules. Apparently, C_60 could be a good container for some small hydrocarbon molecules like C_2H_2, C_2H_4 and C_2H_6 theoretically. But it may be more practical experimentally if the cage would be higher fullerenes whose diameter are larger than 9(?) or use some special synthetic routes similar to opening a hole in the fullerene through chemical modification.
     2. The isomer in which the dopant is parallel to the wall of SWNT is more stable than that of normal to the wall. The calculations suggests that the formations of C_2H_2@(5,5)SWNT, C_2H_4@(5,5)SWNT and C_2H_6@(5,5)SWNT are endothermic; The frontier molecular orbital analysis shows that doping hydrocarbon molecule made the increasment of the HOMO-LUMO gap; the insertion of the hydrocarbon molecule in the center of the nanotube enlarge the diameter of the nanotube and the nanotube outside made the C-C and C-H bond lengths of hydrocarbon molecule compressed slightly and the bigger the dopant is, the tighter the compression is; a small quantity of electron transfer from (5,5)SWNT to the hydrocarbon molecule happenes and the amount of the electron transfer in the three compounds is the following sequence of C_2H_2@(5,5)SWNT
引文
1. Chapman S, Pongracic H, Disney M, et al. The formation of binary and multiple star systems. Nature, 1992, 359:207-210.
    2. Wragg J L, Chamberlain J E, White H W,et al.Scanning tunneling microscope of solid C60/C70. Nature, 1990, 348:623-624.
    3. Saito S, OShiyama A. Cohesive Mechanism and energy band of solid C60. Phys Rev Lett, 1991, 66: 2637-2640.
    4. Hawkins J M, Lewis T A, Loren S D, et al. A Crystallographic anaylisis of C60(buckyminster-fullerene). J Chem Soc Chem Comm, 1991: 775-776.
    5. Nunen-regueiro M. C60 under pressure. Modern Phys. Lett., B, 1992, 6: 1153.
    6. Byszewski P. Diduszko R, Kowalska E, et al. Crystalization and phase transmitions in C60. Appl Phys Lett, 1992, 61: 2981-2983.
    7. Shimomuro S, Fujji y, Nozawa S, et al .Pressure-induced phase trasition in an orthorhombic C60 crystal. Solid state comm,1993, 85: 471-473.
    8. Yosida Y, Arai T, Suematsu H. Growth of face-central-cubic single crystals of C60 from boiling benzene. Appl Phy Lett, 1992 (61): 1043-1044.
    9. Dravid V P, Lin X, Zhang H, et al. Transmission election microscopy of C70 single crystals at room temperature. J Mater Res, 1992, 7: 2440-2446.
    10. Tomita M, Hayashi T, Gaskell P, et al. Transformation electron diffraction study of C70 phase transformation at low temperature. Appl Phy Lett, 1992, 61: 1171-1173.
    11. Yosida Y. Morphology of C60 single crystals. Jpn J appl Phys, 1992, 31: L870
    12. Liu J Z, Dykes J W, Lan M D, et al. Vapor transport growth of C60 crystals. Appl Phys, 1992, 62: 531-532.
    13. Crul R F and Smalley R E. fullerene. Scientific American, 1991, 10: 54-63.
    14. Kroto H W, Heath J R, O’Brien S C, et al. C60-bukminsterfullerene. Nature, 1985, 318 (6042): 162-163.
    15.Kr?tschmer W, Lanb L D, Fortiropoulos K, et al. Solid C60: a new form of carbon. Nature, 1990, 347: 354-357.
    16. Baum R M. Chem Eng News, 1985, 63: 20.
    17. Kroto H W. The stability of the fullerenes Cn, with n = 24, 28, 32, 36, 50, 60 and 70. Nature, 1987, 329: 529-531.
    18. Piskoti C, Yarger J, Zettl A. C36, a new carbon solid. Nature, 1998, 393: 771-774.
    19. Prinzbach H, Welter A, Landenberger P, et al. Gas-phase production and photoelectron spectroscopy of the smallest fullerene, C20. Nature, 2000, 407: 60-63.
    20. Saito M, Miyamoto Y, Theoretical Identification of the Smallest Fullerene, C20. Phys Rev Lett, 2001, 87: 035503-035506.
    21. Averdung J, Luftmann H, Schlachter I, et al. Aza-Dihydro[60] Fullerene in the Gas Phase.A Mass-Spectrometric and Quantumchemical Study. Tetrahedron, 1995, 51: 6977-6982.
    22. Lamparth I, Nuber B, Schick G, et al. C59N+ and C69N+: Isoelectronic heteroanalogues of C60 and C70. Angew Chem Int Ed Engl, 1995, 34(20): 2257-2259.
    23. Morton J R, Preston, K F, Krusic P. J, et al. The dimerization of fullerene RC60 radicals [R = alkyl]. J Am Chem Soc, 1992, 114(13), 5454-5455.
    24. Hummelen J C, Knight B, Pavlovich J, et al. Isolation of the heterofullerene C59N as its dimer (C59N)2. Science, 1995, 269: 1554-1556.
    25. Nuber B, Hirsch A. A new route to nitrogen heterofullerenes and the first synthesis of (C69N)2. J Chem Soc ChemCommun, 1996, 1421-1422.
    26. Saunders M, Jiménez-Vázquez H A, Cross R J, et al. Stable compounds of helium and neon-He at the cost of C60 and Ne at the cost of C60. Science, 1993, 259: 1428-1430.
    27. Piezak B, Waiblinger M, Almeida Murphy T, et al. Buckminsterfullerene C60: a chemical Faraday cage for atomic nitrogen. Chem Phys Lett, 1997, 279: 259-263.
    28. Larssona J A, Greer J C. Phosphorous trapped within buckminsterfullerene. J Chem Phys, 2002, 116: 7849-7854.
    29. Yanov I, Leszczynski J. The molecular structure and electronic spectrum of the C@C60 endohedral complex: An ab initio study. Journal of Molecular Graphics and Modelling, 2001, 19: 232-235.
    30. Stevenson S, Rice G, Glass T, et al. Small-bandgap endohedral metallofullerenes in high yield and purity, Nature, 1999, 401:55-57.
    31. Komatsu K, Murata M, Murata Y. Encapsulation of Molecular Hydrogen in Fullerene C60 by Organic Synthesis. Science, 2005, 307: 238-240.
    32. Takashi I, Tetsuo T, Toshiki S, et al. Trapping a C2 Radical in Endohedral Metallofullerenes: Synthesis and Structures of (Y2C2)@C82 (Isomers I, II, and III). J Phys Chem B, 2004, 108: 7573-7579.
    33. Wang C R, Kai T, Tomiyama, T, et al. A scandium carbide endohedral metallofullerene: Sc2C2@C84. Angew Chem Int Ed, 2001, 40: 397-399.
    34. Gu Z N, Qian J X, Zhou X H, et al. Buckm insterfullerene C60: Synthesis, Spectroscopic Characterization, and Structure Analysis. J Phys Chem, 1991, 95: 9615-9618.
    35. 李玉良,徐菊华,朱道本. 我国 C60 和碳纳米管的研究进展[J]. 化学通报, 1999, 10: 10-13.
    36. Cox D M, Reichmann K C, Kaldor A. Carbon Clusters Revisited: The special behavior of C (60) and large carbon clusters. J Chem Phys, 1988, 88: 1588-1597.
    37. So H Y, Wilkins C L, First observation of carbon aggregate ions >C600+ by laser desorption Fourier transform mass spectrometry. J Phys Chem, 1989, 93, 1184-1187.
    38. O'Brien S C, Heath J R, Kroto H W, et al. A reply to “magic numbers in Cn+ and Cn- abundance distribution” based on experimental observations. Chem. Phys. Lett., 1986, 132: 99-102.
    39. H?ser M, Alml? J, Scuseria G E. The equilibrium geometry of C60 as predicted by second-order (MP2) perturbation theory. Chem Phys Lett, 1991, 181: 497-500.
    40. David W I F, Ibberson R M, Matthewman J C, et al. Crystal Structure and bonding of ordered C60. Nature, 1991, 353: 147-149.
    41. 郝春雁,刘子阳,郭兴华,等. 笼内金属富勒烯研究进展[J]. 化学通报,1997, 6: 9-14.
    42. Tang A C, Li Q S, L iu CW, et al. Symmetrical clusters of carbon and boron. Chem Phys Lett, 1993, 201: 465.
    43. 马晨生,李慎敏,杨忠志. C60 的单原子碱金属化合物几何结构规律的量子化学研究[J]. 化学学报,1994,52: 847-852.
    44. 葛茂发,封继康,崔勐,等. N@C60 的几何结构和振动光谱的理论研究[J]. 高等学校化学学报,1999,20(3): 458-460.
    45. Lu J, Zhang X W, Zhao X G. Electronic structures of endohedral N@C60, O@C60 and F@C60. Chem Phys Lett, 1999, 312(2-4): 85-90.
    46. Hu Y H, Ruckenstein E. Endohedral complexes of C58 cage with H2 and CO. Chem Phys Lett, 2004, 390: 472–474.
    47. 严继民,朱传宝. C60 笼中一些小分子的笼中态[J]. 中国科学(B),2000,30(2): 97-102.
    48. 朱传宝,严继民. (Alkali@C60)中碱金属与 C60 笼的相互作用研究[J]. 科学通报,1995,40(14): 1276-1278.
    49. Yan J M, Zhu C B. Investigation of interaction in C60 embedded complexes (X@C60). J Mol Struct (THEOCHEM), 1995, 358: 167-172.
    50. Yan J M, Zhu C B. Investigation of interaction in C60 embedded complexes (X@C60) at a series of radial positions by Buckingham potential function. J Comput Chem, 1996, 17: 1624-1632.
    51. 朱传宝,严继民. 内嵌复合物 X@C60 中相互作用的变化规律与键本质[J]. 物理化学学报,1996,12(9): 796-803.
    52. Xu Z J, Zhu C B, Yan J M. Energy relationship and polarization of C60 cage in the endohedral complexes (X@C60). Chinese Journal of Chemistry, 1998, 16(3): 196-208.
    53. Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354: 56-58.
    54. Iijiama S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. Nature, 1993, 363: 603-605.
    55. Bethune DS, Kiang CH, de Vries MS, et al. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature, 1993, 363: 605-507.
    56. Kristschmer W, Lamb L D, Fortiropoulos K. Solid C60: a new form of carbon. Phys Lett, 1993, 62: 202-204
    57. Yacaman M J, Yoshida M M, Rendon L. Catalytic growth of carbon microtubules with fullerene structure. Appl Phys Lett, 1993, 62: 202-204.
    58. 朱宏伟, 吴德海, 徐才录. 碳纳米管[M]. 北京: 机械工业出版社, 2003. 70-71.
    59. Journet C, Bemier P. Production ofnanotubes. Appl Phy, 1998, 67: 1-9
    60. 杨锦红,刘敏,成会明等. 纳米碳管的孔结构、相关物性和应用[J]. 材料研究学报,2001,15(4):375-386.
    61. Jin C W, Ichimura K, Imaeda K, et al. Interaction of fullerenes and carbon nanotubes with diatomic molecules. Synth Met, 2001, 121: 1221-1222.
    62. Chan S P, Chen G, Gong X G, et al. Oxidation of carbon nanotubes by singlet O2. Phys Rev Lett, 2003, 90 (8): 086403.
    63. Bauschlicher Jr C W, Ricca A. Binding of NH3 to graphite and to a (9,0) carbon nanotube. Phys Rev B, 2004, 70(11): 115409-115414.
    64. 赵艳玲. 共轭碳材料与锂的相互作用及氢吸附的从头算研究[D]:[博士学位论文].长春:东北师范大学化学学院,2005.
    1. Schr?dinger E. An Undulatory Theory of the Mechanics of Atoms and Molecules. Phys Rev, 1926, 28(6): 1049-1070.
    2. 梁文平,杨俊林,陈拥军, 李灿. 新世纪的物理化学-学科前沿与展望. 科学出版社, 北京,2004.
    3. Fang W H. A CASSCF Study on photodissociation of Acrolein in the Gas Phase. J Am Chem Soc, 1999, 121 (37): 8376-8384.
    4. Chen X B, Fang W H, Fang D C. An ab initio study toward understanding the mechanistic photochemistry of acetamide. J AM Chem Soc, 2003, 125 (32) 9689-9698.
    5. Shuai Z, Beljonne D, Silbey R J, et al. Singlet and triplet exciton formation rates in conjugated polymer light-emitting diodes. Phys Rev Lett, 2000, 84; 131-134.
    6. Li S, Ma J, Jiang Y. Pair-correlated coupled cluster theory: an alternative multireference CC method. J Chem Phys, 2003, 118: 5736-5745.
    7. Levine I N. Quantum Chemistry. Fifth edition. New Jersey: Prentice-Hall, Inc, 2000.
    8. Jones R O, Gunnarsson O. The density functional formalism, its applications and prospects. Rev Mod Phys, 1989, 61: 689-746.
    9. Deng L, Branchadell V, Ziegler T. Potential energy surfaces of the gas-phase SN2 reactions X- + CH3X =XCH3 + X- (X=F, Cl, Br, I): A comparative study by density functional theory and ab initio methods. J Am Chem Soc, 1994, 116: 10645-10656.
    10. Berces A, Ziegler T. Calculation of NMR shielding tensors using Gauge-including atomic orbital and modern density functional theory. J Phys Chem, 1995, 99: 606-611.
    11. Schreckenbach G, Ziegler. T. The calculation of NMR shielding tensors based on density functional theory and the frozen-core approximation. Int J Quantum Chem, 1996, 60(3): 753-766.
    12. Schreckenbach G., Ziegler T. J. Calculation of NMR Shielding Tensors Using Gauge-Including Atomic Orbitals and Morden Density Functional Theory. Phys Chem, 1995, 99: 606-611.
    13. Hong G Y, Lin X J, Li L M, et al. Linkage Isomerism and the Relativistic Effect in Interaction of Lanthanoid and Carbon Monoxide. J Phys Chem, 1997, A101 (49): 9314-9317.
    14. Lu H G, Li L M. Density functional study on zerovalent lanthanide bis (arene)-sandwich complexes. Chem Acc, 1999, 102: 121-126.
    15. Roy A K, Singh R, Deb B M. Density functional calculations on triply excited states of lithium isoelectronic sequence. Int J Quantum Chem, 1997, 65(4): 317-332.
    16. Li Z Y, Yang J L, Hou J G et al First-principles study of MgB2 (0001) surfaces. Phys Rev B, 2002, 65: 100507-100510.
    17. Xiang H J, Yang J L, Hou J G et al. First-principles study of small-radius single-walledBN nanotubes. Phys Rev B, 2003, 68: 35427-35431.
    18. Li Z Y, Yang J L, Hou J G et al Inorganic Electride: Theoretical Study on structural and Electronic Properties. J Am Chem Soc, 2003, 125: 6050-6051.
    19. Yuan L F, Yang J L, Li Q X et al. A first-principles study of acetylene and its evolution products on Cu(001). J Chem Phys, 2002, 116: 3104-3108.
    20. Onida G, Reining L, Rubio A. Electronic excitations: density-functional versus many-body Green’s-function approaches. Rev Mod Phys, 2002, 74: 601-660.
    21. Ismail-Beigi S, Louie S G. Excited-State Forces within a First-Principles Green’s Function Formalism. Phys Rev Lett, 2003, 90: 076401.
    22. Becke A D. Density-Functional Thermochemistry .III. The Role of Exact Exchange. J Chem Phys, 1993, 98(7): 5648-5652.
    23. Lee C, Yang W, Parr R G, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B, 1988, 37(2): 785-789.
    24. Vosko S H, Wilk L, Nusair M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis. Can J Phys, 1980, 58: 1200-1211.
    25. Stephens P J, Devlin F J, Chabalowski C F, et al. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J Phys Chem, 1994 98(45): 11623-11627.
    26. Curtiss L A, Raghavachari K, Pople J A. Gaussian-2 Theory - Use of Higher-Level Correlation Methods, Quadratic Configuration-Interaction Geometries, and 2nd-Order Moller-Plesset Zero-Point Energies. J Chem Phys, 1995, 103(10): 4192-4200.
    27. Boys S F, Bernardi F. The calculation of small molecular interactions by the differences of separate total energies, some procedures with reduced errors. Mol Phys, 1970, 19: 553-559.
    28. Salvador P Ph D Thesis, University of Girona, Girona, 2001.
    29. Mayer I. Towards a “Chemical” Hamiltonian. Int. J Quantum Chem, 1983, 23: 341-363.
    30. L?wdin P O. Quantum Theory of Many-Particle Systems. I. Physical Interpretations by Means of Density Matrices, Natural Spin-Orbitals, and Convergence Problems in the Method of Configurational Interaction. Phys Rev,1955, 97: 1474-1489.
    31. Reed A E, Curtiss L A, Weinhold F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev, 1988, 88(6): 899-926.
    32. Jensen F, Introduction to Computational Chemistry. JOHN WILEY&SONS, 1999, 161.
    33. Jensen F. Introduction to Computational Chemistry. JOHN WILEY&SONS, 1999, 229.
    34. Reed A E, Weinstock R B, Weinhold F. Natural Population Analysis. J Chem Phys, 1985, 83(2), 735-746.
    35. Carpenter J E, Weinhold F. Analysis of the geometry of the hydroxymethyl radical by the "different hybrids for different spins" natural bond orbital procedure. J Mol Struct (Theochem), 1988, 169: 41-62.
    1. Kroto H W, Heath J R, O’Brien S C, et al. C60: Buckminsterfullerene. Nature, 1985, 318: 162-163.
    2. Alvarez M M, Gillan E G, Holczer K, et al. Lanthanum carbide (La2C80): a soluble dimethallofullerene. J Phys Chem, 1991, 95: 10561-10563.
    3. Bethune D S, Johnson F D, Salem J R, et al. Atoms in carbon cages: the structure and properties of endohedral fullerenes. Nature, 1993, 366: 123-128.
    4. Xu Z D, Nakane T, Shinohara H. Production and isolation of Ca@C-82 (I-IV) and Ca@C-84 (I,II) metallofullerenes. J Am Chem Soc, 1996, 118: 11309-11310.
    5. Dennis T J S, Shinohara, Hisanori pp. Production and isolation of endohedral strontium- and barium-based mono-metallofullerenes: Sr/Ba@C82 and Sr/Ba@C84. Chem Phys Lett, 1997, 278:107-110.
    6. Wan S M, Zhang H W, Nakane T, et al. Production, isolation, and electronic properties of missing fullerenes: Ca@C-72 and Ca@C-74. J Am Chem Soc, 1998, 120: 6806-6807.
    7. Edward G. Gillan, Chahan Yeretzian, Kyu S. Min, et al. Endohedral rare-earth fullerene complexes. J Phys Chem, 1992, 96(17): 6869-6871.
    8. Moro L, Ruoff R S, Becker C H, et al. Studies of Metallofullerene Primary Scots by Laser and Thermal Desorption Mass Spectrometry. J Phys Chem, 1993, 97: 6801-6805.
    9. Shinohara H. Endohedral metallofullerenes. Rep Prog Phys, 2000, 63: 843-892.
    10. Guo T, Diener M D, Chai Y, et al. Uranium Stabilization of C28: A Tetravalent Fullerene. Science, 1992, 257: 1661-1664.
    11. Kubozono Y, Ohta T, Hayashibara T, et al. Preparation and Extraction of Ca@C60. Chem Lett, 1995 24: 457.
    12. Heath J R, O'Brien S C, Zhang Q, et al. Lanthanum Complexes of Spheroidal Carbon Shells. J Am Chem Soc, 1985, 107: 7779-7780.
    13. Yamamoto K, Saunders M, Khong A, et al. Isolation and Spectral Properties of Kr@C60, a Stable van der Waals Molecule. J Am Chem Soc, 1999, 121: 1591-1598.
    14. Syamala M S, Cross R J, Saunders M, 129Xe NMR Spectrum of Xenon Inside C60. J Am Chem Soc, 2002, 124: 6216-6219.
    15. Stevenson S, Burbank P, Harich K, et al. La2@C72: Metal-Mediated Stabilization of a Carbon Cage. J Phys Chem A, 1998, 102: 2833-2837.
    16. Reich A, Panth?fer M, Modrow H, et al. The Structure of Ba@C74. J Am Chem Soc, 2004, 126: 14428-14434.
    17. Yeretzian C, Hansen K, Alvarez M M, et al. Collisional probes and possible structures ofLa2C80. Chem Phys Lett, 1992 196: 337-342.
    18. Dresselhaus M S, Dresselhaus G, Eklund P C. Science of Fullerens and Carbon Nanotubes Academic Press, San Diego, 1996.
    19. Shinohara H, Sato H, Saito Y, et al. Mass spectroscopic and ESR characterization of soluble yttrium-containing metallofluorenes YC/sub 82/ and Y/sub 2/C/sub 82/. J Phys Chem, 1992, 96:3571-3573.
    20. Yanov I, Leszczynski J. The molecular structure and electronic spectrum of the C@C60 endohedral complex: An ab initio study. Journal of Molecular Graphics and Modelling, 2001, 19: 232-235.
    21. Stevenson S, Rice G, Glass T, et al. Small-bandgap endohedral metallofullerenes in high yield and purity. Nature, 1999, 401: 55-57.
    22. Komatsu K, Murata M, Murata Y. Encapsulation of Molecular Hydrogen in Fullerene C60 by Organic Synthesis. Science, 2005, 307: 238-240.
    23. Huntley D R, Markopoulos G, Donovan P M, et al. Squeezing C-C Bonds. Angew Chem Int Ed Engl, 2005, 44(46): 7549-7553.
    24. Becke A D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A, 1988, 38: 3098-3100.
    25. Pavlov M, Siegbahn P E M, Sandstrom M. Hydration of Beryllium, Magnesium, Calcium, and Zinc Ions Using Density Functional Theory. J Phys Chem A, 1998, 102: 219-228.
    26. Simon S, Duran M, Dannenberg J J. How Does Basis Set Superposition Error Change the Potential Surfaces for Hydrogen Bonded Dimers?. J Chem phys, 1996, 105: 11024-11031.
    27. Simon S, Duran M, Dannenberg J J. Effect of Basis Set Superposition Error on the Water Dimer Surface Calculated at Hartree-Fock, M ller-Plesset, and Density Functional Theory Levels. J Phys Chem A, 1999, 103: 1640-1643.
    28. Becke A D, Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys. 1993, 98: 5648-5652.
    29. Lee C, Yang W, Parr R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B, 1988, 37: 785-789.
    30. Salvador P, Duran M. The effect of counterpoise correction and relaxation energy term to the internal rotation barriers: Application to the BF3 NH3 and C2H4 SO2 dimers. J Chem Phys, 1999, 111: 4460-4465.
    31. Frisch M J, Trucks G W, Schlegel H B et al. (2003) Gaussian 03, Revision C.02, Gaussian, Inc., Pittsburgh, PA
    32. Andreoni W, Curioni A. Ab initio approach to the structure and dynamics of metallofullerenes, Appl Phys A, 1998, 66: 299-306.
    33. Andreoni W, Curioni A, Freedom and Constraints of a Metal Atom Encapsulated in Fullerene Cages, Phys Rev Lett, 1996, 77: 834-837.
    34. Guo T, Odom G K, Scuseria G E. Electronic Structure of Sc@C60: An ab Initio Theoretical Study, J Phys Chem, 1994, 98: 7745-7747.
    35. Mauser H, Hommes N J R V, Clark T, et al. Stabilization of Atomic Nitrogen Inside C60. Angew Chem Int Ed Engl, 1997, 36: 2835-2838.
    36. Murphy TA, Waiblinger M, Pietzak B. Atomic nitrogen in C60:N@C60. Appl Phys A, 1998, 66: 287-292.
    37. Pang L, Brisse F. Endohedral energies and translation of fullerene-noble gas clusters G@Cn (G = helium, neon, argon, krypton and xenon; n = 60 and 70). J Phys Chem, 1997, 97: 8562-8563.
    38. Son M, Sung Y K, The atom-atom potential. Exohedral and endohedral complexation energies of complexes of X@C60 between fullerene and rare-gas atoms (X = He, Ne, Ar, Kr, and Xe). Chem Phys Lett, 1997, 245: 113-118.
    39. Murata Y, Murata M, Komatsu K. 100% Encapsulation of a Hydrogen Molecule into an Open-Cage Fullerene Derivative and Gas-Phase Generation of H2@C60. J Am Chem Soc, 2003, 125: 7152-7153.
    1. Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354: 56-58.
    2. Niyogi S, Hamon M, Hu H, et al. Selective Interaction of Large or harge-Transfer Aromatic Molecules with Metallic Single-Wall Carbon Nanotubes: Critical Role of the Molecular Size and Orientation. Acc Chem Res, 2002, 35: 1105-1113.
    3. Eswaramoorthy M, Sen R, Rao C N R. A study of micropores in single-walled carbon nanotubes by the adsorption of gases and vapors. Chem Phys Lett, 1998, 304: 207-210.
    4. Moue S, Ichikuni N, Suzuki T. Conductivity, NMR Measurements, and Phase Diagram of the K2S2O7-V2O5 System. J Phys Chem B, 1998, 102: 24-28.
    5. Alvarez M M, Gillan E G, Holczer K, et al. Lanthanum carbide (La2C80): a soluble dimethallofullerene. J Phys Chem, 1991, 95:10561-10563.
    6. Gordon P A, Saeger R B. Molecular Modeling of Adsorptive Energy Storage: Hydrogen Storage in Single-Walled Carbon Nanotubes. Ind Eng Chem Res, 1999, 38: 4647-4655.
    7. McIntosh G C, Tománek D, Park Y W. Energetics and electronic structure of a polyacetylene chain contained in a carbon nanotube. Phys Rew B, 2003, 67: 125419-125424.
    8. Dubot P, Cenedese P. Modeling of molecular hydrogen and lithium adsorption on single-wall carbon nanotubes. Phys Rew B, 2001, 63: 241402-241405.
    9 Cao D, Zhang X, Chen J, et al. Optimization of single walled carbon nanotubes arrays for methane storage at room temperature. J Phys Chem B, 2003 107:13286-13292.
    10. Rao C N R, Nath M. Inorganic nanotubes. Dalton Trans, 2003, 1-24.
    11. Zhang M, Kan Y H, Zang Q J, et al. Why silicon nanotubes stably exist in armchair structure? Chem Phys Lett, 2003, 379: 81–86.
    12. Zhang M, Su Z M, Yan L K, et al. Theoretical interpretation of different nanotube morphologies among Group III (B, Al, Ga) nitrides. Chem Phys Lett, 2005, 408: 145–149.
    13. Okotrub A V, Bulusheva L G, Tomanek D. X-ray spectroscopic and quantum-chemical study of carbon tubes produced by arc-discharge. Chem Phys Lett, 1998, 289: 341-349.
    14. Liang W Z, Wang X J, Yokojima S, Chen G H. Electronic Structures and Optical Properties of Open and Capped Carbon Nanotubes. J Am Chem Soc, 2000, 122: 11129-11137.
    15. Becke A D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A, 1988, 38: 3098-3100.
    16. Pavlov M, Siegbahn P E M, Sandstrom M J. Hydration of Beryllium, Magnesium,Calcium, and Zinc Ions Using Density Functional Theory. J Phys Chem A, 1998, 102: 219-228.
    17. Simon S, Duran M, Dannenberg J J. How Does Basis Set Superposition Error Change the Potential Surfaces for Hydrogen-Bonded Dymers?. J. Chem. Phys., 1996, 105: 11024-11031.
    18. Simon S, Duran M, Dannenberg J J. Effect of Basis Set Superposition Error on the Water Dimer Surface Calculated at Hartree-Fock, M ller-Plesset, and Density Functional Theory Levels. J. Phys. Chem. A, 1999, 103:1640-1640.
    19. Becke A D. Density-functional thermochemistry, .III. The role of exact exchange. J Chem Phys, 1993, 98: 5648-5652.
    20. Lee C, Yang W, Parr R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B, 1988, 37: 785-789.
    21. Salvador P, Duran M. The effect of counterpoise correction and relaxation energy term to the internal rotation barriers: Application to the BF3 NH3 and C2H4 SO2 dimers. J Chem Phys, 1999, 111: 4460-4465.
    22. SU Zhong-Min(苏忠民),HU Li-Hong(胡丽红),CHU Bei(初蓓), et al. . Chem. J. Chinese University (高等学校化学学报) [J],2001, 22(8): 1359~1363.
    23. YAN Li-Kai(颜力楷),SU Zhong-Min(苏忠民),KAN Yu-He(阚玉和), et al. .J. Chinese University (高等学校化学学报) [J],2003, 24(10): 1876~1879.
    24. Frisch M J, Trucks G W, Schlegel H B. et al.. (2003) Gaussian 03, Revision C.02, Gaussian, Inc., Pittsburgh, PA
    1. Kebrale P., Tang L., Anal. Chem [J], 1993, 65: 972A-985A
    2. Masamichi Y., Fenn J. B., J. Phys. Chem [J], 1984, 88: 4451-445
    3. Dole, Mack M, Hines L. L., et al.. J. Chem. Phys [J], 1968, 49: 2240-2249
    4. Kebarle, P. J., Mass Spectrom [J], 2000, 35: 804-817
    5. Olumes Z., Callahan J. H., Vertes A, J. phys. Chem. A [J], 1998, 102: 9154-9160
    6. Manske R. H. F., Rodrigo R. G. A., The Alkaloids Chemistry and Physiology [M ], Vol XV II1 New York: Academ in Press, 1979
    7. Ameri A., Progress in Neurobiology [J], 1998, 56: 211-235
    8. Wang Y., Liu Z L., Song F R. et al. . Rapid Commin. Mass Spectrom[J]., 2002, 16: 2075-2082
    9. SUN Ping (孙萍),LUO Guo-An (罗国安),QU Lun (曲峻) ,Chem. J. Chinese Univesity (高等学校化学学报)[J],2003, 24(12): 2169-2172
    10. CHEN Jing (陈晶),CHEN Yi (陈益),JIANG Yang (江洋), et al. . Chem. J. Chinese Univesity (高等学校化学学报)[J],2003, 24(3): 459-461
    11. HART K. J., Mcluckey S. A., J. AM. Soc. Mass Spectrom. [J], 1994, 5: 250-259
    12. GUO Chun-Xiao(郭纯孝),MENG Qing-Bo (孟庆波),LIU Shu-Ying (刘淑莹), Chem. J. Chinese Univesity (高等学校化学学报)[J],1990, 11(7): 715-719
    13. SU Zhong-Min(苏忠民),HU Li-Hong(胡丽红),CHU Bei(初蓓), et al. . Chem. J. Chinese University (高等学校化学学报)[J],2001, 22(8): 1359~1363
    14. YAN Li-Kai(颜力楷),SU Zhong-Min(苏忠民),KAN Yu-He(阚玉和), et al. .J. Chinese University (高等学校化学学报)[J],2003, 24(10): 1876~1879
    15. Fischer P. J., Trucks G W., Schlegel H.B. et al.. Gaussian 98, Revision B. 2[CP], Pittsburgh PA: Gaussian, Inc, 1998
    16. George C. Pimentel et al.. The Hydrogen Bond [M], New York: Reinhold Publishing Corporation, 1960, 89

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700