含杂环芳香烃体系分子间蓝移氢键的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本工作运用量子化学从头算计算方法,以吡啶、呋喃、噻吩和吡咯等典型杂环芳香烃为质子受体,HCl、C_2H_2和HCX_3(X=F,Cl,Br,I)等典型分子为质子供体,比较系统地研究了它们之间形成分子间红移和蓝移氢键本质。本论文主要包括以下三部分:
     1.用量子化学从头算(ab initio)方法MP2,采用6-31G(d,p),6-311+G(d,p),6-311++G(d,p),6-311++G(2df,2p)、AUG-cc-pVDZ基组研究了以吡啶为质子受体,HCl和HCCl_3为质子供体的分子间氢键。研究表明,在MP2/6-31G(d,p)水平下,吡啶与HCl分子之间仅形成了Cl—H...N氢键,分子间的氢键作用使Cl—H键伸长0.0495 (?),振动频率减小了725.1cm~(-1),表现为红移氢键。吡啶与HCCl_3间形成两种类型的氢键,在MP2/6-31G(d,p)水平下,C—H...N氢键使HCCl_3中的C—H键伸长0.0049 (?),振动频率减小了79.1cm~(-1),表现为红移氢键;而C—H...π相互作用使CHCl_3中的C—H键缩短0.003 (?),振动频率增大了58 cm~(-1),表现为蓝移氢键。所有这些氢键复合物中,不论是红移还是蓝移氢键,C—H或Cl—H的伸缩振动红外强度相对于单体来说都增大,且质子供体固有偶极矩导数都大于零。自然键轨道(NBO)分析表明,超共轭和重杂化理论以及Hobza等提出的观点都能很好的解释这些氢键的形成原因。包含电子相关的Hartree-Fock理论能很好的解释复合物形成分子间C—H...N氢键本质。
     2.运用量子化学从头算方法研究了复合物C_5H_5N...HCX_3(X=F,Cl,Br,I)分子间C—H...N和C—H...π氢键。研究表明,在MP2/SDD水平下,分子间C—H...N氢键的形成均使HCX_3分子中C—H键伸长,伸缩振动频率减小,形成红移氢键;分子间C—H...π氢键的形成均使HCX_3分子中C—H键收缩,伸缩振动频率增大,形成蓝移氢键。振动光谱分析表明,不能根据质子供体分子HCX_3的固有偶极矩对C—H键长的导数来判断红移氢键和蓝移氢键。NBO分析表明,超共轭效应占优势,因此形成C—H...N红移氢键;重杂化效应占优势,因此形成C—H...π蓝移氢键。
     3.用量子化学从头算(ab initio)方法MP2,分别在B3LYP/6-311++G(d,p),MP2/6-31G(d,p),MP2/6-31+G(d,p),MP2/6-311++G(d,p)理论水平下对以呋喃、噻吩、吡咯和吡啶为质子受体,氟仿和乙炔为质子供体的C—H...π型氢键复合物进行了研究。计算表明:当以氟仿为质子供体时,所形成的C—H...π型氢键均为蓝移氢键,表现为C—H键收缩,而以乙炔为质子供体时,所形成的C—H...π型氢键均为红移氢键,表现为C—H键伸长。自然键轨道(NBO)分析表明,影响氢键红移和氢键蓝移主要有三个因素:π→σ~*(C—H)超共轭作用、C—H键轨道再杂化和质子供体电子密度重排。其中,超共轭作用属于键伸长效应,电子密度重排和轨道再杂化属于键收缩效应。在以乙炔为质子供体复合物中,由于键伸长效应处于优势地位导致形成红移氢键;在以氟仿为质子供体的复合物中,由于键收缩效应处于优势地位导致形成蓝移氢键。
In present paper, ab initio quantum mechanics method is employed to investigate the origin of red-shifting and blue-shifting hydrogen bond between furan, thiophene, pyrole, pyridine and HCl, C_2H_2, HCX_3(X=F, Cl, Br, I). The main contents are the following:
     1. The hydrogen bonds of HCl and HCCl_3 as the proton donors with pyridine as the acceptor were studied at the MP2 level of theory using the five basis sets 6-31G(d,p), 6-311+G(d,p), 6-311++G(d,p), 6-311++G(2df,2p) and AUG-cc-pVDZ. Pyridine and HCl can only form a Cl—H...N H-bond, which causes a large frequency red shift of 725 cm~(-1) for the Cl—H vibration and an elongation 0.0495 A of this bond using the basis set 6-31G(d,p). Two H-bonds are formed between pyridine and HCCl_3: the C—H...N hydrogen bond with an elongation 0.0049 A of the C—H bond and a red shift of 80 cm~(-1) for the C—H stretch vibration of HCCl_3, and the C—H...πinteraction with a contraction 0.003 A of the C—H bond and a blue shift of 58 cm~(-1) for the C—H stretch vibration of HCCl_3 using the basis set 6-31G(d,p). In these H-bonds, regardless of which are red-shifted or blue-shifted, the IR intensities of the C—H and Cl—H stretch vibrations increase, and the permanent dipole moment derivatives of the proton donors are positive. The natural bond orbital analysis was carried out, and the concepts of hyperconjugation and rehybridization and the theory of Hobza were applied to account for the origin of these hydrogen bonds. A post Hartree-Fock wavefunction containing electron correlation in the analysis of the natural bond orbital is required for interpreting the C—H...N H-bond in pyridine—HCCl_3.
     2. The C—H...N and C—H...πinteraction between pyridine and HCX_3(X=F, Cl,Br, I) was investigated by means of quantum chemical method of high level ab initio calculations. For the C—H...N interaction classical H-bonds are formed with an elongation of C—H and a red shift. However, for the C—H...πinteraction blue shifting H-bonds are identified with a contraction of C—H and a blue shift. The result of vibrational spectral analysis indicates that it is impossible to confirm blue shifting or red shifting H-bonds by the derivative of permanent dipole moment with respect to C—H stretch of the proton donor only. The NBO analysis show that the competitions of hyperconjugation and rehybridization result in two kinds of H-bonds.
     3. Ab initio quantum mechanics method is employed to investigate intermolecular interactions between furan, thiophene, pyrole and pyridine as proton acceptor and acetylene and trifluoromethane at B3LYP/6-311++G(d, p), MP2/6-31G(d, p), MP2/6-31+G(d, p), MP2/6-311++G(d, p) levels. For compounds containing acetylene C—H...πred shifting H-bond is formed with C—H bond elongation and a concomitant red shift. However, for compounds containing trifluoromethane, C—H...πblue shifting H-bond is formed with C—H bond contraction and concomitant blue shift. The NBO analysis shows that the C—H bond length in C—H...πis controlled by a balance of three main factors. C—H bond lengthening due toπ→σ*(C—H) hyperconjugative interaction is balanced by C—H bond shortening due to increase of s-character and polarization of the C—H bond and redistribution of electron density in proton donor. In compounds containing acetylene, hyperconjugative interaction dominates which results in red shifting H-bonds. In compounds containing trifluoromethane, the condition is reverse which results in blue shifting H-bonds.
引文
[1] Pauling L. The Nature of the chemical Bond. Cornell University Press, Ithaca, NewYork, 1939.
    [2] Jeffrey G. A. Saenger W. Hydrogen bonding in biological structures. Berlin, Springer-Verlag, 1991.
    [3] Hobza P., Havlas Z. Improper, blue-shifting hydrogen bond. Theor. Chem. Acc., 2002, 108, 325-334.
    [4] Hobza P., Sypirko V. Anti-Hydrogen Bond in the Benzene Dimer and Other Carbon Proton Donor Complexes. J. Phys. Chem. A., 1998, 102, 2501-2504.
    [5] Hobza P., Sypirko V., Havlas Z., et al. Anti-hydrogen bond between chloroform and fluorobenzene. Chem. Phys. Lett., 1999, 299, 180-186.
    [6] Hobza P., Havlas Z. Blue-Shifting Hydrogen Bonds. Chem. Rev., 2000, 100, 4253-4264.
    [7] Alabugin I. V., Manoharan M., Weinhold F. A. Blue-Shifted and Red-Shifted Hydrogen Bonds in Hypervalent Rare-Gas FRg-H...Y Sandwiches. J. Phys. Chem., A, 2004, 108, 4720-4730.
    [8] Zhou G., Zhang J. L., Wong N. B., et al. Theoretical study of the blue-shifting intramolecular hydrogen bonds of nitro derivatives of cubane. J. Mol. Struct. (THEOCHEM), 2003, 639, 43-51.
    [9] Barnes A. J. Blue-shifting hydrogen bonds—are they improper or proper? J. Mol. Struct., 2004, 704, 3-9.
    [10] Hermansson K. Blue-Shifting Hydrogen Bonds. J Phys. Chem. A, 2002, 106, 4695-4702.
    [11] Reimann B., Buchhold K., Vaupel S., et al. Improper, Blue-Shifting Hydrogen Bond between Fluorobenzene and Fluoroform. J. Phys. Chem. A, 2001, 105, 5560-5566.
    [12] McDowell S.A.C., Buckingham A. D. On the Correlation between Bond-Length Change and Vibrational Frequency Shift in Hydrogen-Bonded Complexes: A Computational Study of Y...HCl Dimers (Y=N2, CO, BF). J. Am. Chem. Soc., 2005, 127, 15515-15520.
    [13] Benjamin J. van der Veken, Herrebout W. A., Szostak R., et al. The Nature-of Improper, Blue-Shifting Hydrogen Bonding Verified Experimentally. J. Am. Chem. Soc., 2001, 123, 12290-12293.
    [14] Y. Gu, T. Kar, S. Scheiner Comparison of the CH...N and CH...O interactions involving substituted alkanes. J. Mol. Struct., 2000, 552, 17-31.
    [15] McDowell S. A.C., A computational study of the CO…HHeF dimmer. J. Mol. Struct. (THEOCHEM), 2004, 674, 227-232.
    [16] A computational study of the dihydrogen bonded complexes HBeH...HArF and HBeH...HKrF. J. Chem. Phys., 2004, 121, 5728-5733.
    [17] McDowell S. A.C. Blue-shifting hydrogen bonding in the N2…HArC1 dimmer. J. Mol. Struct.(THEOCHEM), 2003, 625, 243-250.
    [18] Rodziewicz P., Rutkowski K. S., Melikova S. M. et al. Ab Initio Studies of Electron Acceptor-Donor Interactions with Blue- and Red-Shifted Hydrogen Bonds. ChemPhysChem., 2005, 6, 1282-1292.
    [19] Feng Y., Zhao S. W., Liu L., et al. Blue-shifted dihydrogen bonds. J. Phys. Org. Chem., 2004, 17, 1099-1106.
    [20] Custelcean R., Jackson J. E. Dihydrogen Bonding: Structures, Energetics, and Dynamics. Chem. Rev., 2001, 101, 1963-1980.
    [21] Ribeiro-Claro Paulo J. A., Marques M. Paula M., Amado Ana M. Experimental and Theoretical Evidence of C-H...O Hydrogen Bonding in Liquid 4-Fluorobenzaldehyde. ChemPhysChem., 2002, 3, 599-606.
    [22] Meng Y., Zhou Z. Y., Duan C. Y., et al. Non-convertional hydrogen bonding interaction of BH3NH3 complexes: a comparative theoretical study. J. Mol. Struct. (THEOCHEM), 2005, 713, 135-144.
    [23] Gu Y., Kar T., Scheiner S. Fundamental Properties of the CH...O Interaction: Is It a True Hydrogen Bond? J. Am. Chem. Soc., 1999, 121,9411-9422.
    [24] Gu Y., Kar T., Scheiner S. Comparison of the CH...N and CH...O interactionsinvolving substituted alkanes. J. Mol. Struct., 2000, 552:17-31.
    [25] Scheiner S., Kar T., Red-versus Blue-Shifting Hydrogen Bonds: Are There Fundamental Distinctions? J. Phys. Chem., A, 2002, 106, 1784-1789.
    [26] Masunov A., Dannenberg J. J. C-H Bond-Shortening upon Hydrogen Bond Formation: Influence of an Electric Field. J. Phys. Chem. A., 2001, 105, 4737-4740.
    [27] Alabugin I. V., Manoharan M., Peabody S., et al. Electronic Basis of Improper Hydrogen Bonding: A Subtle Balance of Hyperconjugation and Rehybridization. J. Am. Chem. Soc., 2003, 125, 5973-5987.
    [28] Zierkiewicz W., Jurecka P., Hobza P. On Differences between Hydrogen bonding and improper Blue-shifting Hydrogen Bonding. ChemPhysChem., 2005, 6, 609-617.
    [29] Zierkiewicz W., Michalska D., Havlas Z., et al. Study of the Nature of Improper Blue-Shifting Hydrogen Bonding and Standard Hydrogen Bonding in the X_3CH...OH_2 and XH...OH_2 Complexes(X=F,Cl,Br,I): A Correlated Ab Initio Study. ChemPhysChem., 2002, 3, 511-518.
    [30] Wang X., Zhou G., Tian A. M., et al. Ab initio investigation on blue shift and red shift of C-H stretching vibrational frequency in NH3...CH_nX_(4-n) (n=1,3,X=F,Cl,Br, I) complexes. J. Mol. Struct. (THEOCHEM), 2005, 718, 1-7.
    [1] 徐光宪,黎乐民,量子化学,第一版,北京,科学出版社,2001.
    [2] 林梦海,量子化学计算方法与应用,第一版,北京,科学出版社,2004.
    [3] 唐敖庆,杨忠志,李前树,量子化学,北京,科学出版社,1982.
    [4] 徐光宪,黎乐民,王德民,量子化学基本原理和从头计算法,北京,科学出版社,1985.
    [5] Lowdin P. O. Correlation Problem in Many-Electron Quantum Mechanics. Chem. Phys., 1959, 2, 207-209.
    [6] Pople J. A., Head Gordon M., Raghavachari K. Quadratic Configuration Intera-ction, A General Technique for Determining Electron Correlation Energies. J. Chem. Phys., 1987, 87, 5968-5975.
    [7] Cioslowski J. A New Robust Algorithm for Fully Automated Determination of Attactor Interaction Lines in Moleclues. Chem. Phys. Lett., 1994, 219, 151-154.
    [8] Schlegel H. B., Robb M. A. MCSCF Gradient Optimization of the H2CO→H2+CO Transition Structure. Chem. Phys. Lett., 1982, 93, 43-46.
    [9] Eade R. H. E., Robb M. A. Direct Minimization in MCSCF Theory, The Quasi-Newton Method. Chem. Phys. Lett., 1981, 83, 362-368.
    [10] Hegarty D., Robb M. A. Application of Unitary Group Methods to Configuration Interaction Calculations, Mol. Phys., 1979, 38, 1795-1812.
    [11] Parr R. G.., Yang W. Density-functional theory of atoms and molecules. Oxford University Press, Oxford, 1989.
    [12] Seminario J. M., Politzer P. Modem Density Functional Theory A Tool For Chemistry Elsevier Amsterdam, 1995.
    [13] Ziegler T. Approximate density functional theory as a practical tool in molecular energetics and dynamics. Chem. Rev., 1991, 91,651-667.
    [14] Hohenberg P., Kohn W. Inbomogenous Electron Gas, Phys. Rev., 1964, 136, 864-871.
    [15] Kohn W., Sham L. J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. A, 1965, 140, 1133-1138.
    [16] Becke A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 1988, 38, 3098-3100.
    [17] Lee C., Yang W., Parr R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B, 1988, 37, 785-789.
    [18] Perdew J. P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B, 1986, 33, 8822-8824.
    [19] Bor M., Oppenheimer R., Zur Quantentheorie der Molekeln Ann. Phsik. Quantum Theory of the Molecules Ann. Phys., 1927, 84, 457-460.
    [20] Boyns S. F., Bermardi F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phy., 1970, 19, 553-566.
    [21] Tao F. M., Li Z. R., Pan Y. K. An accurate ab initio potential energy surface of He...H_2O. Chem. Phys. Lett., 1996, 255, 179-186.
    [22] Lowdin P. O. Quantum Theory of Many-Particle Systems. I. Physical Interpretations by Means of Density Matrices, Natural Spin-Orbitals, and Convergence Problems in the Method of Configurational Interaction. Phys. Rev., 1955, 97, 1474-1489.
    [23] Reed A. E., Weinstock R. B., Weinhold E Natural population analysis. J Chem. Phys., 1985, 83, 735-746.
    [24] Foster J. P., Weinhold F. Natural hybrid orbitals. J. Am. Chem. Soc., 1980, 102, 7211-7218.
    [25] Reed A. E., Weinhold F. Natural bond orbital analysis of near-Hartree-Fock water dimer. J. Chem. Phys., 1983, 78, 4066-4073.
    [26] Reed A. E., Curtidd L. A., Weinhold F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem. Rev., 1988, 88, 899-926.
    [27] Bader R. F. W. Atoms in Molecules, A Quantum Theory. Clarendon, Oxford, U. K., 1990.
    [28] Popelier P. L. A. Atoms in Molecules. An Introduction Pearson Education, Harlow, U. K., 1999.
    [29] Raghavachari K., Whiteside R. A., Pople J. A., et al. Molecular orbital theory of the electronic structure of organic molecules. Structures and energies of C_1-C_3 earbocations including effects of electron correlation. J. Am. Chem. Soc., 1981, 103, 5649-5657.
    [30] Hiraoka K., Mori T., Yamabe S. The gas-phase solvation of C_2H_5~+, s-C_3H_7~+, and s-C_4H_9~+ with CH_4. The isomeric structures of C_2H_5~+ and C_2H_5~+...CH_4. Chem. Phys. Lett., 1993, 207, 178-184.
    [31] Sieber S., Buzek P., Schleyer P. V. R., et al. The tert-butyl cation (C_4H_9~+) potential energy surface. J. Am. Chem. Soc., 1993, 115, 259-270.
    [1] Stefov V., Pejov L., Loptrajanov B., Experimental and quantum chemical study of pyrrole self-association through N-H...π hydrogen bonding. J. Mol. Struct., 2003, 649, 231-243.
    [2] Wang B. Q., Li Z. R., Wu D., Single-electron hydrogen bonds in the methyl radical complexes H_3C...HF and H_3C...HCCH: an ab initio study. Chem. Phys. Lett., 2003, 375, 91-95.
    [3] Hobza P., Havlas Z., Blue-Shifting Hydrogen Bonds. Chem. Rev., 2000, 100, 4253-4264.
    [4] 吴迪,李志儒,郑植仁,CH_2F_2…H_2O中强π型二级氢键.高等学校化学学报,2002,23,640-643.
    [5] Karpfen Alfred., Kryachko E. S., Blue-shifted hydrogen-bonded complexes: CH_3F...(HF)_1≤_n≤_3 and CH_2F_2...(HF)_1≤_n≤_3. Chem. Phys., 2005, 310, 77-84.
    [6] Rutkowski K. S., Rodziewicz P., Melikova S. M. et al., Blue shifted F_3CH...FCD_3 and Cl_3CH...FCD_3 weakly H-bound complexes, Cryospectroscopic and ab initio study. Chem. Phys., 2005, 313, 225-243.
    [7] McDowell S. A. C. Blue and red shifts in F_3C-H... B (B=FH, C1H, OH_2, SH_2 and Cl~-) complexes predicted by a pertttrbative model. Chem. Phys. Lett., 2006, 424, 239-242.
    [8] 杨颐,张为俊,裴世鑫,等.N-H…O红移氢键和蓝移氢键的理论研究.中国科学B辑,2006,36,218-226.
    [9] Feng Y., Zhao S. W., Liu L., et al. Blue-shifted dihydrogen bonds. J. Phys. Org. Chem., 2004, 17, 1099-1106.
    [10] Lu P., Liu G. Q., Li J. C. Existing problems in theoretical determination of red-shifted or blue-shifted hydrogen bond. J. Mol. Struct. (THEOCHEM), 2005, 723, 95-100.
    [11] Hobza P., Havlas Z. Improper, blue-shifting hydrogen bond. Theor. Chem. Acc., 2002, 108, 325-334.
    [12] Masunov A., Dannenberg J. J. C-H Bond, Shortening upon Hydrogen Bond Formation: Influence of an Electric Field. J. Phys. Chem. A., 2001, 105, 4737-4740.
    [13] Steve S., Tapas K. Red-versus Blue-Shifting Hydrogen Bonds: Are There Fundamental Distinctions? J. Phys. Chem. A., 2002, 106, 1784-1789.
    [14] Zierkiewicz W., Jurecka P. Hobza P. On Differences between Hydrogen Bonding and Improper Blue-Shifting Hydrogen Bonding. ChemPhysChem., 2005, 6, 609-617.
    [15] Alabugin I. V., Manoharan M., Peabody S., et al. Electronic Basis of Improper Hydrogen Bonding: A Subtle Balance of Hyperconjugation and Rehybridization. J. Am. Chem. Soc., 2003, 125, 5973-5987.
    [16] Li A. Y. Theoretical Investigation of Hydrogen Bonds between CO and HNF_2, H_2NF and HNO. J. Phys. Chem. A., 2006, 110, 10805-10816.
    [17] Sutton L. E., Powell H. M. Tables of Interatomic Distance and Configuration in Molecules and Ions, London: The Chemical Society, 1965.
    [18] 史福强,安静仪,李文,等.吡咯与HCl和CHCl3分子间Cl(C)—H...π型氢键的理论研究.化学学报,2004,62,1171-1175.
    [19] 李绛,谢代前,鄢国森,呋喃与HCl和CHCl_3构成的分子间氢键的理论研究.中国科学B辑,2003,33,21-25.
    [20] Hermansson K. J. Blue-Shifting Hydrogen Bonds. J. Phys. Chem. A., 2002, 106, 4695-4702.
    [21] McDowell S. A. C. Blue-shifting hydrogen bonding in the N_2…HArCl dimmer. J. Mol. Struct. (THEOCHEM), 2003, 625, 243-250.
    [22] McDowell S. A. C. A computational study of the dihydrogen bonded complexes HBeH...HArF and HBeH...HKrF. J. Chem. Phys., 2004, 121, 5728-5733.
    [23] McDowell S. A. C. A computational study of the CO...HHeF dimmer. J. Mol. Struct. (THEOCHEM), 2004, 674, 227-232.
    [1] 黎新,谷氨酸热分解机理的研究.西南师范大学学报,1999,24,438-442.
    [2] 李道华,邻二氮杂苯-水复合物氢键结构的理论研究.四川师范大学学报,2004,27,642-644.
    [3] Scheiner S., Hydrogen Bonding. New York, Oxford University Press, 1997.
    [4] Hobza P., Havlas Z., Improper, blue-shifting hydrogen bond. Theor. Chem. Acc., 2002, 108, 325-334.
    [5] Hobza P., Spirko V., Selzle H L., et al., Anti-Hydrogen Bond in the Benzene Dimer and Other Carbon Proton Donor Complexes. J. Phys. Chem. A, 1998, 102, 2501-2504.
    [6] Hobza P., Havlas Z. Blue-shifting hydrogen bonds. Chem. Rev., 2000, 100, 4253-4264.
    [7] Zierkiewicz W., Jurecka P., Hobza P., On Differences between Hydrogen bonding and improper Blue-shifting Hydrogen Bonding. ChemPhysChem, 2005, 6, 609-617
    [8] Zierkiewicz W., Michalska D., Havlas Z., et al. Study of the Nature of Improper Blue-Shifting Hydrogen Bonding and Standard Hydrogen Bonding in X_3CH...OH_2 and XH...OH_2 Complexes(X=F, Cl, Br, I): A Correlated Ab Initio Study. ChemPhysChem, 2002, 3, 511-518.
    [9] Wang X., Zhou G., Tian A. M., et al., Ab initio investigation on blue shift and red shift of C-H stretching vibrational frequency in NH_3...CH_nX_(4-n)(n=1,3,X=F,Cl,Br, I) complexes. J. Mol. Struct. (THEOCHEM), 2005, 718, 1-7.
    [10] Frisch M. J., Trucks G. W., Schlegel H. B., et al., Gaussian 03, Revision B.02, Gaussian, Inc., Pittsburgh PA, 2003.
    [11] Glendening E. D., Badenhoop J. K., Reed A. E., et al., NBO Version 5.0, 2001.
    [12] Hermansson K., Blue-Shifting Hydrogen Bonds. J. Phys. Chem.A, 2002, 106, 4695-4702.
    [13] Alabugin I. V., Manoharan M., Peabody S., et al., Electronic Basis of Improper Hydrogen Bonding: A Subtle Balance of Hyperconjugation and Rehybridization. J. Am. Chem. Soc., 2003, 125, 5973-5987.
    [1] G.R. Desiraju, Crystal Engineering. The Design of Organic Solids, Elsevier, Amsterdam, 1989.
    [2] G.A. Jeffrey, W. Saenger, Hydrogen Bonding in Biological Structures, Springer, Berlin, 1991.
    [3] Weinhold A., Nature of H-bonding in clusters, liquids, and enzymes: an ab initio, natural bond orbital perspective. J. Mol. Struct. (THEOCHEM), 1997, 398, 181-197.
    [4] McDowell S. A. C. Intermolecular complexes of HArF and HF. Chem. Phys. Lett. 2003, 377, 143-148.
    [5] Udagawa T., Ishimoto T., Tokiwa H., et al. Geometric Isotope Effect of Various Intermolecular and Intramolecular C-H...O Hydrogen Bonds, Using the Multicomponent Molecular Orbital Method. J. Phys. Chem. A 2006, 110, 7279-7285.
    [6] Vijayakumar S., Kolandaivel P. Red-shifted and improper blue-shifted hydrogen bonds in dimethyl ether (DME)n (n=1-4) and hydrated (DME)n (n=1-4) clusters. A theoretical study. J. Mol. Struct. 2005, 734, 157-169.
    [7] Alfred Karpfen The interaction of fluoramines, fluorophosphines and fluoroarsines with hydrogen fluoride clusters (HF)n: Model studies on blue-shifted hydrogen bonds. J. Mol. Struct. (THEOCHEM), 2005, 757, 203-215.
    [8] Solimannejad M., Amlashi L. M., Alkorta I., et al. XeH2 as a proton-accepting molecule for dihydrogen bonded systems:A theoretical study. Chem. Phys. Lett., 2006, 422, 226-229.
    [9] McDowell S. A. C. A computational study of the hydrogen-bonded complexes FArH...OCO and FKrH...OCO. Chem. Phys. Lett., 2005, 406, 228-231.
    [10] McDowell S. A. C. Blue and red shifts in F_3C-H...B (B=FH, C1H, OH_2, SH_2 and Cl~-)complexes predicted by a perturbative model. Chem. Phys. Lett., 2006, 424, 239-242.
    [11] Solimannejad M., Alkorta I. Theoretical study of dihydrogen bonds in HnMH...HArF and HnMH...HKrF complexes (n=1-3; M=Be, Al, Ga, Si, Ge). Chem. Phys., 2006, 324, 459-464.
    [12] Rutkowski K.S., Rodziewicz P., Melikova S.M., et al. Theoretical study of Hal_3CH/F_2CD_2 (Hal=F, Cl) and F_3CH/FH heterodimers with blue shifted hydrogen bonds. Chem. Phys. 2006, 327, 193-201.
    [13] Byl O., Liu J. C., Wang Y., et al. Unusual Hydrogen Bonding in Water-Filled Carbon Nanotubes. 2006, 128, 12090-12097.
    [14] Hobza P., Havlas Z., Blue-Shifting Hydrogen. Bonds. Chem. Rev., 2000, 100, 4253-4264.
    [15] Hobza P., Havlas Z., Improper, blue-shifting hydrogen bond. Theor. Chem. Acc., 2002, 108, 325-334.
    [16] Barnes A. J., Blue-shifting hydrogen bonds—are they improper or proper? J. Mol. Struct., 2004, 704, 3-9.
    [17] Alabugin I. V., Manoharan M., Peabody S., et al. Electronic Basis of Improper Hydrogen Bonding: A Subtle Balance of Hyperconjugation and Rehybridization. J. Am. Chem. Soc., 2003, 125, 5973-5987.
    [18] Li A. Y., Chemical origin of blue- and redshifted hydrogen bonds: Intramolecular hyperconjugation and its coupling with intermolecular hyperconjugation. J. Chem. Phys. 2007, 126, 1-11.
    [19] Li A. Y., Wang S. W., Ab initio investigation of hydrogen bonds between pyridine and HC1, CHCl_3. J. Mol. Struct. (THEOCHEM), 2007, 807, 191-199.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700