基于ALOS等数据的盐城湿地植被分类及土地覆盖时空变化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湿地是地球上具有多种独特功能的生态系统,它不仅为人类提供大量食物、原料和水资源,而且在维持生态平衡、保持生物多样性和珍稀物种资源以及涵养水源、蓄洪防旱、降解污染、调节气候、补充地下水、控制土壤侵蚀等方面均起到重要作用。但是近几百年来,湿地资源遭到了严重破坏。其中,人类不合理使用土地,水污染、空气污染,围湖、围海造田等经济活动都直接或间接地导致了湿地面积的逐年减少。
     遥感技术具有观测范围广、信息量大、获取信息快、可比性强等优点,在实时、动态监测湿地土地覆盖变化方面扮演着重要的角色,近20年来已广泛用于湿地资源调查、湿地识别等研究中。加强湿地的遥感监测研究,准确掌握各类湿地的分布状况及动态变化趋势,可以更好的为湿地的保护、管理和湿地的生态恢复提供科学决策依据,从而实现湿地资源的可持续发展。
     本文以ALOS卫星数据为数据源,江苏盐城沿海湿地保护区为研究区,采用监督分类和构建决策树分类两种方法对研究区的湿地土地覆盖类型进行分类识别,特别是对研究区的植被类型实现了精细分类,并结合多年LANDSAT影像资料对盐城沿海湿地多年间的动态变化进行分析,研究其驱动力因子并对研究区所面临的问题提出相关建议,为湿地的保护和科学利用提供参考依据。主要研究内容和结论如下:
     (1)结合研究区域的特征,先后选用最大似然法和决策树分类法,将研究区域分成8种基本地物类型。通过精度检验,决策树分类法的总体分类精度达到了80%以上;
     (2)通过构建适当阈值的决策树,成功实现了对芦苇,互花米草,盐蒿和农田这四种研究区典型植被类型的精细分类,对湿地的分类识别和处于过渡状态的湿地植被类型之间的识别都取得了较好的效果。
     (3)对研究区多期LANDSAT影像实现遥感动态变化监测,通过地物类型变化幅度和变化速率的统计,分析研究区湿地类型的结构变化;通过面积转移矩阵,获取各湿地类型间的转化关系。结果表明,盐城沿海湿地在1975年到2006年的30年中,以芦苇、盐蒿为代表的自然湿地面积减少,而以互花米草、农田、盐场、鱼虾塘为代表的人工湿地则呈增长的趋势。
     (4)从自然和人文两方面分析盐城沿海湿地地物类型变化的驱动力因子。自然驱动力方面,主要表现为水文和气候的影响;而人文驱动力方面则要复杂的多,主要表现为经济发展需求推动下对研究区的大规模围垦、捕捞等经济活动,外来物种的侵入,以及污染等。
Wetland is ecological system having many distinct characteristics, which not ony provides planty of foodes, materials and water, but also plays an important role in manitaining ecological blance, preserving biological diversity, rare species and water conservation, storing waterflood, degrading pollution, regulating climate, supplying groudwater and controlling soil erosion. But, in recent several hundred years, it suffers servious devastation. Thereinto, many human activities result in wetland decrease directly or indirectly, such as developing land unreasonably, water pollution, air pollution, reclamation of land from the lake and sea.
     Remote sensing technology has many advantages of wide observation, massive information, quick acquisition and better comparability. It plays an important role in real-time and dynamic monitoring land cover change of wetland. In recent 20 years, it was used for investagation and recognition of wetland resource widely. It will provide foundation for reasonable decision-making of wetland preservation, management and ecological restoration of degradated wetland through enhancing remote sensing montoring of wetland, finding out distribution and dynamic change trend of various wetlands. Thereby, wetland resource achieves sustainable development.
     Jiangsu Yancheng coastal wetland protected region is selected as study area in this thesis. Supervised classification and constructing decision tree are adopted to classify and recognize the wetland cover of study area based on ALOS satellite image datasource. Then, dynamic change of wetland of the study area is analysised combined with different period LANDSAT images, also driving factors. According to the research results and the confronting problems in the study area, some suggestion is proposed for wetland preservation and reseanable use. The main research contents and results are as following.
     (1) Study area is classified into 8 kinds of basic land covers using maximum likelihood and decision tree classification methods according to features of study area. Method of decision tree classification implements subdivision of four kinds of typical vegetables.Its precison of total classification achieves 80% which attains good results in classification and recognition of wetland.
     (2) Based on constructed decision tree with appropriate thresholds, fine-classifications of reed, spartina alterniflora, suaeda heteroptera kitag and farmland are achieved. Also, good results are gained in reorganizations and classifications of wetland and transitional types of vegetable.
     (3) LANDSAT images of serveral periods are used to monitor dynamic change of wetland for calculating change extent and rate of land-cover type's change and analysizing component changes of them. Transition relationship between each kind of wetland type is described by area transition matrix. The study result shows that areas of natural wetland represented by reed、suaeda heteroptera kitag are descreasing. Yet, areas of artifical wetland, such as spartina alterniflora、farmland、saltern、ponds present increasing trend.
     (4) Driving factors of the land-cover types of coastal wetland are analysized from natural and humanistic views in Yancheng. Natural factors mainly present influence of hydrology and climate. But, it is more complex from humanistic view which mainly presents extensive inning, fishing, invasion of external species and pollution in study area promoted by economic development.
引文
[1]阮仁宗.洪泽湖试验区湿地变化遥感研究[D],南京大学博士论文,2005
    [2]傅国斌,李克让.全球变暖与湿地生态系统的研究进展[J],地理研究,2001(1):121-128
    [3]Daily,G.C.,S.Alexander,P.R.Ehrlich et al.Ecosystem services:benefits supplied to Human societies by natural ecosystems[J].Issues in Ecology,1997(2).
    [4]Daily,G.C.Restoring value to the world's degraded lands[J].Science,1995,269:350-354.
    [5]赵魁义.地球之肾--湿地[M].北京:化学工业出版社,2002,1-8
    [6]张柏.遥感技术在中国湿地研究中的应用[J],遥感技术与应用,1996(3):67-71
    [7]Jensen J.R,E.ChristensenR.Sharitz.Nontidal wetland mapping in South Carolina using airborne multi-spectral scanner data[J].Remote Sensing of Environment,1984,16:1-12
    [8]Jensen J.R,E.W.Ramsey,Jr.,E.J.Christensen et al.Inland wetland change detection using aircraft MSS data[J].Photogrammetric Engineering and Remote Sensing,1987,53(5):521-529
    [9]戴科伟.江苏盐城湿地珍禽国家级自然保护区生态安全研究[D],南京师范大学博士论文,2007
    [10]王宪礼,李秀珍.湿地的国内外研究进展[J],生态学杂志,1997,16(1):58-62
    [11]吕宪国,吕锡畴.我国湿地研究进展[J],地理科学,1998,18(4):293-300
    [12]朱晓华.南京沿江湿地信息提取与景观变化研究[D],南京大学硕士论文,2007
    [13]Williams,M.Wetlands:a threatened landscape[M].Oxford:Bdsackwell,1990,68-79
    [14]殷康前,倪晋仁.湿地研究综述[J],生态学报,1998,18(5):539-547
    [15]郎惠卿.中国湿地植被[M].北京:科学出版社.1999.
    [16]许木启,黄玉瑶.受损水域生态系统恢复与重建研究[J],生态学报,1998,18(5):547-557
    [17]张永泽,王煊.自然湿地生态恢复研究综述[J],生态学报,2001,21(2):309-313
    [18]崔保山,杨志峰.湿地生态系统健康研究进展[J],生态学杂志,2001,20(3):31-36
    [19]王宪礼,肖笃宁.湿地的定义与类型[A],见:陈宜瑜,中国湿地研究[C].北京:科学出版社,1995,34-40
    [20]Haack,B.Monitoring wetland changes with remote sensing:an east Africa example [J],Environmental Management,1996,20:411-419
    [21]Haack,B.,J.Messina.Monitoring the Omo River delta in East Africa using remote sensing [J],Earth Observation Magazine,1997,6:18-22
    [22]Jensen,J.R.,M.E.Hodgson,E.Christensen et al.Remote sensing of inland wetlands:a multispectral approach[J].Photogrammetric Engineering and Remote Sensing,1986,52(1):87-100
    [23]Ackleson,S.G.,V.Klemas.Remote sensing of submerged aquatic vegetation in Lower Chesapeake Bay:a comparison of Landsat MSS to TM imagery[J],Remote Sensing of Environment,1987,22:235-248
    [24] Gross,M.F.,M.A.Hardisky V. Klemas.Effects of solar angle on reflectance from wetland vegetation [J], Remote Sensing of Environment, 1988,26:195-212
    
    [25] Lathrop,R.G.,T.M. LillesandB.S. Yandell. Testing the utility of simple multi-date Thematic Mapper calibration algorithms for monitoring turbid inland waters [J], International Journal of Remote Sensing, 1991,12:2045-2063
    [26] Armstrong, R.A. Remote sensing of submerged vegetation canopies for biomass estimation [J], International Journal of Remote Sensing, 1993,14:621-627
    
    [27] Jensen, J.R., D.J.Cowen, J.D. Althausen et al. An evaluation of the Coast Watch change detection protocol in South Carolina [J], Photogrammetric Engineering and Remote Sensing,1993,59(6): 1038-1046
    
    [28] Johnston, R.M., M.M. Barson. Remote sensing of Australian wetlands: an evaluation of Landsat TM data for inventory and classification [J], Australian Journal of Marine and Freshwater Resources, 1993,44:235-252
    
    [29] Zainal, A.J.M., D.H.DalbyI.S.Robinson. Monitoring marine ecological changes on the East Coast of Bahrain with Landsat TM [J], Photogrammetric Engineering and Remote Sensing, 1993,59:415-421
    
    [30] Franklin, S.E., R.T. Gillespie, B.D. Titus et al. Aerial and satellite sensor detection of Kalmia angustifolia at forest regeneration sites in central Newfoundland [J], International Journal of Remote Sensing, 1994,15:2553-2557
    [31] Pope, K.O., E. Rejmankova, H.M. Savage et al. Remote sensing of tropical wetlands for malaria control in Chiapas, Mexico [J], Ecological Applications, 1994,4:81-90
    [32] Mertes, L.A.K., D.L. Daniel. J.M. Melack et al. Spatial patterns of hydrology, geomorphology, and vegetation on the floodplain of the Amazon River in Brazil from a remote sensing perspective [J], Geomorphology, 1995,13:215-232
    
    [33] Pietroniro, A., T.D. ProwseV. Lalonde. Classifying terrain in a muskeg-wetland regime for application to GRU-type distributed hydrologic modle [J], Canadian Journal of Remote Sensing,1995,22:45-52
    [34] Sader, S.A., D.AhlW.S. Liou. Accuracy of Landsat TM and GIS rule-based methods for forest wetland classification in Maine [J], Remote Sensing of Environment, 1995,53:133-144
    [35] Pietronior, A., T. Prowse, L. Hamlin et al. Application of a grouped response unit hydrological model to a northern wetland region [J], Hydrological Processes, 1996, 10:1245-1261
    [36] Ramsey, E.W., S.C. Laine. Comparison of Landsat Thematic Mapper and high resolution photography to identify change in complex coastal wetlands [J], Journal of Coastal Research,1997,13:281-292
    
    [37] Lunetta,R.S.,M.E. Balogh. Application of Multi-Temporal Landsat 5 TM Imagery for Wetland Identification [J], Photogrammetric Engineering and Remote Sensing, 1999,65(11):1303-1310
    [38]Hinson,J.M.,C.D.GermanW.J.Pulich.Accuracy assessment and validation of classified satellite imagery of Texas coastal wetlands[J],Marine Technology Society Journal,1994,28:4-9
    [39]Yi,G.C.,D.Risley,M.Koneffet al.Development of Ohio's GIS-based wetland inventory[J],Journal of Soil and Water Conservation,1994,49:23-28
    [40]Bolstad,P.V.,T.M.Lillesand.Rule - based classification medel:flexible integration of satellite imagery and thematic spatial data[J],Photogrammetric Engineering and Remote Sensing,1992,58:965-971
    [41]Fuller,R.M.,G.B.Groom,S.Mugisha et al.The integration of field survey and remote sensing for biodiversity assessment:a case study in the tropical forests and wetlands of Sango Bay Uganda[J],Biological Conservation,1998,86(3):379-391
    [42]Hewitt,M.J.I.Synoptic inventory of riparian ecosystems:the utility of Landsat Thematic Mapper data[J],Forest Ecology and Management,1990(33/34):605-620
    [43]McCarthy,T.,N.J.Franey,W.N.Ellery et al.The use of SPOT imagery in the study of environmental processes of the Okavango Delta,Botswana[J],South African Journal of Sciences,1993,89:432-436
    [44]Lee,J.K.,R.A.Park.Aplication of geoprocessing and simulation modeling to estimate impacts of sea level rise on the northeast coast of Florida[J],Photogrammetric Engineering and Remote Sensing,1992,58:1579-1586
    [45]Jensen,J.R.,K.Rutchey,,M.S.Koch et al.Inland wetland change detection in the everglades water conservation area 2A using a time series of normalized remotely sensed data[J],Photogrammetric Engineering and Remote Sensing,1995,61(2):199-209
    [46]Weismiller,R.A.,S.J.Kristof,D.K.Scholz et al.Change detection in coastal zone environments [J],Photogrammetric Engineering and Remote Sensing,1977,43:1533-1539
    [47]Macleod,R.D.,R.G.Congalton.A quantitative com parison of change-detection algorithms for monitoring eelgrass from remotely sensed data[J],Photogrammetric Engineering and Remote Sensing,1998,64(3):207-216
    [48]Houhoulis,P.F.,W.K.Michener.Detecting wetland change:a rule-based approach using NWI and SPOT-XS data[J],Photogrammetric Engineering and Remote Sensing,2000,66:205-211
    [49]Li,J.,R.M.Narayanan.A shape-based approach to change detection of lakes using time series remote sensing images[J],IEEE Transaction on Geoscience and Remote Sensing,2003,41(11):2466-2477
    [50]赵魁义,刘兴土.湿地研究的现状与展望[A],见:陈宜瑜,中国湿地研究[C].北京:科学出版社:1995,1-9
    [51]孙广友.中国湿地科学的进展与展望[J],地球科学进展,2000,15(1):667-672
    [52]范士忠.遥感在若尔盖泥炭资源调查中的应用[J],地质学报,1987,61(3):34-38
    [53]韩芳,乌日娜,李兴华.湿地资源的遥感监测方法[J].内蒙古气象,2006,4:33-35
    [54]杜红艳,张洪岩,张正祥.GIS支持下的湿地遥感信息高精度分类方法研究[J].遥感技术与应用,2004,8(4):244-248
    [55]张杰,沈芳,刘志国.长江口潮滩湿地植被光谱分析与遥感检测[J].华东师范大学学报(自然科学版),2007,7(4):42-63
    [56]袁崇恒.海岸带滩涂调查遥感图像的选择及解译标志概述[J].23-25
    [57]王建强,吴连喜,张岩岩.基于3S技术湿地遥感信息分类方法的研究[J].水利科技与经济,2006,10:718-720
    [58]衣宏伟,杨柳,张正祥.基于ETM+影像的扎龙湿地遥感分类研究[J].湿地科学,2004,9(3):208-212
    [59]陈水森,詹志明.基于GIS的鄱阳湖湿地遥感调查实验研究[J].热带地理,1999,3(1):35-38
    [60]钟文君,兰樟任.基于高空间分辨率遥感影像的湿地信息提取技术研究[J].云南地理环境研究,2007,9(5):134-139
    [61]兰樟仁,张东水,邱荣祖等.基于优化理论的遥感影像湿地信息提取[J].福建林学院学报,2004,24(4):308-311
    [62]牛明香,赵庚星.南四湖区湿地信息遥感提取技术研究[J].国土与自然资源研究,2004,1:51-53
    [63]陈定贵,周德民,吕宪国等.三江平原洪河自然保护区湿地遥感分类研究[J].遥感技术与应用,2007,8(4):485-491
    [64]童庆禧,郑兰芬等.湿地植被成像光谱遥感研究[J].遥感学报,1997,2(1):50-57
    [65]吴均平,毛志华等.一种基于分割图斑的海岸带遥感图像分类方法[J].海洋学研究,2006,6(2):70-78
    [66]尤洁云.基于地物信息分层提取的遥感专题制图[D].南京:南京师范大学,2007
    [67]纪仰慧,李春国等.土地利用/覆盖遥感分类研究综述[J].农业网络信息,2005.8:36-38
    [68]张学勤,王国祥,王艳红等.江苏盐城沿海滩涂淤蚀及湿地植被消长变化[J],海洋科学,2006(6):35-45
    [69]高国龙.日本先进陆地观测卫星(ALOS)简介[J].《红外》月刊,2004,6:3-46
    [70]李延梅,高峰.日本先进的陆地观测卫星ALOS[J].遥感技术与应用,2001,16(4):274-275
    [71]王树根.日本ALOS卫星简介[J].测绘信息与工程,2000,1:45-46
    [72]李婧,高抒,李炎.江苏海岸王港地区盐沼植被变化的TM图像分析[J].海洋科学,2006,30(5):52-27.
    [73]梅安新.遥感导论[M].2001.7,北京:高等教育出版社,98.
    [74]Jensen J R,Rutchey K,Koch M Set al.Inland wetland change detection in the Everglandes Water Conservation Area 2A using a time series of normalized remotely sensed data[J],Photogrammetric Engineering and Remote Sensing,1995,61(2):199-209.
    [75]王海君.太湖水色遥感大气校正方法研究[D].南京:南京师范大学,2007
    [76]孙家抦,舒宁,关泽群.遥感原理、方法和应用[M].1997,北京:测绘出版社.
    [77]韩玲玲,何政伟等.长江三峡库区Landsat7 ETM+数据的处理方法探讨[J].遥感技术与应 用,2003.8
    [78]赵英时等.遥感应用分析原理与方法[M].2003,北京:科学出版社,194-208.
    [79]曾志远.卫星遥感图像计算机分类与地学应用研究[M].2004,9,北京:科学出版社,6-8.
    [80]彭望禄.遥感数据的计算机处理与地理信息系统[M].北京:北京师范大学出版社,1991:42-190.
    [81]朱述龙,张占睦.遥感图像获取与分析[M].北京:科学出版社,2000,153-172.
    [82]曾志远.卫星遥感图像计算机分类与地学应用研究[M].2004,9,北京:科学出版社.
    [83]林桂兰,孙飒梅等.沿海丘陵地区土地覆盖及其动态变化的多源遥感研究[J].遥感信息,1999,4:33-36.
    [84]Conghe Song,Curtis E.Woodcock,Karen C.Seto,Classification and Change Detection Using Landsat TM Data:When and How to Correct Atmospheric Effects,Remote Sensing of Environment,2001,75:230- 244
    [85]包倩,郭平.基于直方图的遥感图像相似性检索方法比较[J].遥感学报,2006,11,10(6):893-900.
    [86]Euisun Choi,Chulhee Lee,Feature extraction based on the Bhattacharyya distance,Pattern Recognition,2003,36:1703- 1709
    [87]北京星图环宇科技有限公司等编著.ENVI遥感影像处理实用手册,2005.6.
    [88]杨存建,周成虎.基于知识的遥感图像分类方法探讨[J].地理学与国土研究,2001,17(1):72-77.
    [89]方红亮.地学应用中的遥感图像处理若干问题的分析[J].地理研究,1997,16(2):97-103.
    [90]Congalton R.G,1991.A Review of Assessing the Accuracy of Classification of Remotely Sensed Data,Remote Sens.Environ..37:35 -46
    [91]梁伟,杨勤科.坡度图在黄土高原土地利用遥感信息提取中的应用[J].干旱地区农业研究,2004,12,22(4):184-187.
    [92]John A.Richards,Xiuping Jia.Remote Sensing Digital Image Analysis:An Introduction [M].1999,Berlin:Springer.
    [93]孙家捅,舒宁,关泽群.遥感原理、方法和应用[M]北京:测绘出版社,1997.
    [94]李爽,丁圣彦,钱乐祥.决策树分类法及其在土地覆盖分类中的应用[J].遥感技术与应用,2002,17(1):7-11.
    [95]Brodley C E,Utgoff P E;Multivariate decision trees[J];Machine Learning;1995,19:45-77.
    [96]Fried,M.A.,Decision Tree Classification of Land Cover from Remotely Sensed Data[J].Remote Sensing of Environment,1997,61:399-409.
    [97]沈永明.江苏沿海淤泥质滩涂景观生态特征及其演替[J].南京晓庄学院学报,2005,21(5):98-102.
    [98]边肇祺,张学工.模式识别[M].北京:清华大学出版社,2000,10-11.
    [99]孙家捅.遥感原理与应用tM].武汉:武汉大学出版社,2003,284.
    [100]C.Conese,F.Maselli.Selection of optimum bands from TM scenes through mutual information analysis,ISPRS J.Photogramm.Remote Sensing,1993,Vol.48:2-11.
    [101]李彤,吴骅.采用决策树分类技术对北京市土地覆盖现状进行研究[J].遥感技术与应用,200419(6):485-487.
    [102]苗立志,姜岩,闾国年等.阿克苏河流域土地利用变化与动态监测分析[J].地球信息科学,2007,9(2):124-128.
    [103]袁晓燕,闻余华等.苏北沿海地区降水量的统计分析[J].水文,2007,27(1):93-96

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700