低剂量氰戊菊酯对雄性大鼠生殖系统的影响及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氰戊菊酯(fenvalerate,FEN),是国内最常用的Ⅱ型拟除虫菊酯类杀虫剂之一,具有拟雌激素和抗雄激素样作用,被认为是一种环境内分泌干扰物。目前的研究提示氰戊菊酯有内分泌干扰效应和雄性生殖功能损害作用,但其作用机制还有待深入研究。本课题选择氰戊菊酯这一代表性的环境内分泌干扰物,运用模式动物染毒实验,研究其在不同暴露水平下的雄性生殖毒性作用,再运用蛋白质组学的研究方法,探讨低剂量氰戊菊酯染毒影响雄性生殖系统的作用机制。我们选择8-10w雄性SD大鼠,连续灌胃染毒,每天一次,每周6天,共染毒8周,染毒剂量分别为0、0.00625、0.125、2.5、30mg/kg/d共5组。染毒结束后分别运用计算机辅助精子分析、吖啶橙染色、CTC染色、HE染色方法观察氰戊菊酯对雄性大鼠生殖系统的影响。根据染毒实验的结果,选择对照组与低剂量组的精子、睾丸蛋白进行蛋白质组学研究。计算机辅助精子分析(CASA)对染毒大鼠附睾尾部精子的计数、活动率及前向运动比率进行分析,结果显示染毒各浓度组与对照组无统计学差异;运用吖啶橙染色的方法观察精子DNA损伤各组无统计学差异;运用CTC染色的方法观察精子获能及自发性顶体反应的情况,各组获能率无统计学差异,自发性顶体反应率0.00625mg/kg/d组与对照组相比有所增加,有统计学差异;用HE染色观察精子畸形率显示各组与对照组相比均有明显增加,并有统计学差异,将精子畸形分类计算头部、颈部及尾部畸形率显示各染毒组尾部畸形率与对照组均有统计学差异,2.5、30mg/kg/d组的头部及颈部畸形率与对照组有统计学差异。睾丸HE染色示各组睾丸大体形态上无明显差异。根据染毒实验的结果,采用双向凝胶电泳和质谱技术这两种蛋白质组研究的主要技术手段,选择0mg、0.00625mg两组的精子和睾丸蛋白进行二维电泳,比较染毒后精子、睾丸蛋白的改变,得到差异蛋白质。实验结果显示精子蛋白二维电泳共鉴定出55个差异点,1.5倍以上38个,对应34种蛋白质,有多个与精子结构相关的蛋白,选择其中部分蛋白进行Western Blot验证,趋势一致;睾丸蛋白二维电泳共鉴定出63个差异点,1.5倍以上46个,对应43种蛋白质,选择关键的差异蛋白进行Western Blot验证,并做睾丸免疫组化进行定位研究。对低剂量氰戊菊酯导致精子异常的作用机制进行进一步探讨,我们阅读文献后发现睾丸差异蛋白中有多个和P53表达增加相关,而已有文献显示中等程度超表达P53的转基因雄性小鼠表型为畸形活精子症, Realtime PCR显示染毒组P53mRNA水平表达增加,Western Blot结果提示染毒后P53蛋白水平表达也有增加,其灰度值比较有统计学差异。Realtime PCR检测P53下游基因ccna1mRNA表达水平也有增高。因此我们推测低剂量氰戊菊酯影响雄性大鼠生殖功能的分子机制可能是通过以P53表达增加这一通路作用的。本研究为进一步探讨氰戊菊酯导致男性不育的分子机制提供了一定基础。
Fenvalerate (FEN), a member of the type II synthetic pyrethroid insecticidefamily, is widely used in agricultural and for other domestic applications. As arepresentative environmental endocrinal disrupter, fenvalerate have reported possessestrogenic properties and antiandrogen activities. The current study suggestsfenvalerate has effects in endocrine disrupting and male reproductive functiondamage, but the underlie mechanism of its action is still unknown. In our study, wechoose fenvalerate, a representative of the environmental endocrine disruptors, usinganimal toxin exposure experiment model to analyze the male reproductive toxicityeffects with different exposure levels. Then we use proteomics methods to study themechanism of how does low dose fencalerate exposure affected male reproductivesystem. We choose8-10w male SD rats, pouring fencalerate in stomach, once a day,six days a week, and for eight weeks. Five groups are divided based on differentexposure doses:0,0.00625,0.125,2.5,30mg/kg/d. At the end of fencalerate exposure,we use computer-aided sperm analysis (CASA), acridine orangestaining, CTC staining and HE staining to study the effects of fencalerate on male ratreproductive system. And then we choose testis and sperm protein samples from thecontrol group and low dose exposure group for proteomics study based on themorphology observation. CASA is used to study the amount of sperm obtained fromepididymal tail, the sperm motility and the ratio of forward movement sperm. Theresults show there are no difference among different dose of fencalerate exposuregroups and the control group. Meanwhile acridine orange staining is used to evaluatethe degree of DNA damage; there are also no significant differences among groups.Sperm capacitation and spontaneous acrosome reaction are evaluated by CTCstaining, the capacitation ratios show no significant difference among groups whilethe ratios of spontaneous acrosome reaction show difference between0.00625mgfencalerate exposure group and the control group. Sperm deformity rates are evaluated using HE staining and significant difference can be observed between eachfencalerate exposure group and control group. We classifythe sperm deformity into head, neck and tail. The tail deformity ratesof each exposure group show significant difference compared with control group. Thesperm head and neck deformity rates in2.5mg and30mg groups show significantdifference with control group. There no difference in testis HE staining among allgroups. According to the morphology results of fencalerate exposure experiments,two-dimensional gel electrophoresis and mass spectrometry these two proteomicsmethods are chosen to study the changes of testis and sperm protein between control(0mg) and0.00625mg fencalerate exposure group. Our studies identify55differentprotein points in comparison sperm proteins between these two groups. Among these,38protein points have the differences more than1.5times, which corresponding to34proteins. And in these34proteins, many sperm structure related proteins are included.We choose some of these proteins using Western Blot to verify the difference showedin two-dimensional gel electrophoresis. Meanwhile our studies identify63differentprotein points in comparison testis proteins between these two groups. Among these,46protein points have the differences more than1.5times, which corresponding to43proteins. And in these43proteins, many sperm structure related proteins are included.Also we choose some of these proteins using Western Blot to verify the differenceshowed in two-dimensional gel electrophoresis and do localization researches usinghistochemistry. Based on these results, we further explore the mechanism of spermabnormal caused by low dose fencalerate exposure. According to the literatures, wefind these are several testes different proteins are related to the increase expression ofP53, and it has been proved that transgenic male mice with a moderateoverexpression of P53show a phenotype of teratozoospermia. Real-time PCR showsthat P53mRNA increases in fencalerate exposure group and Western Blot also showsincreased P53in protein level with a significant difference in gray value comparison.The Ccna1mRNA, which is a known gene in downstream of P53pathway, alsoshows increase in Real-time PCR analysis. Therefore, we hypothesizes that thepossible mechanism of low dose fencalerate exposure on rat sperm function is through the up-regulated P53pathway to increase the expression level of P53. Ourresults provide a certain foundation for the further study to the molecular mechanismof male infertility caused by fencalerate exposure.
引文
[1] Swan, S.H., Elkin, E.P. and Fenster, L. The question of declining sperm densityrevisited: an analysis of101studies published1934-1996. Environ HealthPerspect,2000,108:961-6.
    [2]张树成,王弘毅,王介东.1981~1996年我国有生育力男性精液质量的变化分析.生殖与避孕,1999,10(1):33-39.
    [3]梁颖,孙立荣,张存政,余向阳,刘贤进.蔬菜中4种拟除虫菊酯类农药对江苏省人群的暴露水平及潜在危害.江苏农业学报,2009,25(3):668-672.
    [4] Lifeng T, Shoulin W, Junmin J, Xuezhao S, Yannan L, Qianli W, Longsheng C.Effects of fenvalerate exposure on semen quality among occupationalworkers. Contraception.2006Jan,73(1):92-6.
    [5] Du G, Shen O, Sun H, Fei J, Lu C, Song L, Xia Y, Wang S, Wang X. Assessinghormone receptor activities of pyrethroid insecticides and their metabolites inreporter gene assays. Toxicol Sci.2010Jul,116(1):58-66.
    [6] Go V, Garey J, Wolff MS, Pogo BG. Estrogenic potential of certain pyrethroidcompounds in the MCF-7human breast carcinoma cell line. Environ HealthPerspect.1999Mar,107(3):173-7.
    [7] Chen H, Xiao J, Hu G, Zhou J, Xiao H, Wang X. Estrogenicity oforganophosphorus and pyrethroid pesticides. J Toxicol Environ Health A.2002Oct11,65(19):1419-35.
    [8] Lemaire G, Mnif W, Mauvais P, Balaguer P, Rahmani R. Activation of alpha-andbeta-estrogen receptors by persistent pesticides in reporter cell lines. Life Sci.2006Aug15,79(12):1160-9.
    [9] Sun H, Xu XL, Xu LC, Song L, Hong X, Chen JF, Cui LB, Wang XR.Antiandrogenic activity of pyrethroid pesticides and their metabolite inreporter gene assay. Chemosphere.2007Jan,66(3):474-9.
    [10] Xu LC, Sun H, Chen JF, Bian Q, Song L, Wang XR. Androgen receptoractivities of p,p'-DDE, fenvalerate and phoxim detected by androgen receptorreporter gene assay. Toxicol Lett.2006Jan5,160(2):151-7.
    [11] Pati PC, Bhunya SP. Cytogenetic effects of fenvalerate in mammalian in vivotest system. Mutat Res.1989, Mar,222(3):149-54.
    [12]龚伟,张习春,高蓉,程洁,肖杭.氰戊菊酯对小鼠精子体外获能的影响及机制探讨.环境与职业医学,2004,21(2):84-87
    [13] Arena AC, Fernandez CD, Porto EM, Bissacot DZ, Pereira OC, Kempinas WG.Fenvalerate, a pyrethroid insecticide, adversely affects sperm production andstorage in male rats. J Toxicol Environ Health A.2008,71(23):1550-8.
    [14] Mani U, Islam F, Prasad AK, Kumar P, Suresh Kumar V, Maji BK, Dutta KK.Steroidogenic alterations in testes and sera of rats exposed to formulatedFenvalerate by inhalation. Hum Exp Toxicol.2002Nov,21(11):593-7.
    [15] Zhang H, Wang H, Wang Q, Zhao XF, Liu P, Ji YL, Ning H, Yu T, Zhang C,Zhang Y, Meng XH, Xu DX. Pubertal and early adult exposure to fenvaleratedisrupts steroidogenesis and spermatogenesis in mice at adulthood. J ApplToxicol.2010May,30(4):369-77.
    [16] Zhang H, Wang H, Ji YL, Zhang Y, Yu T, Ning H, Zhang C, Zhao XF, Wang Q,Liu P, Xu DX. Maternal fenvalerate exposure during pregnancy persistentlyimpairs testicular development and spermatogenesis in male offspring. FoodChem Toxicol.2010May,48(5):1160-9.
    [17] Zhang H, Wang H, Ji YL, Ning H, Yu T, Zhang C, Zhang Y, Zhao XF, Wang Q,Liu P, Meng XH, Xu DX. Lactational fenvalerate exposure permanentlyimpairs testicular development and spermatogenesis in mice. Toxicol Lett.2009Dec1,191(1):47-56.
    [18] Lifeng T, Shoulin W, Junmin J, Xuezhao S, Yannan L, Qianli W, Longsheng C.Effects of fenvalerate exposure on semen quality among occupational workers.Contraception.2006Jan,73(1):92-6.
    [19] Bian Q, Xu LC, Wang SL, Xia YK, Tan LF, Chen JF, Song L, Chang HC, WangXR. Study on the relation between occupational fenvalerate exposure andspermatozoa DNA damage of pesticide factory workers. Occup Environ Med.2004Dec,61(12):999-1005.
    [20] Xia Y, Bian Q, Xu L, Cheng S, Song L, Liu J, Wu W, Wang S, Wang X.Genotoxic effects on human spermatozoa among pesticide factory workersexposed to fenvalerate. Toxicology.2004Oct15,203(1-3):49-60.
    [21] Wasinger VC, Cordwell SJ, Cerpa-Poljak A, Yan JX, Gooley AA, Wilkins MR,Duncan MW, Harris R, Williams KL, Humphery-Smith I. Progress withgene-product mapping of the Mollicutes: Mycoplasma genitalium.Electrophoresis1995,16,1090-1094.
    [22] Kavlock RJ, Daston GP, DeRosa C, Fenner-Crisp P, Gray LE, Kaattari S et al.Research needs for the risk assessment of health and environmental,effects ofendocrine disruptors: a report of the U.S. EPA-sponsored workshop. EnvironHealth Perspect1996,104(Suppl4):715–40.
    [23] Russell LD, Ettlin RA, Hikim AP, Clegg ED.1990. Mammalianspermatogenesis. In Histological and Histopathological Evaluation of theTestis, ed. LD Russell, R Ettlin, AP Sinha Hikim, ED Clegg, pp.1–40.Florida: Cache River
    [24] Sharpe R.1994. Regulation of spermatogenesis. In The Physiology ofReproduction, ed. E Knobil, JD Neill,1:1363–434. New York: Raven
    [25] Moreno RD, Ramalho-Santos J, Chan EK, Wessel GM, Schatten G.2000. TheGolgi apparatus segregates from the lysosomal/acrosomal vesicle duringrhesus spermiogenesis: structural alterations. Dev Biol219(2):334-49.
    [26] Hermo L, Pelletier RM, Cyr DG, Smith CE.2010.Surfing the wave, cycle, lifehistory, and genes/proteins expressed by testicular germ cells. Part2: changesin spermatid organelles associated with development of spermatozoa. MicroscRes Tech73(4):279-319
    [27] De Kretser DM, Baker HW. Infertility in men: recent advances and continuingcontroversies. J Clin Endocrinol Metab.1999,84(10):3443-50.
    [28] Kierszenbaum AL, Tres LL. The acrosome-acroplaxome-manchette complex andthe shaping of the spermatid head. Arch Histol Cytol.2004,67(4):271-84.
    [29] Tanaka H, Baba T.2005. Gene expression in spermiogenesis. Cell Mol Life Sci62(3):344-54.
    [30]张习春,肖杭,张莉,王心如.氰戊菊酯对小鼠精子顶体反应影响及作用机理.中国药理学与毒理学杂志,2002,16(2):21-24
    [31] Shi XD, Bi HJ, Fu HL, Li LY, Liu DK, Li JM. Effect of low-dose fenvalerate onsemen quality capacitation in adult mice. Chin Med J (Engl).2011May,124(10):1529-33.
    [32] du Plessis SS, Kashou AH, Benjamin DJ, Yadav SP, Agarwal A. Proteomics: asubcellular look at spermatozoa. Reprod Biol Endocrinol.2011Mar22,9:36.
    [33] Oko R, Morales CR. A novel testicular protein, with sequence similarities to afamily of lipid binding proteins, is a major component of the rat spermperinuclear theca. Dev Biol.1994Nov,166(1):235-45.
    [34] Han C, Park I, Lee B, Jin S, Choi H, Kwon JT, Kwon YI, Kim do H, Park ZY,Cho C. Identification of heat shock protein5, calnexin and integral membraneprotein2B as Adam7-interacting membrane proteins in mouse sperm. J CellPhysiol.2011May,226(5):1186-95.
    [35] Naaby-Hansen S, Diekman A, Shetty J, Flickinger CJ, Westbrook A, Herr JC.Identification of calcium-binding proteins associated with the human spermplasma membrane. Reprod Biol Endocrinol.2010Jan15,8:6.
    [36] Suzuki-Toyota F, Ito C, Toyama Y, Maekawa M, Yao R, Noda T, Iida H,Toshimori K. Factors maintaining normal sperm tail structure duringepididymal maturation studied in Gopc-/-mice. Biol Reprod.2007Jul,77(1):71-82.
    [37] Chabory E, Damon C, Lenoir A, Henry-Berger J, Vernet P, Cadet R, Saez F,Drevet JR. Mammalian glutathione peroxidases control acquisition andmaintenance of spermatozoa integrity. J Anim Sci.2010Apr,88(4):1321-31.
    [38] Herr JC, Thomas D, Bush LA, Coonrod S, Khole V, Howards SS, Flickinger CJ.Sperm mitochondria-associated cysteine-rich protein (SMCP) is anautoantigen in Lewis rats. Biol Reprod.1999Aug,61(2):428-35.
    [39] Nayernia K, Adham IM, Burkhardt-G ttges E, Neesen J, Rieche M, Wolf S,Sancken U, Kleene K, Engel W. Asthenozoospermia in mice with targeteddeletion of the sperm mitochondrion-associated cysteine-rich protein (Smcp)gene. Mol Cell Biol.2002May,22(9):3046-52.
    [40] Cao W, Haig-Ladewig L, Gerton GL, Moss SB. Adenylate kinases1and2arepart of the accessory structures in the mouse sperm flagellum. Biol Reprod.2006Oct,75(4):492-500.
    [41] Higgy NA, Pastoor T, Renz C, Tarnasky HA, Van der Hoorn FA. Testis-specificRT7protein localizes to the sperm tail and associates with itself. Biol Reprod.1994Jun,50(6):1357-66.
    [42] Hoyer-Fender S, Neesen J, Szpirer J, Szpirer C. Genomic organisation andchromosomal assignment of ODF2(outer dense fiber2), encoding the maincomponent of sperm tail outer dense fibers and a centrosomal scaffold protein.Cytogenet Genome Res.2003,103(1-2):122-7.
    [43] Tarnasky H, Cheng M, Ou Y, Thundathil JC, Oko R, van der Hoorn FA. Genetrap mutation of murine outer dense fiber protein-2gene can result in spermtail abnormalities in mice with high percentage chimaerism. BMC Dev Biol.2010Jun15,10:67.
    [44] Kumar V, Rangaraj N, Shivaji S. Activity of pyruvate dehydrogenase A (PDHA)in hamster spermatozoa correlates positively with hyperactivation and isassociated with sperm capacitation. Biol Reprod.2006Nov,75(5):767-77.
    [45] Krisfalusi M, Miki K, Magyar PL, O'Brien DA. Multiple glycolytic enzymes aretightly bound to the fibrous sheath of mouse spermatozoa. Biol Reprod.2006Aug,75(2):270-8.
    [46] Roy L, Bergeron JJ, Lavoie C, Hendriks R, Gushue J, Fazel A, Pelletier A,Morré DJ, Subramaniam VN, Hong W, Paiement J. Role of p97and syntaxin5in the assembly of transitional endoplasmic reticulum. Mol Biol Cell.2000Aug,11(8):2529-42.
    [47] Pécheur EI, Martin I, Maier O, Bakowsky U, Ruysschaert JM, Hoekstra D.Phospholipid species act as modulators in p97/p47-mediated fusion of Golgimembranes. Biochemistry.2002Aug6,41(31):9813-23.
    [48] Uchiyama K, Jokitalo E, Kano F, Murata M, Zhang X, Canas B, Newman R,Rabouille C, Pappin D, Freemont P, Kondo H. VCIP135, a novel essentialfactor for p97/p47-mediated membrane fusion, is required for Golgi and ERassembly in vivo. J Cell Biol.2002Dec9,159(5):855-66.
    [49] Sarge KD, Cullen KE. Regulation of hsp expression during rodentspermatogenesis. Cell Mol Life Sci.1997Feb,53(2):191-7.
    [50] Jameel A, Skilton RA, Campbell TA, Chander SK, Coombes RC, Luqmani YA.Clinical and biological significance of HSP89alpha in human breast cancer.Int J Cancer1992,50:409-415
    [51] Grad I, Cederroth CR, Walicki J, Grey C, Barluenga S, Winssinger N, De MassyB, Nef S, Picard D. The molecular chaperone Hsp90α is required for meioticprogression of spermatocytes beyond pachytene in the mouse. PLoS One.2010Dec31,5(12):e15770.
    [52] Bomsztyk, K., Van Seuningen, I., Suzuki, H., Denisenko, O., Ostrowski, J.,Diverse molecular interactions of the hnRNP K protein. FEBS Lett1997,403:113-115.
    [53] Bomsztyk, K., Denisenko, O., Ostrowski, J., hnRNP K: one protein multipleprocesses. Bioessays2004,26:629-638.
    [54] Lee MH, Mori S, Raychaudhuri P. trans-Activation by the hnRNP K proteininvolves an increase in RNA synthesis from the reporter genes. J Biol Chem.1996Feb16,271(7):3420-7.
    [55] Aumais JP, Williams SN, Luo W, Nishino M, Caldwell KA, Caldwell GA, LinSH, Yu-Lee LY. Role for NudC, a dynein-associated nuclear movementprotein, in mitosis and cytokinesis. J Cell Sci.2003May15,116(Pt10):1991-2003.
    [56] Flohé L. Selenium in mammalian spermiogenesis. Biol Chem.2007Oct,388(10):987-95.
    [57] Schneider M, F rster H, Boersma A, Seiler A, Wehnes H, Sinowatz F,Neumüller C, Deutsch MJ, Walch A, Hrabé de Angelis M, Wurst W, Ursini F,Roveri A, Maleszewski M, Maiorino M, Conrad M. Mitochondrial glutathioneperoxidase4disruption causes male infertility. FASEB J.2009Sep,23(9):3233-42.
    [58] Imai H, Hakkaku N, Iwamoto R, Suzuki J, Suzuki T, Tajima Y, Konishi K,Minami S, Ichinose S, Ishizaka K, Shioda S, Arata S, Nishimura M, Naito S,Nakagawa Y. Depletion of selenoprotein GPx4in spermatocytes causes maleinfertility in mice. J Biol Chem.2009Nov20,284(47):32522-32.
    [59] Wójcik C, Yano M, DeMartino GN. RNA interference of valosin-containingprotein (VCP/p97) reveals multiple cellular roles linked toubiquitin/proteasome-dependent proteolysis. J Cell Sci.2004Jan15,117(Pt2):281-92.
    [60] Sherman MY, Gabai V, O'Callaghan C, Yaglom J. Molecular chaperonesregulate p53and suppress senescence programs. FEBS Lett.2007Jul31,581(19):3711-5.
    [61] Galigniana MD, Harrell JM, O'Hagen HM, Ljungman M, Pratt WB.Hsp90-binding immunophilins link p53to dynein during p53transport to thenucleus. J Biol Chem.2004May21,279(21):22483-9.
    [62] Moumen A, Masterson P, O'Connor MJ, Jackson SP. hnRNP K: an HDM2targetand transcriptional coactivator of p53in response to DNA damage. Cell.2005Dec16,123(6):1065-78.
    [63] Rahman-Roblick R, Roblick UJ, Hellman U, Conrotto P, Liu T, Becker S,Hirschberg D, J rnvall H, Auer G, Wiman KG. p53targets identified byprotein expression profiling. Proc Natl Acad Sci U S A.2007Mar27,104(13):5401-6.
    [64] Giaccia AJ, Kastan MB. The complexity of p53modulation: emerging patternsfrom divergent signals. Genes Dev.1998Oct1,12(19):2973-83.
    [65] Chumakov PM. Versatile functions of p53protein in multicellular organisms.Biochemistry (Mosc).2007Dec,72(13):1399-421.
    [66] Allemand I, Anglo A, Jeantet AY, Cerutti I, May E. Testicular wild-type p53expression in transgenic mice induces spermiogenesis alterations ranging fromdifferentiation defects to apoptosis. Oncogene.1999Nov11,18(47):6521-30.
    [67] Lozano G. Mouse models of p53functions. Cold Spring Harb Perspect Biol.2010Apr,2(4):a001115.
    [68] Moudgil VK, Dinda S, Khattree N, Jhanwar S, Alban P, Hurd C. Hormonalregulation of tumor suppressor proteins in breast cancer cells. J SteroidBiochem Mol Biol.2001Jan-Mar,76(1-5):105-17.
    [69] Lu S, Becker KA, Hagen MJ, Yan H, Roberts AL, Mathews LA, Schneider SS,Siegelmann HT, MacBeth KJ, Tirrell SM, Blanchard JL, Jerry DJ.Transcriptional responses to estrogen and progesterone in mammary glandidentify networks regulating p53activity. Endocrinology.2008Oct,149(10):4809-20.
    [70] Wade SB, Oommen P, Conner WC, Earnest DJ, Miranda RC. Overlapping anddivergent actions of estrogen and the neurotrophins on cell fate andp53-dependent signal transduction in conditionally immortalized cerebralcortical neuroblasts. J Neurosci.1999Aug15,19(16):6994-7006.
    [1] Moniz AC, Cruz-Casallas PE, Oliveira CA, Lucisano A, Florio JC, Nicolau AA,Spinosa HS, Bernardi MM. Perinatal fenvalerate exposure: behavioral andendocrinology changes in male rats. Neurotoxicol Teratol.1999Sep-Oct,21(5):611-8.
    [2] Go V, Garey J, Wolff MS, Pogo BG. Estrogenic potential of certain pyrethroidcompounds in the MCF-7human breast carcinoma cell line. Environ HealthPerspect.1999Mar,107(3):173-7.
    [3]袁超,林娜,赵瑞芳,李琳,霍江华,杨咸枝,王舒然.哈尔滨市售蔬菜中有机磷和拟除虫菊酯农药的残留量.环境与健康,2008,25(11):998-1000
    [4]梁颖,孙立荣,张存政,余向阳,刘贤进.蔬菜中4种拟除虫菊酯类农药对江苏省人群的暴露水平及潜在危害.江苏农业学报,2009,25(3):668-672.
    [5] Lifeng T, Shoulin W, Junmin J, Xuezhao S, Yannan L, Qianli W, Longsheng C.Effects of fenvalerate exposure on semen quality among occupational workers.Contraception.2006Jan,73(1):92-6.
    [6]龚伟,张习春,高蓉,程洁,肖杭.氰戊菊酯对小鼠精子体外获能的影响及机制探讨.环境与职业医学,2004,21(2):84-87
    [7]张习春,肖杭,张莉,王心如.氰戊菊酯对小鼠精子顶体反应影响及作用机理.中国药理学与毒理学杂志,2002,16(2):21-24
    [8] Xiao H, Zhang XC, Zhang L, Dai XQ, Gong W, Cheng J, Gao R, Wang X.Fenvalerate modifies T-type Ca2+channels in mouse spermatogenic cells.Reprod Toxicol.2006Jan,21(1):48-53.
    [9] Song L, Wang YB, Sun H, Yuan C, Hong X, Qu JH, Zhou JW, Wang XR. Effectsof fenvalerate and cypermethrin on rat sperm motility patterns in vitro asmeasured by computer-assisted sperm analysis. J Toxicol Environ Health A.2008,71(5):325-32.
    [10] Wang J, Jiang L, Gao X, Ding H, Wang Q, Cheng J, Gao R, Xiao H.Fenvalerate-induced Ca2+transients via both intracellular and extracellular wayin mouse GC-2spd (ts) cells. Toxicology.2009May17,259(3):122-32.
    [11] Gao X, Wang Q, Wang J, Wang C, Lu L, Gao R, Huan F, Dixon D, Xiao H.Expression of calmodulin in germ cells is associated with fenvalerate-inducedmale reproductive toxicity. Arch Toxicol.2012Mar22.
    [12] Qu JH, Hong X, Chen JF, Wang YB, Sun H, Xu XL, Song L, Wang SL, WangXR. Fenvalerate inhibits progesterone production through cAMP-dependentsignal pathway. Toxicol Lett.2008Jan4,176(1):31-9.
    [13] Qu JH, Fei J, Hong X, Chen JF, Gu AH, Sun H, Xu XL, Song L, Wang SL,Wang XR. Involvement of IGF-I signaling pathway in the regulation ofsteroidogenesis in mouse Leydig cells treated with fenvalerate. Toxicology.2012Feb26,292(2-3):151-5.
    [14] Pati PC, Bhunya SP. Cytogenetic effects of fenvalerate in mammalian in vivotest system. Mutat Res.1989, Mar,222(3):149-54.
    [15] Arena AC, Fernandez CD, Porto EM, Bissacot DZ, Pereira OC, Kempinas WG.Fenvalerate, a pyrethroid insecticide, adversely affects sperm production andstorage in male rats. J Toxicol Environ Health A.2008,71(23):1550-8.
    [16]胡静熠,王守林,赵人埩,杨俊,陈景衡,宋玲,王心如.氰戊菊酯对雄性大鼠生殖内分泌系统的影响.中华男科学,2002,8(1):18-21
    [17] Mani U, Islam F, Prasad AK, Kumar P, Suresh Kumar V, Maji BK, Dutta KK.Steroidogenic alterations in testes and sera of rats exposed to formulatedFenvalerate by inhalation. Hum Exp Toxicol.2002Nov,21(11):593-7.
    [18] Shi XD, Bi HJ, Fu HL, Li LY, Liu DK, Li JM. Effect of low-dose fenvalerate onsemen quality capacitation in adult mice. Chin Med J (Engl).2011May,124(10):1529-33.
    [19] Zhang H, Wang H, Wang Q, Zhao XF, Liu P, Ji YL, Ning H, Yu T, Zhang C,Zhang Y, Meng XH, Xu DX. Pubertal and early adult exposure to fenvaleratedisrupts steroidogenesis and spermatogenesis in mice at adulthood. J ApplToxicol.2010May,30(4):369-77.
    [20] Zhao XF, Wang Q, Ji YL, Wang H, Liu P, Zhang C, Zhang Y, Xu DX.Fenvalerate induces germ cell apoptosis in mouse testes through the Fas/FasLsignaling pathway. Arch Toxicol.2011Sep,85(9):1101-8.
    [21] Perry MJ, Venners SA, Barr DB, Xu X. Environmental pyrethroid andorganophosphorus insecticide exposures and sperm concentration. ReprodToxicol.2007Jan,23(1):113-8.
    [22]谈立峰,王守林,孙雪照,李燕南,王茜丽,吉俊敏,陈龙生,王心如.职业性接触氰戊菊酯农药对精液质量的影响.中华男科学,2002,8(4):273-276
    [23] Bian Q, Xu LC, Wang SL, Xia YK, Tan LF, Chen JF, Song L, Chang HC, WangXR. Study on the relation between occupational fenvalerate exposure andspermatozoa DNA damage of pesticide factory workers. Occup Environ Med.2004Dec,61(12):999-1005.
    [24] Xia Y, Bian Q, Xu L, Cheng S, Song L, Liu J, Wu W, Wang S, Wang X.Genotoxic effects on human spermatozoa among pesticide factory workersexposed to fenvalerate. Toxicology.2004Oct15,203(1-3):49-60.
    [25] Gao X, Yu L, Castro L, Moore AB, Hermon T, Bortner C, Sifre M, Dixon D. Anendocrine-disrupting chemical, fenvalerate, induces cell cycle progression andcollagen type I expression in human uterine leiomyoma and myometrial cells.Toxicol Lett.2010Jul15,196(3):133-41.
    [26] Fei J, Qu JH, Ding XL, Xue K, Lu CC, Chen JF, Song L, Xia YK, Wang SL,Wang XR. Fenvalerate inhibits the growth of primary cultured rat preantralovarian follicles. Toxicology.2010Jan12,267(1-3):1-6.
    [27] Chen JF, Chen HY, Liu R, He J, Song L, Bian Q, Xu LC, Zhou JW, Xiao H, DaiGD, Wang XR. Effects of fenvalerate on steroidogenesis in cultured ratgranulosa cells. Biomed Environ Sci.2005Apr,18(2):108-16.
    [28] Chen J, Chen H, Liu R, He J, Song L, Bian Q, Xu L, Zhou J, Xiao H, Dai G,Chang HC, Wang X. Effects of fenvalerate on progesterone production incultured rat granulosa cells. Reprod Toxicol.2005Jul-Aug,20(2):195-202.
    [29] He J, Chen J, Liu R, Wang S, Song L, Chang HC, Wang X. Alterations ofFSH-stimulated progesterone production and calcium homeostasis in primarilycultured human luteinizing-granulosa cells induced by fenvalerate. Toxicology.2004Oct15,203(1-3):61-8.
    [30] He J, Chen JF, Liu R, Song L, Chang HC, Wang XR. Fenvalerate-inducedalterations in calcium homeostasis in rat ovary. Biomed Environ Sci.2006Feb,19(1):15-20.
    [31] Nassr AC, Arena AC, Toledo FC, Bissacot DZ, Fernandez CD,Spinardi-Barbisan AL, Pires PW, Kempinas WG. Effects of gestational andlactational fenvalerate exposure on immune and reproductive systems of malerats. J Toxicol Environ Health A.2010,73(13-14):952-64.
    [32] Zhang H, Wang H, Ji YL, Zhang Y, Yu T, Ning H, Zhang C, Zhao XF, Wang Q,Liu P, Xu DX. Maternal fenvalerate exposure during pregnancy persistentlyimpairs testicular development and spermatogenesis in male offspring. FoodChem Toxicol.2010May,48(5):1160-9.
    [33] Zhang H, Wang H, Ji YL, Ning H, Yu T, Zhang C, Zhang Y, Zhao XF, Wang Q,Liu P, Meng XH, Xu DX. Lactational fenvalerate exposure permanently impairstesticular development and spermatogenesis in mice. Toxicol Lett.2009Dec1,191(1):47-56.
    [34] Moniz AC, Cruz-Casallas PE, Salzgeber SA, Varoli FM, Spinosa HS, BernardiMM. Behavioral and endocrine changes induced by perinatal fenvalerateexposure in female rats. Neurotoxicol Teratol.2005Jul-Aug,27(4):609-14.
    [35] Guerra MT, de Toledo FC, Kempinas Wde G. In utero and lactational exposureto fenvalerate disrupts reproductive function in female rats. Reprod Toxicol.2011Nov,32(3):298-303.
    [36] Garey J, Wolff MS. Estrogenic and antiprogestagenic activities of pyrethroidinsecticides. Biochem Biophys Res Commun.1998Oct29,251(3):855-9.
    [37] Chen H, Xiao J, Hu G, Zhou J, Xiao H, Wang X. Estrogenicity oforganophosphorus and pyrethroid pesticides. J Toxicol Environ Health A.2002Oct11,65(19):1419-35.
    [38] Kasat K, Go V, Pogo BG. Effects of pyrethroid insecticides and estrogen onWNT10B proto-oncogene expression. Environ Int.2002Nov,28(5):429-32.
    [39] Du G, Shen O, Sun H, Fei J, Lu C, Song L, Xia Y, Wang S, Wang X. Assessinghormone receptor activities of pyrethroid insecticides and their metabolites inreporter gene assays. Toxicol Sci.2010Jul,116(1):58-66.
    [40] Lemaire G, Mnif W, Mauvais P, Balaguer P, Rahmani R. Activation of alpha-and beta-estrogen receptors by persistent pesticides in reporter cell lines. Life Sci.2006Aug15,79(12):1160-9.
    [41] Sun H, Xu XL, Xu LC, Song L, Hong X, Chen JF, Cui LB, Wang XR.Antiandrogenic activity of pyrethroid pesticides and their metabolite in reportergene assay. Chemosphere.2007Jan,66(3):474-9.
    [42] Xu LC, Sun H, Chen JF, Bian Q, Song L, Wang XR. Androgen receptoractivities of p,p'-DDE, fenvalerate and phoxim detected by androgen receptorreporter gene assay. Toxicol Lett.2006Jan5,160(2):151-7.
    [43] Maiti PK, Kar A. Is triiodothyronine capable of ameliorating pyrethroid-inducedthyroid dysfunction and lipid peroxidation? J Appl Toxicol.1998Mar-Apr,18(2):125-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700